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The deflection of a baroclinic jet by a wall in a 
rotating fluid 

By J. A. WHITEHEAD 
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 

(Received 8 May 1984 and in revised form 30 January 1985) 

The momentum integral of a baroclinic jet of fluid in a rotating frame determines 
the relative size of two jets which are produced when the jet is split by a wall. Owing 
to lateral variation of velocity and depth of the jet, the percentage of fluid which 
goes to the right or left differs from that of the non-rotating jet, which is generally 
assumed to have no shew-. For a northern hemisphere jet of zero or constant potential 
vorticity, much more fluid flows to the right than to the left; for a jet normal to the 
wall more than 65 % goes to the right and less than 35 % to the left. 

1. Introduction 
Some oceanic coastal currents comprise low-density water which, in the northern 

hemisphere, flows along the right-hand coast as one looks in the direction of current 
propagation. A good example is the Norwegian Coastal Current. This is principally 
fed by fresh water from the Baltic and it flows northward along the west coast of 
Norway. Other examples are the Greenland Current, which flows southward along 
the East Coast of Greenland and northward along the West Coast, and the Antarctic 
Coastal Current (an example of opposite rotation), which flows westward along the 
northern coast of Antarctica. There are many others. These currents contain 
low-density water by virtue of their low salinity from fresh water runoff from the 
land. They are separated from the deep oceanic water by a distinct front which comes 
to the surface at some distance offshore, 

As a general problem in geophysical fluid dynamics, the jets and dynamics of the 
problem are strongly nonlinear since the front intersects the surface. The theoretical 
properties and behaviour of such currents have recently been studied. For analytical 
simplicity two classes of currents have been analysed ; those with zero and those with 
constant potential vorticity. The simplest currents have zero potential vorticity . The 
assumption is that the current comes from a very deep upstream reservoir. Whitehead, 
Leetmaa & Knox (1974), Stern (1974), Bye & Whitehead (1975) and Shen (1981) 
investigated the control of this kind of current as it passed through a long rectangular 
channel (strait). Sambuco & Whitehead (1976) and Whitehead & Porter (1977) 
investigated the control of this kind of current by an axisymmetric sill and a very 
wide sill, respectively. They found that these geometries insure that the current has 
zero potential vorticity. Stern (1980) studied theoretically a current of zero potential 
vorticity when it had a nose as it moved next to a vertical wall, and Stern, Whitehead 
& Lien Hua (1982) extended the theoretical understanding of the speed and width 
of this current. 

A more complicated current has constant potential vorticity. The assumption is 
that the current comes from a reservoir of oonstant depth. Analytical solutions have 
been found for these as well. Gill (1977), Nof (1978a,b) and Shen (1981) have 
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80 J .  A .  Whitehead 

FIQKJRE 1. Sequence of streak photographs of an experimentally generated constant-potential- 
vorticity jet which separates from the wall and reimpinges on it, thus creating a stagnation point. 
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The dejection of a baroclinic j e t  by a wall 81 

investigated the control of a current of constant potential vorticity by channels 
(straits) of various geometries. Griffiths & Linden (1981) and Killworth & Stern (1982) 
investigated the stability of axisymmetric gyres and wall currents of constant 
potential vorticity. Stern et al. (1982) studied a wall current when it had a nose, and 
Nof & Olson (1982) have investigated the movement of a jet of constant potential 
vorticity through a wall slot. 

Many of the above studies report on laboratory experiments which duplicate these 
currents. In  some there is a detachment of the current due to coastal irregularities, 
vorticity distribution in the current, or bottom topography, yet the reasons for 
detachment are ambiguous. There have been extensive laboratory observations of 
such detached jets by the Trondheim group (Ingebrigtsen 1979; Vinger & McClimans 
1980 ; McClimans & Green 1983). In  addition, a study of a free jet and a consequential 
gyre formation in the context of the Alboran Sea has been conducted by Whitehead 
& Miller (1979). In that case the free jet resulted from separation of the surface current 
from a curving wall. Figure 1 shows a sequence of photographs from the experiments. 
The free jet clearly reimpinges on the wall downstream of the separation point. The 
topic of this study is the behaviour of such a free jet as it impinges on a wall. 

