Dislocations in convection and the onset of chaos

John A. Whitehead

Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

02543
(Received 16 August 1982; accepted 3 June 1983)

High Prandtl number convection possesses a square flow pattern that is steady and is apparently
stable to infinitesimal disturbances. This pattern is unstable to finite-amplitude disturbances,
however, because a more chaotic (in time and space) spoke pattern of convection eats its way into
the squares from the lateral boundaries. Experiments are described in which the breakup of the
squares is initiated by dislocating one square in the middle of the apparatus with the use of a small,
heated resistor. Once a critical heating rate and time is exceeded, the dislocation initiates a spoke
cell which then systematically destroys neighboring square cells, resulting in the more chaotic
spoke pattern. If the critical rate is not exceeded, the cell becomes severely deformed during the
heating, but will relax back to a square convection cell after heating has ceased.

I. INTRODUCTION

Much progress has recently been made toward an un-
derstanding of the onset of chaos in systems which can be
described by ordinary differential equations. A common ap-
proach in linking them to the Navier—Stokes equations is to
expand the velocity fields as a series of sinusoidal functions
of the space variables. After substitution into the Navier—
Stokes equations, it is necessary to reduce the series to a
manageable number through some truncation assumption.
In reducing the convection equation to three equations,
which was the lowest number to make sense physically, Lor-
entz' discovered interesting transitions to and from chaotic
behavior. Moreover, laboratory experiments have been con-
ducted which exhibit many of the same phenomena such as
subharmonic bifurcation and quasiperiodic motion.?

The above theoretical procedure produces flow pat-
terns that are clearly unlike turbulent flows in the sense that
the correlation lengths are periodic in space. In contrast, the
correlation lengths in a turbulent fluid are finite. The pur-
pose here is to relate observations of one experiment in which
spatial inhomogeneities preclude and trigger spatial and sub-
sequent temporal chaos. The lead of Donnelly ef al.? is fol-
lowed in suggesting that such dislocations are important in
initiating turbulence and should be called turbators. This
type of emergence of chaos may not be addressed by current
theoretical studies.

In Rayleigh—Benard convection theoretical analyses of
flows which are periodic in the two lateral directions have
predicted a large number of transition states.* These agree
well with experiments in which the long-range order has
been established by special initial conditions.

In experiments with Prandtl number of order 1 the
flows eventually become disordered to some extent by transi-
tions to a variety of forms including oscillating flows. With
larger Prandtl number there are fewer transitions, and a
square form of convection can remain stable at Rayleigh
numbers of order half a million for a long period of time.’
Disordered cells, which are called spoke convection, were
not observed to emerge from a spontaneous breakdown of
the square cells, but ultimately propagated in from the wall.

2899 Phys. Fluids 26 (10), October 1983

0031-9171/83/102899-06%$01.90

The present experiments have been conducted to determine
the energy necessary to break down a square cell in the mid-
dle of the tank, and to illustrate that a local disruption in the
squares can cause spoke convection.

Il. THE EXPERIMENT

The apparatus (Fig. 1) has been used in previous studies
of high Prandtl number fluid.> A horizontal layer of Dow
Corning 200 silicon oil (physical properties: kinematic vis-
cosity v=10 cm?® sec™!; thermometric diffusivity
k= 1.16X 1073 cm? sec™'; thermal expansion coefficient
a=9.6X10"*°C~!; Prandtl number v/x=8.6X10%
7 + 0.003 cm deep was bounded above and below by trans-
parent plate glass water baths with a 92 cm X 102 cm work-
ing area. The glass surfaces were suitably flattened by
matching hydrostatic pressure, and leveled to better than 25
sec of arc. Thermostatically controlled water precise to
0.05 °C flowed through each bath, and controlled the tem-
perature above and below the layer of oil. The chamber was
insulated on the sides by 5 cm thick polyvinylchloride walls.

