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Laboratory experiments and analysis of shallow water equations in a rotating fluid show that channel
flow is governed by the ratio of the width of the channel to the Rossby radius of deformation
R=/[gApH/pf?*]. Flows through narrow ocean openings exhibit blocking and clear evidence of
hydraulic control. These imply that formulae can be derived for width, volume flux, and velocity scales
of the currents. A new version of the constant potential vorticity problem is solved, and it is shown to
predict volume flux within 229, of the zero potential vorticity results. Next a systematic method of
predicting volume flux through ocean passages is described. Some examples are given from the
Denmark Straits overflow and the flow of Antarctic Bottom Water into the western Atlantic Ocean.
Two-layer flows and counter-flows with rotation in a narrow passage, the so-called lock exchange flow
problem, duplicate flows at a number of important straits and openings to bays. A potential vorticity
formulation is reviewed. The flows in the mouths of various bays such as Funka Bay in Hokkaido,
Japan, Spencer Gulf in South Australia, and Chesapeake Bay in the United States has R <width of the
mouth, and the two currents are separated by a front. The width of the front and the density difference
can be predicted with good results.
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1. INTRODUCTION : B

A simple model of the ocean, suggested by Stommel (1962) and studied by Rossby
(1965), Beardsley and Festa (1972), and Speer and Whitehead (1988), consists of a
rectangular box with differential heating on its top (Figure l1a). In such a fluid,
sinking regions are found over a restricted area near the cold end (polar regions),
the cold water then migrates equatorward along the bottom in a divergent flow
which feeds vertical flow that rises through the thermocline. Thermal energy in
that region has an advective/diffusive balance. Unfortunately, to a first approxima-
tion the ocean bottom at approximately 5000 m is not uniform. All deep ocean
basins are separated by either mid-ocean ridges which typically are 2500-3500 m
deep, hot spot traces of approximately the same depth, or combinations of the
above with continental fragments which can be much shallower. This suggests a
modified box model (Figure 1b) in which the bottom of the box is divided into
deep basins with a substantial barrier extending upward from the bottom. The
flow pattern differs substantially from the old model. In order to flow from the
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Figure 1 Two simple box models of the vertical circulation in an ocean. (a) In an ocean with no
bottom topography, the sinking regioin is restricted to a small volume near the polar region. Cold
water thus emplaced near the bottom then spreads to temperate latitudes and gradually rises, forming a
thermocline. (b) With bottom topography, the cold water must first rise up over a sill, where it pours
towards temperate latitudes as a concentrated current. This concentrated inertial current can be
strongly influenced by earth’s rotation.

basin with deep water formation to the next one, water must rise throughout the
first basin and flow into the next basin at sill depth. The flow at the sill 1s
localized, rapid, horizontal, and serves as a source of bottom water to  the next
basin. Thus the water flowing into the next basin is denser than water at sill depth
in that basin.

Numerous ocean features suggest this concept. Figure 2 shows a north—south
section (from GEOSECS), with interpretive arrows for current direction drawn in.
In the North Atlantic, water formed in the Norwegian Sea fills the basin north of
the Denmark Straits, and spills southward and down into the deep North Atlantic.
In the South, water in the Argentine Basin flows over the Vema Passage on the
Rio Grande Rise into the Brazil Basin. From this, warmer water flows over the
Ceara Abyssal Plain into the North Atlantic. A plan view of the two density
currents entering the North Atlantic is visible in Figure 3, which shows the two
tongues of water colder than 1.7 °C (Potential Temperature) extending down into
the North Atlantic. The northern one is fed by the Denmark Straits current and
the southern one is fed by the current over the Ceara Abyssal Plain. It also shows
a current going through the Romansch Fracture into the eastern Atlantic.

The purpose of the next part of this paper is to discuss and extend models of
the dynamics near the crest of sills (Section 2) that act as passageways for these
currents. A new formulation for constant potential vorticity will be shown, and
compared to the zero potential vorticity formulation by Whitehead et al. (1974).
Volume flux of the two results differs by only 229 or less, which implies that
volume flux estimates are relatively insensitive to the potential vorticity of the
upstream water. A methodology to test these predictions against oceanic data will
then be advanced and a few test examples for oceanic flows will be discussed
(Section 3).