In the ocean, coastal currents sometimes leave the coast forever and are lost in the 
deep ocean, where they presumably break up into eddies which ultimately mix with 
the ocean. Sometimes, however, the current curves around and returns to the coast 
or intersects another coast. Good examples of this are the jet in the Alboran Sea 
impinging on the coast of Africa (Whitehead & Miller 1979) and the jet of water that 
emanates from the Tsugaru Strait north of Japan which comes back and hits the 
coast in conjunction with an eddy formation (Conlon 1981, 1982; Kawasaki & 
Sugimoto 1984). In cases where a jet hits the coast, it is important to determine what 
governs the splitting of the jet. Does it deflect to the left as it hits the coast and 
resume its flow in an unaltered state along the coast ? Does it split up into two jets, 
one flowing to the left and another to the right? Does i t  reflect from the coast or 
does it even encounter difficulty in returning to  a steady state ? 

All these questions are simply a subset of the general problem of the adjustment 
of a nonlinear jet in a rotating fluid as it impinges on a sidewall. In  traditional 
hydrodynamics, well-known momentum balances govern nonlinear jets, as found in 
numerous text-books, for instance Prandtl & Tietjens (1957, p. 245). In geophysical 
fluid dynamics, the nonlinear jet in a two-layer rotating fluid has new, more 
complicated momentum balances, which will be derived for what seems to be the 
simplest class of nonlinear (i.e. those whose interface comes completely to the 
surface) baroclinic jets. These considerations lead to the prediction that a jet of zero 
or constant potential vorticity is partly deflected to the left (looking downstream) 
and partly to the right when it impinges onto a vertical wall. In no case does the 
fluid go completely to the left or to the right except for the extreme cases in which 
the jet just tangentially grazes the surface. An argument is advanced that this applies 
to a jet of any simple (i.e. one maximum) velocity distribution. Of course, all such 
distributions may not be stable. However, if the jet impinges onto a vertically sloping 
wall (or a coast), there could be an angle between the jet and the wall at which all 
fluid would go to the right or to the left. This is because a sloping coast can alter 
the velocity distribution of the jet, whereas a vertical wall cannot. 
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82 J .  A .  Whitehead 

FIGURE 2. Top view of the problem. A jet of width q,, is coming into the control section through 
section AB and impinging upon the cross-hatched wall. It splits into two jets, one exiting a t  AC 
of width a, the other exiting at BD of width y. The incoming jet makes angle 0 with the normal 
to AB (which is parallel to CD). The fine dashed line is the ‘inner’ border of the jet, where the bottom 
of the jet reaches depth H and velocity becomes zero. It is adjacent to a stagnant fluid of depth 
H. The long dashed line is the stagnation point or ‘dividing’ streamline, whose position is unknown 
ab initio. The solid line is the edge of the ‘front’, where the jet interface intersects the surface. 
Sections of this are in figure 3. 

2. A momentum integral 
Consider the depth-averaged steady-state Navier-Stokes equations for a fluid of 

density p and depth h ( z ,  y) lying over a motionless semi-infinite fluid of density p + Ap 
with Ap/p 4 1 :  

(2 .14  

UU, + VU,  - fv = - g’h, , (2.1b) 

UV, + VV,  + fu  = -g’h,, (2.14 

where g’ = gAp/p, and f = 2R is the Coriolis parameter, where R is the angular 
rate of rotation of the fluid. 

