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SOLITARY WAVES ON CONDUITS OF BUOYANT
FLUID IN A MORE VISCOUS FLUID*
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Fluid of a lower density and viscosity can buoyantly rise through a viscous fluid through conduits that
support simple pipe flows. The conduits also support solitary waves which exhibit near soliton
behavior. Laboratory experiments on the characteristics of the solitary waves and their interactions
have been conducted and compared with theory. The observations of shape and phase speed of
individual waves show good agreement with the theoretical predictions. Large amplitude waves traveled
slightly faster than the theoretical predictions. The discrepancy is probably due to higher order effects
associated with wave slope not accounted for in the theory. Individual wave characteristics (shape,
amplitude and speed) were very nearly preserved after collision with another wave. A phase jump of
each wave was the main consequence of an interaction. The larger (faster) waves increased in amplitude
by an average of 5 percent after collision and their phase speeds decreased by an average of 4 percent.
The small wave was unchanged. Numerical solutions overpredicted the magnitude of the observed
phase jumps by about 40 percent when compared to the experiments.

It is also shown theoretically and confirmed experimentally that the solitary waves have closed
streamlines in a frame moving with the wave. Thus, transport of isolated packets of fluid over large
distances will occur. Wave interactions result in the transfer of trapped fluid between the interacting
waves.
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1. INTRODUCTION

A steady source of an intrusive buoyant low viscosity fluid at the bottom of a
more viscous external fluid will result in the development of a uniform conduit
which supports -simple pipe (Poiseuille) flow if the Reynolds number is small
(Whitehead and Luther, 1975). The buoyancy of the intrusive fluid is balanced by
shear stress. When the source is unsteady it has been shown that the conduits
support solitary waves (Scott et al., 1986; Olson and Christensen, 1986). It has also
been noted that interaction of solitary waves results in soliton-like behavior. Both
these studies utilized both theory and experiments; however, the only quantitative
comparison made was of the wave dispersion relation (Olson and Christensen,
1986). Somewhat more extensive measurements were made by Whitehead (1987)
who reported that wave amplitudes were conserved to better than ten percent
upon collision. It is the purpose of this paper to make a more complete
comparison of laboratory experiments with the theoretical description of solitary
waves and their interactions on conduits. Furthermore, we demonstrate theoreti-

*Woods Hole Oceanographic Institution Contribution No. 6843.
35




36 K. R. HELFRICH AND J. A, WHITEHEAD

cally and experimentally that the solitary waves convey isolated pockets of conduit
material with them as they propagate.

Interest in the conduits is severalfold. The first is that these conduits are yet
another system in which solitary waves and soliton-like behavior are robust
features. From the perspective of geology and geophysics the conduits are a simple
analog of one-dimensional compaction driven flow in a porous viscous matrix
(Scott et al., 1986). The conduit area is analogous to the porosity of the matrix, the
intrusive fluid to the buoyant interstitial melt and the exterior fluid to the
deformable crystalline matrix which makes up the mantle. For specific conditions
relating the bulk viscosity and permeability of the matrix to the porosity, the
conduit equations (see (2.6) and (2.7) below) are equivalent to the equations
describing compaction driven flow. The compaction flow equations also have
solitary wave solutions termed “magmons” (Richter and McKenzie, 1984; Scott
and Stevenson, 1984). Compaction driven flows are relevant to problems of melt
migration in the mantle such as formation of melt under mid-ocean spreading
centers,

The dynamics of the conduits are also of interest because such structures may
exist in the earth as a result of thermal convection plumes from the core—mantle
boundary (Morgan, 1971; Olson et al., 1987). Conduits would convey large
amounts of material from deep in the earth to the surface quickly and continu-
ously. They may be associated with hot spots and the formation of volcanic island
chains.

Another reason for this study is that these waves can apparently persist as
solitary waves with near soliton behavior up to very large amplitudes. One
purpose here is to determine if the theory is applicable for large waves, even
though the assumption of a small slope is used to arrive at the wave equations.

The paper is organized as follows. The theoretical background and mass
transport properties of solitary waves are given in Section 2. Section 3 describes
the experimental set-up. The results are discussed in Section 4, and Section 5
contains a summary.

2. THEORETICAL BACKGROUND

Consider the situation in which a conduit of buoyant low viscosity fluid rises
vertically through a more viscous exterior fluid. If the viscosity of the external fluid
is much greater than the intrusive fluid, steady flow in the conduit is of the
Poiseuille type (Whitehead and Luther, 1975). The buoyancy of the intrusive fluid
provides the driving force which is balanced by shear stress. If the conduit mass
source is unsteady waves will develop on the conduit. These waves are governed
by (Scott et al., 1986; Olson and Christensen, 1986):
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where A’ is the cross-sectional area of the conduit, Q' is the volumetric flux in the
conduit, P’ is the pressure deviation in the conduit from hydrostatic pressure, g is
the acceleration due to the gravity, p is the density, u is the dynamic viscosity, z' is
the vertical coordindte and t' is the time. The subscripts i and e refer to the
intrusive and exterior fluids respectively and the primes are used to denote
dimensional variables. Equation (2.1) is a statement of continuity and (2.2) is the
Poiseuille flow relation which is valid locally provided the wave slope is small. The
relationship for pressure within the conduit (2.3) consists of a buoyancy induced
term and a contribution due to temporal variations in the conduit area. This last
term arises because variations in conduit size induce flow in the exterior fluid. The
small wave slope assumption is necessary to arrive at this general form.
It is convenient to normalize (2.1)—2.3) with