Next, balances suggested by the lock-exchange or two-way flow will be
analyzed. In Section 4, a solution using the assumption of zero potential vorticity
will be reviewed. A methodology to test these predictions against oceanic data will
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Figure 2 Elevation view of selected isotherms in the western North Atlantic, with three sill flows

shown as arrows. The bathymetry between 20 and 40° South has been redrawn to show more
accurately the depth of the deepest portion of the ocean.
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Figure 3 Plan view of the depth of the 1.7° potential temperature surface in the western North
Atlantic. The transition from a level surface to a sloping surface reveals two sill flows.
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be described. The results will be tested against the flows in the mouths of two bays
in Section 5.

2. CONTROL OF ONE LAYER

Whitehead et al. (1974) and Gill (1977) present several general solutions to the
problem of the flux of a rotating fluid flowing from an upstream basin through a
rectangular channel. The flow rate is controlled in the sense that if the geometry of
the channel were changed, the volume flux through the channel would be changed,
so that the jets and currents out of the upstream basin must change. Whitehead et
al., present the case of the upstream basin as very deep compared to the sill depth,
which led to the assumption of zero potential vorticity. The solutions were explicit
algebraic functions for the predicted quantities such as width of the current,
volume flux, parameter for transition from small to fast rotation, etc. Gill extended
the solutions to the case of smaller upstream depth, which is an assumption of
constant potential vorticity. The results were relatively complicated mathemati-
cally. It was necessary to postulate one or two coastal currents in the upstream
basin, and the solutions were the roots of eighth order polynomials whose values
were obtained numerically for only specific values of the governing parameters.
Thus 1t was not possible to directly compare the constant and the zero potential
vorticity predictions for volume flux through the opening as a function of the
external parameters. Shen (1981) showed experimentally that flux was relatively
Insensitive to upstream vorticity. Thus it seems useful to determine exactly how
much the zero and constant potential vorticity fluxes differ. Pratt and Armi (1987)
inspected numerous flows with non-constant potential vorticity. Numerous compli-
cating aspects arise, but effect on the volume transport is unclear.

Here we present a new solution for a constant potential vorticity flow. The
prediction for volume flux can be directly compared with the zero potential
vorticity case of Whitehead et al., in order to determine how sensitive volume flux
1s to the upstream potential vorticity.

Consider the following situation with geometry shown in Figure 4: A flat plain
in a rotating system with gravity downward is bounded laterally by two walls that
form a channel of width L(y), such that L(y) is a minimum L at y=0 and L(y)
tends to infinity at y— —oco. A sliding gate blocks at y=0 so that there is fluid of
density p+Ap and depth =H at y<0 and no fluid at y>0. Let the left-hand wall
(looking toward + y) be straight and located at x=0.

When the gate is removed, Gill (1977) conjectured that a Kelvin wave
propagates along the wall, readjusting the interface height h(x) and setting up a
constant potential vorticity density current flowing with velocity v(x). The shallow
water equations for the steady current are:

u-Vu+ fkxu=g'Vh, (2.1)

and continuity is
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Figure 4 Sketch of the geometry of the constant potential vorticity problem. A reduced gravity
current comes from y= —co where the channel is very (infinitely) wide along a flat bottom to a point
where the channel is width L.

u- Vu |
take curl to get take u . to get
potential vorticity | Bernoulli’s law
U ——————— ' Y/ h

fk x

look perpendicular to streamlines
to get geostrophy or cyclostrophy

Figure 5 Triangle diagram used to illustrate the three different combinations of equations that result
from the general equations. |

V.uh=0. _ _ (2.2)

It 1s usual to work with conserved quantities such as potential vorticity

1/0v Ou _
z(ax ay+f) F(¥) 23

which 1s found by taking the curl of (2.1) (thereby eliminating the right-hand term)
and using (2.2). Here F(y) can be regarded as upstream potential vorticity which is
a function of streamfunction  defined as
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V x yk =hu. (2.4)

If one integrates along streamlines, the middle term (2.1) is eliminated since it
has zero component 1n the flow direction. Bernoulli’s law holds

2

S +gh=G(y). (2.5)

It 1s well known that 0G/dy=F, and this i1s an important condition to be used in
specifying the flow in the upstream basin. One can show that for a channel flow,
(2.3) and (2.4) imply that rectilinecar flow is geostrophic. This balance can be
recovered by seeking the component perpendicular to a uniform flow in (2.1) in
which case the first term of (2.1) is eliminated.

For the case of a straight channel, the geostrophic balance is

, Oh

fo=g p (2.6)

Only when 0G/oy=F will (2.6), (2.5) and (2.3) be compatible.

It 1s often helpful to visualize the assorted manipulations described above 1n
terms of a triangle diagram shown in Figure 5. This 1s particularly useful when
one initiates new studies, for instance, flows with new geometries.