From (2.la), we can define a velocity potential 

$ y = -  uh, (2 .24  

$, = vh. (2.2b) 

Equations (2.1 b) and ( 2 . 1 ~ )  can be multiplied by h in their steady state to read 

huu,+ hvu,- f @ ,  = -+g‘(h’)), , ( 2 . 3 ~ )  

huv,+hvv,-f$, = -ig’(h”),. (2.3b) 

Let us consider a situation in which a jet is impinging upon a coast from offshore, 
the jet having an angle 0 with the normal to the coast as shown in figure 2. The jet 
is purely baroclinic and a front separates dense fluid on the left and below from 
less dense fluid on the right and above. If a is the width of the fluid which is going 
to the left, i.e. if i t  is the distance from the point of zero height to the stagnation- 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

BL
W

H
O

I L
ib

ra
ry

, o
n 

21
 N

ov
 2

01
7 

at
 1

4:
52

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
85

00
23

12

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112085002312


The dejlection of a baroclinicjet by a wall 83 

point streamline, the task is to use the above equations to determine a, and thence 
to estimate how much fluid flows to the left. The rest must flow to the right. A control 
volume is to be bounded by the coast a t  y = 0, by a left-hand boundary (AC) at 
x = - L and a right-hand boundary (BD) at x = + L, and by an offshore sectian (AB) 
at y =  - b  through which the current is introducing fluid from offshore. Equation 
(2 .3a)  can then be integrated in this control volume (in a manner similar to Nof & 
Olson 1983) as follows: 

ro r+L 
(2.4a) 

The two left-hand terms can be expanded so that ( 2 . 4 ~ ~ )  reads 
ro r L  

and ( 2 . 1 ~ )  eliminates the second and fourth terms. Integrating the terms with total 
derivatives leads to 

0 x-+L 

!-b (huz- j$+fg’hz)dy(  x--L +s+’huvdX(o -L y--b = 0.  (2.5) 

It will be assumed that the currents are fully developed at the three open sides of 
the control volume, so velocity and height distributions are not changing in the 
direction of flow. This implies that 

a - ,w=o ax at x = +L, 

since the flow is along the wall. Then (2.3b) reads 

(- f+ = -+g’h2&, at x= & L, 

-j+++g’h2 = C ,  a constant. 

This is simply the geostrophic relation for a current flowing strictly in the f x  
direction. The stream function is arbitrary, but continuous everywhere and hence is 
the same at y = 0, x = f L. It follows that h is the same there as well in order to 
conserve volume flux, so we choose C = 0 (other values of C do not change the 
problem, but complicate the algebra). Thus (2.5) reduces to the final mome’ntum 
integral of the volume 

or 

2-+L L 
hu2 dy huv dx = 0.  

!b ~x--L+!-L Iy--b 

Because the flows are geostrophic owing to their lack of change in the direction of 
flow, the Coriolis-force terms have dropped out. 

Equation (2.6) shows that effects of the rotation are not directly important. 
However, it is known and understood that rotation plays a large part in determining 
velocity and height profiles of the flows. One can analyse the two simplest types of 
jets - those with zero and those with constant potential vorticity. 

Before proceeding, note that the balance in (2.6) leads to some obvious conclusions. 
Since there are only three terms, any situation in which one of the terms is zero must 
result in a balance between the other two. Thus if u = 0 a t  y = - b (a current normal 
to the wall), the right-hand term of (2.6) is zero and the exit current must flow out 
a t  both x = & L to allow a balance between the two left-hand terms. If u = 0 at + L 
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84 J .  A .  Whitehead 

or at - L, circumstances must be such that the velocity or depth profiles must be 
different between entrance and exit. Such circumstances may not always exist, as 
described in $3. If all three terms exist, we still can identify a relationship between 
incoming and outgoing flows. In situations where the jets encounter no bottom 
topography, the velocity and depth profiles are unchanged between entrance and exit. 
This allows calculations to be made as discussed in the following sections. 

