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THE KORTEWEG-deVRIES EQUATION FROM LABORATORY CONDUIT AND MAGMA MIGRATION EQUATIONS 
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Department of Physical Oceanography, Woods Hole Oceanographic Institution 

Abstract. Wave equations that govern porous 
flow in a matrix and analogous equations for 
fluid conduits can be reduced to the Korteweg- 
deVries equation in the limit of small pertur- 
bations. 

Introduction 

Recently, two new fluid flow problems have 
exhibited solitary waves which have soilton-like 
behavior. That is, the waves are conserved upon 
collisions with other waves. The first problem 
arose from an attempt to understand how melt 
could travel around solid crystalline grains in 
a rock that was reaching its melting tempera- 
ture. In numerical experiments with equations 
describing porous flow in a deformable matrix 
(Scott and Stevenson, 1984; Richter and McKen- 
zie, 1984), the migrating fluid readily adopted 
solitary wave behavior. The second problem came 
from an attempt to understand how low-viscosity 
materials could buoyantly rise through material 
with much higher viscosity. It was found that 
the low viscosity fluid could rise through ver- 
tical cylindrical conduits or pipes (Whitehead 
and Luther, 1974). Recently Scott, Stevenson 
and Whitehead (1986) and Olson and Christenson 
(in preparation) have not only observed solitary 
waves on the walls of the conduit, but Scott et 
al. report soilton-like collisions and a clear 
analogy between the porous flow problem and the 
conduit problem. More laboratory observations 
of solitary wave collisions in the conduits are 
being reported elsewhere (Whitehead, in prepar- 
ation). However, it has not been shown analyt- 
ically that these equations possess exact soli- 
ron behavior. 

Derivation of the Korteweg-deVries Equation 

The Korteweg-deVries (KdV) equation is the 
simplest equation for solirons (Newell, 1985). 
This note shows that it can be derived from 
equations (4) and (5) of Scott, Stevenson and 
Whitehead (1986) which describe viscous con- 
duit flow. Rewriting their (4) and (5) using 
A = •a 2 gives 

•_A = _ •u (•) 

A 2 s • l•u 

8•n! [gAp + q •z A az ] (2) 
where a(z) is the radius of the conduit, A is 
cross-sectional area, u is volumetric flux up 
the conduit, z is vertical coordinate, t is 
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time, ql is viscosity of the rising fluid, qs 
viscosity of the host fluid, g is acceleration 
due to gravity, and Ap is the density difference 
between the two fluids. After Olson and Christ- 
ensen we will use the following scales for vol- 
ume flux, length and time scales 

u = gAoAo 2 
o 

8•n 1 

n A 1/2 
T.-- [ s 1.o] 8•q' 

1 8•nlqs ] 1/2 T=• '[ A ' 
o 

where A o is the steady conduit area, and u o 
is the steady flux. Defining the dimensionless 
variables 

u--uQ 
o 

A=AB 
o 

z=L• 

t =TT, 

(1) and (2) become 

L • + • = o, (3) 

Q = B 2 + B 2 a 1 BQ . (4) 

We now expand the dependent variables in a 
power series 

B = B 0 + sB 1 + •2B 2 + ... (5) 

Q = Q0 + •Q1 + •2Q2 + ''' (6) 

where the expansion parameter • << 1. Here • is 
a measure of the departure of the conduit area 
from the basic conduit state. This implies that 
departure from the basic conduit state, B0, 
Q0 = 1, is small. The stretched coordinate 
system 

o = z3/2T (7) 

Z = zl/2 (• _ c T) ; (8) 
o 
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is also introduced. Here c o is undetermined. 

Introducing (5)-(8) into (3) and (4) gives 
at 0(s) 

CoBlZ -- QlZ 
and 

thus 

Q1-- 2B1 (9) 

c -- 2 , (10) 
o 

the KdV equation for the 0(s) departures from 
the basic state. 

The derivation of the KdV equation described 
above does not prove that the full equations 
[(3) and (4)] possess all the required proper- 
ties for exact soliton behavior. In fact, Bar- 
cilon and Richter (1986) find numerically that 
their one-dimensional magma migration equations 
do not admit perfect solitary wave interactions. 
A very weak dispersive tail is generated upon 
collision. Scott and Stevenson (1984) and 
Whitehead (in preparation) also observed slight 
deviations from perfect collisions. However, 
the derivation does show that the magma migra- 
tion equations fall into a class of KdV-like 

where the letter subscript denotes differentia- equations and soliton behavior might be expected tion. At 0(•2), we have from (3) and (4), under certain conditions (e.g., 0(•) departures 
respectively from the mean state). 

- + C -- B1 o o B2Z Q2Z 
and 

2 
Q2 -- B1 + 2B2 + QIZZ ' 

Eliminating Q2 from these equations and using 
(9) and (10) results in the KdV equation 

Blo + 2B 1 B1Z + 2B1zzz = 0 . (11) 

Rescaling (11) with 

n -- 22/3 B 1 
0 = 2 -1/3 z 

gives the canonical form of the KdV equation 

no + qqo + lqeee 0. 
Discussion 

This same expansion method can be applied to 
the more general magma flow equations of both 
Scott and Stevenson [1984, equations (3) and 
(4)], and Richter and McKenzie [1984, equations 
(11)-(14), qb o << 1) ]. This also results in 
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