Neglecting y derivatives (and thus assuming that the channel geometry 1s slowly

varying), the vorticity equation 1s
1(0v f
= 2.7
h(ax+ / ) H @7

which 1s combined with (2.6) to give

azh f2 fz
— — h= — ~—-, 2.8
oy* gH g (25)
with solution
h=H— Ae ** — Be**° _ (2.9)
where
‘H
Xo = %T. (2.10)

Far upstream (y— — o0), where the channel is becoming infinitely wide, only
decaying solutions can be permitted in the plus x direction, so B=0 and (2.9)
reads
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h,=H—ne >, (2.11)

where 7 is undetermined. It is well known (Gill, 1977) that the Bernoulli function
is proportional to the streamfunction for this problem and is, in general, unknown.
However, its value is g'H as x— oo, because velocity 1s zero there. Let us now
investigate conditions at the opening of width L. Since Bernoulli function is
conserved along streamlines, the upstream value of the Bernoulli function on the
right-hand wall g'H will be the value of the Bernoulli function on the right-hand
wall at any location.

At the contraction itself, it is convenient to adopt a coordinate system with
origin x’ on the right-hand wall because that point has the known Bernoulli
function. We represent the solution as

h=(hy+A+B)— Ae */*_B*Ix (2.12)

where h, is fluid height on the right-hand wall. Note that, since (2.9) holds
everywhere

ho+ A+B=H. (2.13)

The velocity v, on the right-hand wall is found using the geostrophic balance at
x=0 in (2.12)

v0=‘§j g?c:)io (A — B). (2.14)
Bernoulli’s law at x=0 gives
305+8ho=g'H, (2.15)
SO I
vo=+/[28'(H—hy)], (2.16)
using (2.10) and (2.14)
A—B=./{2H(H —hy)]. (2.17)
Using (2.13) this gives
- A=3{H—hy+[2H(H —hy)]}, (2.18)
and
B=4{H—ho—[2H(H —hy)]}, ' (2.19)
SO

h=H—3[H—ho+/{2H(H —ho)}] e™**°
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—A[H — ho— {2H(H— ho)}] &=, (2.20)

and
”=%\/ %{[H — o+ {2H(H — ho)}] e~

—[H—ho—/{2H(H — hg)}] %} ' (2.21)

Volume flux i1s

__;5_': 2 _ L{__I\2
Q=1 [h(0)* ~h(~ Ly’

=% {he —[H—3[H —ho+/{2H(H — ho)}] e~

—3[H—ho—{2H(H — ho)}] e“*°]*}. (2.22)
Let hy/H=y
0=5 H*y ~[1 =41 —y+ V{21 —p)} e~
—3[1—y—v{21 —p)}1 7%}, (2.23)

This equation has been solved by direct calculation and results are shown 1n
Figures 6 and 7. Figure 6 shows contours of normalized volume flux 2Qf/g'H*
(which we will call flux for simplicity) as a function of the free parameter h,/H and
the normalized width of the channel L/x,. For a given width, there 1s a maximum
flux denoted by the point where the contour of constant flux becomes vertical. The
value of hy/H at this point of maximum flux is shown by a dashed line and hes
between 2/3 (the critical value at zero rotation) and 1. We assert that, at the point
of minimum channel width, critically controlled flow will adopt this value of h,/H.
This assertion is based upon numerous arguments, two of which will be given here.

One argument is that the fastest waves will be frozen in the flowing fluid at the
point of contraction, or equivalently that some suitably averaged cross-stream
velocity at the contraction point will be at the speed of the fastest wave which, in
this case, is the longest wave. Shorter waves will propagate more slowly and will
consequently be swept downstream. Therefore, no information can propagate from
the region downstream of the maximum contraction to the region upstream of the
contraction. Gill (1977) showed that maximizing flux results in a frozen wave at
the contraction by the following argument: Since the long waves are simply a local
variation of hy/H at fixed L/x,, only if ho/H is at the value which gives maximum
flux will small variations (i.e., waves) in hy/H have no along-stream changes in
flux. Conversely, if ho/H is at a value that does not give maximum flux, so that
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Figure 6 Contours of flux as a function of the normalized depth of the fluid on the right-hand wall
and normalized channel width.

L/xo

Figure 7 Flux and critical depth as a function of channel width for constant potential vorticity (sohd)
and zero potential vorticity (dashed).

local variations in ho/H produce volume flux changes along-stream, there must be
a time-dependent term in the cross-stream integrated continuity equation which
will lead to a propagating wave solution.