3. A zero-potential-vorticity jet 
Potential vorticity is defined as (V x u + f ) / h ,  and it is conserved by any depth- 

averaged parcel of fluid. All progress to date in analysing nonlinear jets in rotating 
fluids has been made for jets of constant potential vorticity. The simplest cases have 
zero potential vorticity and can be produced in the laboratory or in nature in many 
ways. One very simple geometry, similar to that studied by Whitehead, Leetmaa & 
Knox (1974) and Whitehead (1985), consists ofa deep reservoir of water with density 
p connected by a smoothed, much shallower passage to another deep reservoir of 
density p+Ap. If the passageway is initially blocked by a gate, and the gate is 
suddenly raised, a density current and counter current will start. The denser water 
will flow near the bottom and the less dense water will flow near the surface, but in 
an opposite direction. It is the latter current that we have in mind here. If the 
entrance between the deep ocean and the passage is sufficiently smooth, the columns 
of fluid will have undergone considerable shrinkage by the time they arrive at  the 
passage. They will have almost zero potential vorticity [of size f (d , /&,) ,  where d ,  is 
depth of the passage and d ,  is the depth of the ocean]. The fluid will flow into the 
interior of the ocean of dense water as a zero-potential-vorticity jet. Such a jet is 
possibly a model of the Norwegian coastal current or the current of Atlantic water 
flowing into the Mediterranean, mentioned in the introduction. 

The zero-potential-vorticity jet is particularly simple. Let the velocity (or speed) 
of the incoming jet be S(7) ,  where 7 is the cross-stream direction. Figure 2 shows the 
coordinates. The velocity profile of the jet is governed by the zero-potential-vorticity 
relation 

as 
- = - f ,  
a7 

which integrates to s = - f q + c .  (3.1) 

In the coordinate system used in figure 2, S = 0 at 7 = 0, so c = 0. The height h is 
found using (2.1 b )  by substituting S and 7 for v and x and assuming u = uy = 0. The 
resulting equation is geostrophic (as are all the jets entering or leaving the control 
volume) and is 

ah 
fS=g’- .  

a7 

where H ,  the constant of integration, is the depth of the stagnant fluid. The jet is 
of width 
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The dejection of a baroclinicjet by a wall 85 

which is the Rossby adjustment scale. We must find the contribution of S and h to 
the second integral in (2.6), is an integration over x;  thus S must be divided into 
its u and v components which must be expressed as functions of x. 

The trigonometric transform between x and q is 

= case, (3.4) 

(3.5) 

(3.6) 

Since potential vorticity is conserved by the fluid and the currents are geostrophic, 
the velocity and depth profiles are uniquely determined. For the alongshore currents, 
the sequence of calculations to establish the velocity and depth distribution of u and 
hat x = f L will be analogous to those which led to (3.1)-(3.3). Thus the velocity and 
depth distributions are respectively linear and parabolic as before but, of course, u 
and h vary in y rather than q.  The form of the velocity and depth profiles are the 
same as (3.1) and (3.2), but the constants of integration must be determined. Finally, 
since volume flux is conserved, depth h at the wall is the same at z = & L. This is 
needed to determine the constants. 

The situation is summarized in figure 3, which shows the depth and velocity 
profiles of the offshore entrance section AB, and the left- and right-hand sections AC 
and BD respectively. The most important point is that the velocity and height projiles 
are unchanged as the fluid leaves the control volume at x = f L. However, the j u i d  is 
split at the dividing streamline so that a jet of width a exits to the left, y to the right, 
where a+y = qo. Our task is to determine a (or y) .  

and the velocity distribution in the x- and y-directions is related to (3.1) by 

u = -8 sine = fx cost9 sine, 

v = s case = -fx cos2e. 