The method of Chen and Whitehead® (Fig. 1) was used
to induce square convection cells. This method consists of
placing a grid made up of alternating blocked and clear areas
over the top transparent bath (in this case the grid had a
wavelength of 7.63 cm; wavenumber 2v27d /A = 8.15).
Light from a 300 W incandescent lamp is then directed down
through the pattern, so the test fluid lying below is slightly
radiatively heated in the desired pattern. The system is left
for at least 2 h. This time is a little more than the thermal
time constantd 2/mx = 1.25h, which is the smallest thermal
time constant of the system. After the 2-h interval, the tem-
perature difference between top and bottom baths is raised to
25.0° + 0.05°C (R =5.7X10°) and a convection pattern
with the wavelength of the initiated pattern is seen to deve-
lop. After the pattern has developed the light is turned off,
the square grid removed, and the evolution of the convection
structure observed. The square pattern which was generated
here is discussed in more detail by Whitehead and Parsons.®

The test area was bordered laterally by an artificial wall
of polyvinylchloride 6.9 cm high and 2.54 cm thick. Outside
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FIG. 1. Shadowgraph taken when the square cells were severely deformed by the heated thermistor (and to a lesser extent the wires which hold the
thermistor), but which healed after the voltage to the thermistor was turned off. The voltage was 25 V and the distance from the heater to the original
crossing of the black lines was 1.6 cm. Times after start of the thermistor heating were, respectively, 0, 87, 147, 171 (heater just off), 192, 207, 267, and 387
min. Overturn time of the convection cell is approximately 12 min.
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this was a region a few centimeters wide in which silicon oil
was convecting, but whose outer limit was a glass wall in
contact with the room air. These boundaries always cause
the square cells to break up into spoke convection. The time
this takes is many overturn times (in our case, approximately
20 or more). Thus, although the square cells are never real-
ized forever in an experiment, they can resist for a time the
disrupting effect of the boundaries. It is believed that the fact
that the squares will remain for a very long time (at least until
the disordered cells propagate in from the wall) implies that
the squares are stable to infinitesimal perturbations but un-
stable to finite-amplitude perturbations.

1il. BREAKUP OF A SQUARE CELL AND THE INITIATION
OF A DISLOCATION

The role of the boundaries in breaking up the pattern
was not clear. In order to pose a more clearly quantified
question, we report here measurements of the heat which
was necessary to irreversibly dislocate one square cell from
virtually a point source in the middle of the apparatus.

The source of heat was a small oval thermistor {1 X 1.4
mm) which was soldered to two fine copper wires (of diame-
ter 0.005 cm) stretched at right angles to each other across
the tank, one wire at 3 cm above the bottom, and the other at

4 cm. The wires were then connected to a dc voltage supply.
The size of the wires was dictated by the desire to have them
as small as possible so they would have a minor mechanical
presence. However, the choice was unfortunate because the
currents necessary to break up a cell turned out to be larger
than expected, large enough in fact to heat the wires, which
thus had a thermal presence, acting as a disturbance second
in size only to the heated thermistor. The distortion of a
square cell is influenced by the placement of the thermistor,
the voltage, and, to a lesser extent, the position of the two
fine wires—all in respect to the placement of the induced
square flow field.

Experiments have not been done with heaters at differ-
ent depths, but 6 runs were made with the heater located at
different distances close to the black crossings.

In all cases at 20 and 25 V (three runs each), the square
cell became severely deformed after approximately 100 min,
but did not break up during the next 100 min. When the
voltage was teminated, the cells relaxed back to the square
pattern in approximately an hour and a half (Fig. 1). Turn-
over time of the roll was approximately 12 min.

Intworuns at 30V, with the heater located at a distance
of about 1.6 cm from the intersection of the black lines
(which was also the maximum distortion distance at 25 V),
the square broke down to an irrepairable dislocation.

FIG. 2. Shadowgraph from one of the two runs in which the square was broken down by the heater. Times are 0, 45, 75, and 105 min after the heater was
turned on, respectively. We judge the square was first irreparably broken down at the Y-shaped intersection at 105 min.
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FIG. 3. The subsequent destruction of neighboring square cells by spokes in the same experiment as Fig. 2. Times are 120, 130, 165 (heater off at 164}, 180
(the squares which were seriously distorted by the heating wires in the lower left are restored), 210, 240, and 360 min after start, respectively.
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Figure 2 shows sequential photographs of the square as
it breaks down. The qualitative feature that was most noti-
ceable in the breakdown was that one side of a square was
eliminated, so two squares became triangles. Also, the inter-
section of two hot thermals moved directly over the thermis-
tor. Figure 3 shows the subsequent evolution to spoke con-
vection. The triangles were unable to revert back to squares
and soon became spoke cells. The spoke cells subsequently
began to break down neighboring cells, and the new convec-
tion pattern has the time-dependent behavior characteristic
of spoke convection.>”’

IV. PARAMETERS OF THE BREAK UP

In order to estimate the effective heater strength, it
must be compared to the Rayleigh numer of the convection
which was predicted at 5.7 X 10°. To estimate this, account
was taken of the temperature drop across the glass walls
above and below the convection chambers. To obtain this
correction it is necessary to estimate the heat flux through
the layer. To do this, the law for Nusselt number N = 0.19
R ©%82 was used where R is the Rayleigh number. This was
the best fit curve observed by Somerscales and Gazda® at
these Rayleigh numbers, but a somewhat lower Prandtl
numbers. Since the difference between bath temperatures
and the temperature jump across the layer is less than 20%,
the above calculation should estimate the Rayleigh number
to a few percent accuracy.