This figure also illustrates a second, and in some ways, more convincing
argument: If ho/H lies on the dashed line, the current must decrease if L/x, 1s
further decreased. One can see immediately why this is true. To the left of any
point on the dashed line, the flux i1s always smaller. In contrast, if ho/H does not
lie on the dashed line, a decrease in L/x, can be accompanied by no change in flux
if ho/H is appropriately adjusted. Thus the maximum flux which is located along
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the dashed line is assoctated with an unmistakable control by the width L/x,,
whose decrease must result in a smaller flux.

The values of critical flux and hy,/H as a function of L/x, are compared to the
zero potential vorticity solution of Whitehead et al. (1974) in Figure 7. In their
solutions, flux =1 if L/x,>+/2, and flux =2(2/3)3(L/xy)(1 — I?/8x2)/? otherwise.
The constant slope of both the constant and the zero potential vorticity flux
relations as L/x, goes to zero implies that flux 1s proportional to L. The slope for
both cases becomes the same and is equal to the classical value for two-
dimensional flow in non-rotating hydraulics—that volume flux per unit width is
equal to (2H/3)*'%(g")"/%. This result is given in Whitehead et al., for the zero
potential vorticity flow and is found here by taking Eq. (2.23) in the limit L/x,
small as follows: Approximately e*** =1+ L/x, so that

o-&H {yz—[l—%[(l—yw{z(l—wn(1—5)

2f X0
i[1—y— 21 ——y)}1(1+£)] } (2.24)
X0
- gH*| 2yL B
£ [ s m]. 225

In dimensional form this is

Q=h,L/{2¢'(H— hq}, (2.26)

which 1s the prediction from classical hydraulics with non-rotating fluid. Critical
h, =%H and volume flux is

2H

3/2
Q= (T) LJg' (2.27)

Both zero and constant potential vorticity curves for flux also approach each
other as L/x, gets very large, as do the curves for hy/H. This is simply due to the
fact that in this limit, flux 1s controlled by the geostrophic relation where the depth
remains at the upstream depth on one side of the channel and depth goes to zero
on the other side. Greatest disagreement between the two cases occurs at
intermediate values of L/x,. Even there, volume flux predicted for the two very
different potential vorticities varies by only 22 9. This indicates that the values of
the potential vorticity of the upstream fluid may have only a small effect on
volume flux.

There are no empirical constraints needed in the calculation. The flux is
independent of vertical or horizontal coefficients of turbulent diffusivity, conduc-
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tivity or viscosity, but are valid only when friction and thermal conduction are
negligible. Such a situation exists when the residence time of a fluid parcel in the
flowing water is less than spin-down time of the fluid parcel d/\/(vf), where d 1s
the depth of the fluid. Since velocity scales as /g'd, residence time of a parcel 1s

w//(g'd), where w is the length of the channel thus for w/\/(g'd)<d/\/(vf) we
require

g«: gd (2.28)

V

This is easily satisfied in the laboratory. Using g'=0.1m/s’, d=0.1m, v=
10 ®m?/s and f=1s"!, we require w<10m. The application to the ocean
examples will be commented on at the end of the next section.

3. AMETHODOLOGY OF TESTING AGAINST OCEAN DATA

Although the original formulae in Whitehead et al. (1974) were tested against
oceanic numbers, little use has been made of these formulae by ocean scientists
since that time. In fact, a number of ocean studies have been published which have
not discussed predictions of his model in comparison with their data at all. In
hopes of clarifying the way in which this model could be used, a methodology 1s
developed here which will be applied to four examples.

Now that we have seen that volume flux is relatively insensitive to upstream

vorticity, we will predict volume flux using the formulae from Whitehead et al.
(1974)

1.2 1 \1/2
¢ =g2? for 28 };‘) <b, (3.1)
and
3/2 21,.2713/2
Q= (%) b(g)'/? I:hu J 8;' ] otherwise. (3.2)