To do this it is convenient to write the velocity at z = f L as 

u =f(y+y),  (3.7) 

where - y  > y > 0. 
The velocity and height at  x = - L is 

(3.10) 

at -a < y < 0. A t  y = -a = (y-qo), u = fqo  and h = 0. A t  y = 0, (3.9) and (3.10) 
have magnitudes equal to (3.7) and (3.8) respectively, but the velocities have 
opposite sign. Equations (3.1), (3.9) and (3.10) are, of course, consequences of the fact 
that volume flux into the volume must leave on both sides of the dividing streamline. 
The solutions (3.2), (3.4) and (3.5)-(3.10) are all incorporated into (2.6) to yield the 
final integral statement of momentum conservation 
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86 J .  A .  Whitehead 

Section AB 

'. 

cos e I cos e 

s(x) t 

Section BD 
D 

dY) =fCv+r) 
, Y  

FIGURE 3. Sections AB (offshore), AC (left hand), and BD (right hand) from figure 2. The interface 
h between the jet fluid of density p and deep stagnant lower fluid of density p + Ap is shown. Velocity 
profiles for the offshore velocity S(z), and alongshore velocity u(y)  are also shown. 

Our task is to solve for the unknown distance y between the stagnation point and 
the zero-velocity point. This distance is a function of the incident angle 8. The solution 
reveals the sizes of the currents exiting at x = +L.  To solve for y ,  i t  is convenient 
to recast (3.1) into a more convenient form by changing the variables as follows: 
y' = y+y, i j  = y - y  and f = x cos8. Thus 

(fz5?)df = 0. (3.12) 

All three integrals are of identical form, although they have different limits. 
By scaling the coordinates with the Rossby-deformation radius ro (3.3) so that 
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The dejection of a baroclinicjet by a wall 87 

- 0.8 

s 
.I 
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- 40- 
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.- 

20 - 

O - b O '  ' - i O  ' - 30 ' ' 0 I ' I 30 60 90 

FIGURE 4. Results for a zero-potential-vorticity jet. The right ordinate is the dimensionless distance 
from the zero-velocity streamline to the stagnation point (see. 3.13). The left ordinate is the 
percentage of momentum (from 3.15) and volume (from 3.17) fluxed to the right as a function of 
the incident angle of the jet. 

qo/3 = y' = y" = 2, the general problem can be reduced to 
1 

h 
s," (l-$)$dB-l (l--$)$d/3+sin8 I:l (l-$)$d/3= 0, (3.13) 

where A = y/qo is the dimensionless distance of the stagnation-point streamline from 
the zero-velocity boundary. It is a very simple function of 8 as shown by the integral 
of (3.13) which is 

$As-iA5-&+&sin8 = 0. (3.14) 

The solution to (3.14) is shown in figure 4. A varies continuously as the angle of 
incidence 0 changes. Note that the fluid always splits into two currents when A is 
not equal to zero or one, which only happens for the extreme values of 6 = f 90'. 

One of the differences between this problem and the non-rotating-stagnation-point 
problem is that there is a lateral variation in velocity and depth in this jet. Thus the 
momentum-flux integrals 

and 

(3.15) 

(3.16) 

give the proportion of momentum which exits to the' right and left respectively (the 
parenthetical equality is valid because the integral is odd). Since these are now only 
a function of A,  which is a unique function of 0 from (3.14), we can determine them. 
Equation (3.15) is presented in figure 4. The volume-flux integral to the right is easily 
found to be 

JOh (1 -p)pdp = p 2 - 9 4 .  (3.17) 

When it is normalized by the total scaled volume flux into the control volume, which 
is 

(3.18) 
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the percentage of fluid going to the right as a function of A(8) can be determined. 
This is also shown in figure 4. Generally a substantial amount of fluid goes to the 
right. For example, when the jet is tangential to the wall so that 0 = 0, more than 
65 Yo of the water goes t o  the right and less than 35 % to the left. 