To calculate the Rayleigh number of the heater, use is
made of the formula

R, =gaQd?/vkk,
where Q = I'V'is the heat produced by the thermistor, with V'
as the voltage across the thermistor and I as the current. The
current / was measured directly with a current meter. There
was a voltage drop along the wire, so voltage across the ther-
mistor was measured in the experimental tank after the ex-
periments were completed, and the top header removed so
there was a free surface. Based upon the manufacturer’s
specifications of the thermistor, the temperature was deter-
mined to be in the 200 °C to 300 °C range for these experi-
ments.

The values of R, for the three voltages are estimated as
2.1X10°% 2.7x10% and 2.9X 10°, respectively. Therefore,
the square is destroyed when the heater Rayleigh number is
approximately 2.9 X 10°, which is about half the Rayleigh
number of the fluid layer. This implies that the square celis
are relatively robust and must be subjected to a sizable per-
turbation, of order Rayleigh number, to break down. Once
they break down they do not heal themselves. The point
heater, therefore, seems to be a reliable method of generating
a quantifiable finite-amplitude perturbation.

V. SUMMARY

Obviously the dislocation triggered a phase change in
the fluid flow, but an important question is whether these
dislocations are unlike spatially periodic disturbances. They
are, after all, possibly similar to the collective instability ob-
served at lower Rayleigh and Prandt] numbers.® In other

2903 Phys. Fluids, Vol. 26, No. 10, October 1983

words, one may ask “is the dislocation different in principle
from the finite amplitude perturbations which are used in
theory (which are spatially periodic)?”** Rephrasing this in
more mathematical terms, is a perturbation represented as a
Fourier integral different in principle from a perturbation
represented as a Fourier series? Can we hypothesize that all
systems which are stable to finite-amplitude disturbances
are also stable to dislocations? There is the complementary
question that asks, do all systems which are unstable to fin-
ite-amplitude disturbances go unstable to dislocations? Fur-
thermore, what distinguishes those dislocations which lead
to chaotic behavior?

No clear answers are given yet, but the photographs
give some clues. If one closely examines Fig. 2, there is little
evidence of a spatially periodic disturbance which decays
away from the dislocation (apart from the flows which are
from the heating wires). Nor can any readjustment be seen to
any squares that are not immediately next to the spokes in
Fig. 3. The disturbance appears to be entirely local. Thus, it
is possible that periodic arrays of cells are unstable to dislo-
cations and thereby generate short spatial correlation
lengths. At least one other system has exhibited behavioral
sensitivity to dislocations,’ i.e., increased degrees of free-
dom, line broadening, extra broadband noise, loss of spatial
coherence, and hysteresis with dislocations. Donnelly (pri-
vate communication) has suggested that such dislocations be
called turbators (L. troublemakers). Manalotte-Rizzoli'® has
numerically observed that random finite-amplitude pertur-
bations break up solitons more easily than more-coherent
perturbations.

It would not be surprising to see that as Rayleigh num-
ber was increased, more voltage is required to break up the
squares. There are two reasons for this. First, the squares are
unstable at Rayleigh numbers below 150 000 and may be
expected to be progressively more rugged at higher Rayleigh
numbers. Second, preliminary experiments were conducted
at lower Rayleigh numbers and these exhibited a breakdown
of the squares due to the mechanical presence of the thermis-
tor and wires alone, with no heating. This is consistent with
less stable cells at lower Rayteigh numbers.

Note that the total energy flux necessary to initiate the
finite-amplitude perturbation can be made arbitrarily small
compared to the energy flux of the entire convecting fluid by
conducting the experiment in a tank with a very large lateral
extent, and dislocating only one cell. Although one must
then wait a very long time for the disorder to propagate
throughout the entire fluid, the “finite-amplitude” perturba-
tion can thus be made as small as desired. However, it is not
known whether all systems which are unstable to finite-am-
plitude disturbances will break up when subjected to a per-
turbation at only one point.
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