These were shown to be within 229 of the constant potential vorticity example
developed in the preceding section, but are simpler algebraically. The examples to
be selected have oceanographic estimates of volume flux which can be compared
to our predictions. Application of the theory to the ocean relies on the adoption of
estimated numbers for: (1) density difference between the flowing and overlying
fluid Ap/p, (2) upstream height over the sill h,=./(2¢’h,)/f, (3) channel width b,
and (4) Coriolis parameter. Since the theory neglects friction, we can regard the
predictions as giving an upper bound. Thus in all cases, estimates of the
parameters will be taken that lead to the greatest predicted volume flux. (1) To
estimate Ap/p, we will select two density profiles, one on each side of the sill. The
profiles should extend 200 m below the sill depth on each side so that spurious
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effects from the bottom are avoided. Values of density should be adiabatically
corrected for pressure to the closest 1000 m level. The value of Ap/p will be picked
after determining sill depth. (2) To determine upstream height, the sill depth z,
should be determined from modern bathymetry charts. The two density-versus-
height curves should be drawn on a p-versus-depth and a horizontal line drawn at
the sill depth. The density difference should be picked as the greatest density
difference between this level and higher up. The depth z, at which the two curves
begin to differ, should be located and h, assigned as z;—z,. (3) The value of b
should be determined as the width of the sill at z,. (4) Coriolis parameter will be
taken as f=1.44 x 10" *sin 0, where 8 is latitude.

This method will now be applied to four oceanic sills. The first two are the
Denmark Strait that lies between Iceland and Greenland and the ridge between
Iceland and the Faeroe Islands. These two dam up the deep Norwegian Sea water
and prevent its flux southward at depths greater than approximately 600 m. The
third 1s the Ceara Abyssal Plain near the Equator in the Western Atlantic. This
dams up northward flowing dense water of Antarctic origin (called loosely
Antarctic Bottom Water) at depths greater than roughly 4300 m. The fourth is the
ridge between the Rio Grande Rise and the Sao Paolo Plateau near 30° south.
This ridge contains a depression called the Vema Channel and also dams up the
Antarctic Bottom Water at depths greater than roughly 4600 m.

This methodology has the virtue that only two sources of ocean facts are
needed. The first is the best possible map with which to locate and outline the
contour of the sills. The second is a source of precise data on the density
distribution of oceanic water on both sides of the sills. Two maps were used: For
the Denmark Strait and the Iceland-Faeroe sill the bathymetric chart of the
Norwegian Sea and adjacent areas by Eggvin et al. (1963) was employed. (Our
version had a factor of 10 error on the horizontal scale that was presumably a
typographical error. Thus we ignored the scale and used latitude and longitude
lines to determine lateral lengths.) For the Ceara Abyssal Plain and the Vema
Channel, the map “Bathymetry of the Continental Margin of Brazil” by Moody et
al. (1979) was used. '

In order to use a consistent data set for vertical density distribution, we wished
to use only GEOSECS data. For both maps we traced the most important
bathymetric contours and also located the stations from GEOSECS as shown in
Figures 8 and 9. From the apparent location of the sills, shown as dashed lines, we
produced the cross-sections of the four sills that are shown in Figures 10-13. The
data from each sill was determined from the above figures. Each is now to be
discussed 1n turn, and the numbers summarized in Table 1.

To determine density in the vicinity of the Denmark Strait overflow, station 11
downstream of the sill and station 15 upstream of the sill from GEOQSECS were
used. These are shown along with the local bathymetry in Figure 8. As shown in
Figure 10, the top of the density difference between upstream and downstream z,
1Is at 70m depth—very close to the upper surface. In fact, the upper water is
extremely variable both seasonally and spatially due to seasonal and coastal
effects. The sill depth z,, is 650 m, the same number used by Whitehead et al.
(1974). This gives h,=580m, and a density difference of 3 x 10*. The Rossby
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Figure 8 Map showing the two sills between Greenland and the Faeroe Islands along with selected
bathymetric contours (in metres) and the locations of GEOSECS stations used for data.

radius x,= 14 km which is considerably less than b=350km so that Eq. (3.1) (the
high rotation rate formula), 1s wused to «calculate Q=39Sv (1Sv
(Sverdrup) =10°m?/s is a common oceanic unit of volume flux, and will be used
throughout).

There have been numerous attempts to measure the flux of this water. Dietrich
(1957) used dynamic computations to estimate that 5.6 x 10° Sv flows southward.
Worthington (1969) attempted to measure the current with a moored current
meter array but most of the moorings were not retrieved. He suggests a transport
of “probably 4 Sv” but noted that the data were not sufficient and also noted the
possibility of strong bursts. Ross (1976) describes current meter measurements
taken 1n 1973 for 36 days. The transport was observed mostly as bursts with a
peak of 7Sv. The mean was given as 2.5 Sv. These current measurements are less
than our estimates (which should be regarded as an upper bound). The earlier
geostrophic estimates are greater than our estimate. It is hard to imagine why this
is so since geostrophy i1s used in the rotating hydraulics. Possibly the dynamic
sections were taken downstream where the current has been swollen by turbulent
entrainment.