4. A constant-potential-vorticity jet 
The above considerations can be extended to the case of a current of any known 

potential-vorticity distribution with little change as follows. The velocity and height 
distributions [the equivalents of (3.1) and (3.2)] are calculated for the offshore and 
coastal sections. The equivalent of the momentum-flux integral, (3.13), is found, the 
three integrals for momentum flux are calculated, and the equivalent to A as a 
function of 8 is determined. Note that the momentum flux is the velocity squared 
times the height and is zero at both endpoints, since velocity is zero at one endpoint 
and height is zero at the other. The momentum flux has a maximum somewhere in 
the middle, at least for ‘simple’, i.e. unidirectional, currents. Therefore, the only way 
to get a current all to the right or left is to have 8 = +go”. 

Jets of constant potential vorticity are produced by having fluid exit through a 
narrow passageway (Gill 1977 ; Nof & Olson 1983) from a basin of depth Hand density 
p over a fluid of great depth and density p+ Ap. They have been produced in 
laboratory experiments (Whitehead & Miller 1969; Stern et al. 1982; McClimans & 
Nilson 1982 ; McClimans & Green 1982 ; Griffiths & Hopfinger 1983). The jet shown 
in figure 1 has constant potential vorticity. A variety of oceanic surface currents may 
have approximately constant potential vorticity. 

Theoretical solutions for constant-potential-vorticity currents are well known (Gill 
1977; Stern et al. 1982; Nof & Olson 1983). The solution for the jet of constant 
potential vorticity offshore is found using the equation of constant potential vorticity 

and the geostrophic relation 

Depth and velocity are h = H(1--e-TAo), (4.3) 

and (4.4) 

It is convenient to have the origin a t  the place where the front intersects the free 
surface. Thus the geometry is the same as in figure 2, except that the x origin is further 
to the left - at the solid line which denotes the edge of the front. The constant- 
potential-vorticity velocity profiles decay exponentially, there is nowhere with 
strictly zero motion. Thus the fine dashed line in figure 2 does not exist. We will call 
6 the dimensionless distance from the edge of the front (i.e. the place where h = 0) 
to the dividing streamline, using as a lengthscale the Rossby radius v0 appropriate 
for the constant-potential-vorticity problem. Thus S = a/qo, where 

Relating S, h and 7 to variables u and v a t  y = - b,  and to u a t  x = + L is as 
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The deJlection of a baroclinic j e t  by a wall 89 

straightforward asit wasinderiving (3.4)-(3.10). The velocityand height distributions 
are 

u = g‘H - exp (T) Y - 4 l o  

fT0 

h = H [ l - e x p ( y ) ]  

g’H Y + ST0 

h o  
u = -- 

h = H [ l - e x p ( - y ) ]  

x case 

2 case 

u=--- 9’ exp ( -T) sin 8 
f To 

f To 
v = - -  9’ exp( -T) case 

h = H [ l - e x p ( - y ) ]  

and (2.6) reads 

3 

at x-+L 

I 

at x - - L  

, 

at g - - b  

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

I:m [l--exp(?)]exp2(?) dy 

- s i n 8 ~ o ~ 8 ~ o w - [ l - e x p ( - ~ ) ] e x p ( - ~ ) d x =  x case 22 case 0. (4.12) 

The structure of (4.12) is similar to (3.11), and the transformations 

case 
and z=- y’ = - Y-STo ,#- Y + ST0 

TO T O  TO 

simplify (4.12) to 

(1 -e”’) (e2”)dy‘- (1 -ee-@)e-2Qd,#+sin8 (1-ee-”)e-2”dz = 0. (4.13) 
-8 6 

This integrates to 
4e-38-6e-28+1-sin8 = 0. (4.14) 

Figure 5 shows S as a function of 8, and also shows the percentage of momentum 

(4.15) 

flowing out of the right-hand side MR given by the relation 

MR = 1 + 2e-38- 3e-28. 