The second sill i1s the Iceland—Faeroes overflow. The density profiles selected
were stations 19 (upstream) and 21 (downstream). These are shown along with the
local bathymetry in Figure 8. Figure 11 shows the profile of the sill region with
the two density distributions from which a value of h,=400m and a density
difference of 5.8 x 10~* was taken. Using the local Coriolis parameter, the Rossby
radius is x,=17 km whereas the sill width is b=400km. Thus Eq. (3.1) gives
0 =3.6Sv.

Steele et al. (1962) used Swallow (neutrally buoyant) floats in conjunction with
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Figure 9 Maps showing selected bathymetric contours (in metres) and the locations of GEOSECS
stations at (a) roughly 4° North and (b) roughly 30° South in the deep ocean east of Brazil.
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Figure 10 Elevation view of the Denmark Strait at the section shown by dashed line in Figiire 8 along
with density from the two GEOSECS casts. x: upstream; O: downstream.
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Figure 11 Elevation view of Iceland—Faeroe sill at the section shown by a dashed line in Figure 8
along with density from the two GEOSECS casts. x: upstream; O: downstream.
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Figure 12 Ceara Abyssal Plain sill at the section shown by a dashed line in Figure 9(a) along with
density from two GEOSECS casts. x: upstream; O: downstream.
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Figure 13 Elevation view of the Vema Channel at the section shown ?by a dashed line in Figure 9(b)
along with density from the two GEOSECS casts. x: upstream; O: downstream.

dynamic calculations to estimate a transport of water on the continental slope
south of Iceland as 5.4 Sv of which they estimate 1.4 Sv was flux of water from the
Norweglan Sea (which by continuity must have flowed over the Iceland—Faeroe
ridge) and 4.0Sv was entrained Atlantic Water. Our estimate 1s considerably
greater than this. Direct measurements with current meters have not been made to
date.

The third sill 1s at the northern terminus of the Ceara Abyssal Plain.
Bathymetry 1s shown in Figure 9a along with locations of the section and stations.
The density profiles selected were stations 39 (downstream) and 42 (upstream) of
GEOSECS. These are shown 1n Figure 12 along with values of Ap and z,. The sill
configuration is taken from Figure 6a. Depth of the water, h, is 430 m. This gives a
value of Rossby radius x,=66 km which is much less than b=700km. Thus Eq.
(3.1) gives 0 =4.6 Sv.

Whitehead and Worthington (1982) measured a flux through the gap at 4°N
between 1.1 and 2.1 Sv which is considerably less. Part of the disagreement may be
due to friction, for the isotherms exhibit a clear slope between station 42 (at the
equator) and stations farther north where the bottom begins to deepen. However,
an analysis of this is beyond the scope of this paper.

The last sill, called the Vema channel, lies between the Rio Grande Rise and the
Sao Paolo Plateau off Brazil, as shown in Figure 9b. The numbers shown in
Figure 13 lead to a value of x,=24 km—a value clearly less than b=446 km. Thus
again (3.1) 1s used to give a value of 16.3 Sv.

Hogg et al. (1982) report 4+ 1.2 Sv based upon two years of current meter
measurements and numerous dynamic sections. These are clearly the most
accurate numbers to date for any sill flow, yet our large value of h, raises the
question of whether there is a shallower unmeasured flow leaning on the flanks of
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the Sao Paolo Plateau. The fact that the estimates by this method are greater than
the measurements is consistent with the notion that this method yields numbers
that were greater than the actual flows.

Applying this simple approach to real ocean phenomena clearly has numerous
weaknesses. In the first two examples, the sills were near the top surface and the
assumption of a deep motionless layer of fluid above the flow is questionable.
Fortunately, the need for the fluid to be deep is only required for time-dependent
flows; a stationary flow only needs motionless (not deep) fluid above it. However,
the real ocean violated these assumptions because the actual sill flow is time-
dependent and there are other surface currents in the vicinity. Another problem is
the location of the selected stations. The GEOSECS data set were used here and
they are hardly optimal. In the Ceara Abyssal Plain, the southern (upstream)
statton was hundreds of kilometres from the sill, and the current must make its
way over more than 500 km of flat abyssal plain. Surely friction will play a role
there, the effective value of h, clearly drops between the equator and 4°N
(Whitehead, 1989). Pratt (1986) also presented an estimate of friction parameters
that indicate that friction can play a role in the Vema Channel, Denmark Strait,
and the Iceland Faeroe Ridge. In the Vema Passage, our northern (downstream)
station was even more poorly located and a closer station would have been
desirable. Unfortunately, an exhaustive survey has not been conducted of all
available data. However, 1t 1s clear that there is a large-scale trend to the north-
south temperature field associated with the Antarctic region that extends up to
3000 m. That trend 1s responsible for the large value of h, we selected, but it
undoubtedly 1s associated with currents above the channel. Thirdly, role of
stratification 1s neglected in this problem. Hogg (1983) constructed theories
involving two and three dynamically active layers which certainly bear on the
Vema Channel flow. Fourthly, there i1s no guarantee that the cross-section is the
appropriate one for critical control. Pratt (1986) has found that friction may move
the control point significantly downstream of the crest in a non-rotating problem.
Our most questionable cross-section i1s the one adopted for the Vema passage,
which possesses a sill depth of 4600 m whereas Hogg et al. (1982) considered a
more southern section appropriate. We chose our section because our hydro-
graphic data indicated a possible flow as shallow as 3000 m, and this section was
the narrowest one with a wall on the left.

One must also remember that systematic errors sometimes exist in the ocean
estimates due to temporal bias, faulty estimates of the level of no motion, errors in
the actual width of the current, neglect of boundary layers, etc., thus the agreement
1s as good as could be expected. The estimates are 1.6 and 4.2 times the ocean
estimates. This is the correct order of magnitude but of greater value, which is
consistent with the concept that this is an upper bound. In the simplest conceptual
sense, we have indicated that baroclinic density level differences between basins
can be used to crudely estimate flux between the basin. In view of the numerous
uncertainties, the agreement between a simple theory and ocean observations
seems to indicate that the approach is promising.



HYDRAULIC CONTROL IN ROTATING FLUIDS 187

4. LOCK-EXCHANGE FLOW AND APPLICATION TO SHALLOW SEAS

Lock-exchange flow is defined as the flow at the narrows and shallow region
between basins with two different but uniform densities. In formulating problems,
one visualizes a gate which, once removed, allows the set-up of a semi-steady
exchange of flow and counterflow between the basins.

This problem, with rotation, was addressed with partial success by Whitehead et
al. (1974). In that formulation, zero potential vorticity (which strictly requires very
deep upstream basins) was used along with a somewhat contradicting energy
conserving formula. Although laboratory data agreed with the theoretical predic-
tion, a more complete theory would be useful, yet none has emerged.

The model consisted of two fluids of density difference lying in deep basins
separated by a shallow channel of depth H,. The flow and counter-flow are
separated by a front of depth

h2=§i[1+i} (4.1)
2 Xo
where
3/8’H1 -
— : 4.2
xO 2f | ( )
! } x
92=U1—\/gH1=%\/8H1(1—x—)a (4.3)
0
'2 .
Q:l\/g’H?’ZLI:I— 1 Lz]. (4.4)
3 x5

This is only valid for channel width L<x,. If L> x,, the interface intersects the
surface and the bottom of the sill, so

- 1g'HY
6 f

Q (4.5)

5. APPLICATION TO SHALLOW SEAS

5.1 Spencer Gulf, South Australia

The lock-exchange formula was applied to the flow in Spencer Gulf, South
Australia by Bye and Whitehead (1975). Using estimates for evaporation, budgets
for conservation of water and salt were used in conjunction with (4.5) to predict
the salinity difference between the gulf and the ocean.
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Figure 14 Front at the mouth of Spencér Gulf. (a) Plan view of surface salinity in Spencer Gulf. (b)
Elevation view of density at the mouth of Spencer Gulf and (¢) from the model. Note that not only
does the density difference appear to agree crudely, but the tilt of the front across the mouth also seems
to agree.

The volume and salt flux budgets through the mouth are

Q0=QE+QE? . (51)
SﬂQﬂ = SiQiﬂ (52)

where a subscript o denotes flow out of the gulf, i denotes in, and e denotes
evaporation. Using Q,<Q, or O, and AS<S,, we derive a relation for salinity

difference

AS=SE--S£=S"QQE. (5.3)
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A dynamic relation between Q, and AS was adopted from the lock-exchange
formula (4.17).

- 1g'H}
6 f °

o (3:4)

Using g’ =gAp/p=gPAS, H, as the depth of the mouth of Spencer Gult and f
as the Coriolis parameter, a prediction of salinity difference as a function of Q,
and the other parameters was given as:

6|/ ISQE.;D}]”2
AS=| . 5.5
> [ gfH? 5-2)

Using p=1.027kg/l, S=359 ppt, Q,=600m?>/s, f=—08x10"%s"!, f=0.71x
10" 3kg/lppt, H,=40m and g=9.8m/s?>, we predicted AS=0.98 ppt, which I1s
equivalent to a density difference of 0.69 x 107> kg/l. Figure 14 shows an actual
density distribution in comparison with the density difference and tilt predicted by
this simple model and there is clearly rough agreement.