The volume flux out of the left-hand side QR is given by the relation 

Q R -  - 2e-8-e-28. (4.16) 

A greater portion of the fluid goes to the right than with the zero-potential-vorticity 
jet. For instance, 75% goes to the right when 8 = 0. 
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FIGURE 5. Similar to figure 4 except for a constant-potential-vorticity jet. The right ordinate is 
the dimensionless distance from the edge of the front to the stagnation point. The left ordinate 
is the percentage of momentum (from 4.15) and volume flux (from 4.16). 

5. Concluding remarks 
The normalized flux of momentum leaving the right-hand control volume is always 

equal to  $1 +sine). This is implicit in (3.14) and (4.14). Thus, the momentum curves 
in figures 4 and 5 are the same. The quantity which determines the amount of volume 
flux to the left for any vorticity distribution is the ratio of the normalized volume-flux 
integral of the jet from zero to  6 to  the normalized momentum flux, i.e. 

hv dy Irn hv2 dy 
J O  

j: hv2 dy Jorn hv dy ' 
f(S) = J o  

Since j,"hv2 dy/jom hv2 dy is proportional to  +( 1 +sin e),  (5.1) is 

2 hvdy 

JOw hv dy (1 + sin 8)  ' 

f(& = jO8 

and its value gives the volume flux to the left as a function of 6. Possibly this function 
can be calculated for actual ocean currents. 

Figure 6 is an exercise in visualizing the distribution of volume flux and momentum 
flux of a constant-potential-vorticity jet. This shows normalized volume and mom- 
entum flux with their integrals as a function of the position from the outer edge of 
the jet. Since highest velocities occur at the outer edge of the jet, momentum flux 
is a maximum a t  approximately 0.4y0, while volume flux is a maximum a t  0 . 7 ~ ~ .  I n  
addition, from (4.13) we see that the momentum flux dies off as e-2c/lo for large t /yo 
while volume flux dies off as e-[/"o. Thus, in general, the momentum flux is much more 
strongly concentrated near the edge of the jet than the volume flux and consequently, 
in the problem analysed here, there is a strong tendency for fluid t o  be deflected to  
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The dejlection of a baroclinic jet by a wall 91 

Momentum 

x 

0 1 2 3 4 5 
5/70 

FIGURE 6. Momentum and volume flux (top), normalized to have an area of one, and their integrals 
(bottom) as a function of the dimensionless distance from the point where the front surfaces. These 
are for a constant-potential-vorticity jet. 

the right. In general, since the dynamically important momentum flux will more 
strongly affect the flows near the edge of the jet, this situation is conducive to blocking 
volume flux away from the edge of the front if such a jet goes along a curvy wall 
or if a free jet curves. Since the Gulf Stream is reported to have large amounts of 
constant-potential-vorticity water (Stommell966, pp. 109-1 lo), these considerations 
may have some bearing on the formation of Gulf Stream rings. 

Another interesting situation occurs when all the fluid is caused to go to the right 
or left at  an angle other than f90". This could happen if either velocity or height 
were zero somewhere in the middle of the jet or if the wall were a complicated shape, 
such as a deflector. This would violate the simple picture posed here, but it is by no 
means unrealistic. 

If the wall had more complicated bottom topography, for instance if the wall were 
sloping in the vertical, the vorticity distribution of fluid in contact with a sloping 
wall would be different from the vorticity distribution offshore. Thus the velocity 
distribution would have changed. There is the possibility that the momentum flux 
along the wall might equal the momentum flux from offshore with all the fluid going 
either to the left or the right. Conversely, there may be cases where steady flows 
cannot exist because no jet incidence will be consistent with the momentum balance 
at the wall. Shore configurations that do this may strongly influence the path of 
boundary baroclinic jets and their behaviour next to coastlines. 

The converse problem, of a jet steadily leaving a coast, may also be addressed with 
the integral method. 

This idea was suggested by a stimulating lecture and discussion in Copenhagen, 
Denmark by Doron Nof describing the Nof k Olson (1983) paper. Joseph Pedlosky 
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