5.2 Chesapeake Bay, Eastern United States

Chesapeake Bay is located on the east coast of the United States. Its salinity 1S
considerably less than the salinity of the ocean due to the influence of river runoff.
Salinity of the bay is minimum at the extreme northern end, near the outflow of
the Susquehanna River and increases gradually southward towards the mouth. At
the mouth itself there is frequently a distinct front separating the fresher bay water
from the ocean (shelf) water. We explore here the possibility that (5.5) with Q.
replaced by the volume flux of river runoff and salinity difference set to the
opposite sign, is appropriate to predict the salinity difference across the front at
the mouth of Chesapeake Bay. Boicourt (1973) reports a river runoff (principally
from the Susquehanna River) of 2237 m°/s. Using this in Eq. (5.5) with H=10m,
f=0.88 x10"*s~ !, §=30 ppt with the above values of g and b gives

AS =17.2%.. (5.6)

This gives a tilted front span 2x,=8.0 km. Figure 15a shows the surface salinity
distribution near the mouth from a survey by Blume et al. (1977). The shape of the
front is consistent with bay water flowing seaward along the southern shore of the
mouth region, oceanic water flowing bayward along the northern shore and a
clear front between. A salinity jump of six to eight parts per thousand is the
approximate amplitude across the front. Although more data are not shown here,
this is a typical picture of the front. It usually extends from the water surface to
the bottom of the bay, although over a deep blind channel the fresh water often
detaches from the bottom (Figure 15b). The model predictions for AS and x, are
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Figure 15 Front at the mouth of Chesapeake Bay. (a) Plan view of surface salinity in the vicinity of
the mouth of Chesapeake Bay on 24 August 1976. (b) Elevation view of the salinity distribution at the
- mouth. (¢) Results of the model predictions.

sketched in Figure 15¢. Thus the results crudely resemble the bay. In spite of this
being a “typical” picture, the actual front exhibits considerable variability during
large wind events and after extreme rainstorms. Moreover, other causes for the
structure have been proposed, the two most notable being a shoaling of the
bathymetry in the northern part of the mouth and the fact that some rivers flow
into the southern regions near the mouth. We can only propose this as a possible
effect—a dynamic rotating salt wedge—that contributes to the ecological climate
of the bay.

5.3 Other Seas

The Strait of Gibraltar consists of flow and counterflow driven by the excess
salinity of the waters of the Mediterranean Sea compared to the Atlantic. The
appropriate parameters revealed that the small rotation limit (4.4) was appropriate
and that volume flux would be less than 109, different from the classical non-
rotating result. However, recently Miyake et al. (1988) reported an outflow of
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dense water from Funka Bay in Hokkaido, Japan that appears to fit the rapid
rotating limit well. The sill depth is 80 m, the width of the mouth is 14 nautical
miles and the width of the current [2x, using (4.2)] was calculated to be 2.6
nautical miles. The actual width of the current was approximately 3 nautical miles.

6. SUMMARY

The simple hydraulics formulation appears to give reasonable quantitative agree-
ment to a variety of ocean problems. We are not aware that such dynamics have
yet been incorporated in ocean numerical circulation models which raises the
question of how deep water below approximately 4000 m travels from one basin to
the next, and how bottom temperature is determined.

The agreement of the applications of the formulas with ocean measurements
suggests that the inertial acceleration of water due to density differences between
water basins may be an important component in ocean circulation between basins.
It is clear that rotation of the earth can be successfully incorporated, although in
all cases the equations are nonlinear and exact solutions will probably only be

found for idealized circumstances. One finds crude agreement in a variety of
settings. The calculations are reasonably simple and without adjustable constraints
or unknown constants such as “eddy mixing”, but complexity and difficulty
increases rapidly as more “ocean reality” is put into the problem.

Pratt (1986) presented estimates of parameters that indicate that friction 1s
significant in such ocean passages. The calculations here indicate that friction will
probably decrease volume flux by only a factor of four or less compared to
inviscid estimates. Unfortunately, the true role of friction is not understood in
either rotating hydraulic problems or in critically controlled stratified flows.

Precise calculations are possible with computers and more ocean measurements
could be undertaken. Both involve considerable expense. Such approaches may
well be warranted for various reasons, and the tools described in this paper may
fruitfully be used for the first approximation.
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