A=A'lA,, z=7'[L,

(2.4)
0=0/Q, t=t/T
The lengthscale L and the timescale T are given by
_ :ueAO 12
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and a velocity scale U is defined as
U=L/T=0Q,/A,. (2.5¢)

Here A, and @, are the area and flowrate of the undisturbed conduit. Equations
(2.1)-2.3) begqr_nc, after eliminating P" and using (2.1) to eliminate 0A4'/dt’" in (2.3),

04 8Q
e =0, (2.6)
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It can be shown that (2.6) and (2.7) reduce to the Korteweg—de Vries (KdV)
equation in the limit of small wave amplitudes (Whitehead and Helfrich, 1986).
However, the range of validity of the KdV equation is very limited. The
experiments described below were designed to test (2.6) and (2.7) well beyond the
small amplitude range.
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Solitary wave solutions to (2.6) and (2.7) are given by (Olson and Christensen,
1986):

ge = Fop+c—2eA™ —2InA—(1—c)a~ )12, (2.8)

where A=A(¢) and ¢=z—cr. Here ¢ is the nondimensional phase speed of the
wave (normalized by U) which is related to the wave amplitude or maximum area
A,,=A(0) through the dispersion relation

c=(2A4%In A, — A2+ 1)/(A, — 1)2. (2.9)

In the limit 4,,—»1 we have ¢—¢o=2, the linear long wave phase speed. This
velocity is equal to the maximum (centreline) fluid velocity in an undisturbed
conduit (see (2.11) below). For A,>»1, (2.8) can be integrated to give (Olson and
Christensen, 1986):

AQ) =4, e,

Solutions to (2.6) and (2.7) representing nonlinear wavetrains also exist (Olson and
Christensen, 1986) but will not be studied here. The dispersion relation (2.9) and
the wave solutions found by numerical integration of (2.8) are compared with
experiments in Section 4.

Early numerical solutions of the compaction equations (Scott and Stevenson,
1984; Richter and McKenzie, 1985) implied that collisions between two solitary
waves were conservative, a phase shift of each wave being the only product,
therefore waves appeared to exhibit soliton properties. However, Barcilon and
Richter (1986) demonstrated that the one-dimensional compaction equations do
not have exact soliton properties. Their high resolution numerical experiments
showed that collisions produced a weak dispersive tail. The amplitude of the tail
and the mass and energy contained in it were less than O(1072) compared with the
original waves. The waves were very slightly altered during the collision, yet the
only significant effect was a phase shift of each wave. However, for practical
purposes, the numerical solutions showed that wave interaction results only in
phase shifts. '

Another important feature is the conveyance of mass by the waves. The details
of the flow field within the conduit induced by a solitary wave can be theoretically
determined. First the velocity profile within the conduit will be found. From the
assumption of Poiseuille flow, the velocity profile is (in dimensional form),

POl b gl —] ’ ’ aP,
u(r,z,t)=4—/l.(a2—r2)g7.

3

(2.10)

Here a'=(4'/m)'"? is the radius of the conduit and # is the radial coordinate. Using
(2.3) to eliminate P’ and nondimensionalizing (2.10) with (2.5) we have

_ r? 0 (100 _
u_2A<1—Z>[1+E<ZE>J. 2.11)
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Here * has been nondimensionalized with the base conduit radius (4o/m)''>.
Equation (2.11) is valid for 0<r<AY2
If we consider a solitary wave given by the solution of (2.8), then (2.6) gives

dg_ dA 5
de~CaE ‘

After integrating and recalling that Q=1 when A=1 we have
Q=cA+1—c

Using this in (2.7) we get

|:1+%<% %>]=(CA+1—C)A*2,

which can be used to reduce (2.11) to

u=2<y—§>@A+1—@A—R (2.12)

The maximum velocity u,, within the conduit is located at (r,£)=(0,0). Since
A=A, at £=0(2.12) gives

Uy =247 YcA,+1—0). : (2.13)

It can be shown using (2.9) and (2.13) that u,/c>1 for all 4,,>1. Fluid in the
wave is moving faster than the wave and stagnation points must exist along the
axis r=0 both ahead of and behind {=0 (in a reference frame moving with the
wave). Recall that ahead and behind the wave A=1 and u=2, which is less than
u,,. This shows that all solitary waves contain trapped fluid.

The region of trapped fluid is defined by closed streamlines in a reference frame
moving with the wave phase speed. Defining the streamfunction ¥ such that

1 oy ,

V= —— —= u =

oy

or’

~ | —

where v is the radial velocity and w' =u—c is the vertical velocity in the moving
reference frame we have

Y — o= [ r(udr—vd?). (2.14)

If the line integral is taken in a plane ¢=constant, (2.12) and (2.14) give
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_ 4 2
. f)—wo=(“‘+}c> (rZ—Z’-A)—%. (.15)

Here y, is the value of the ¥ at the axis r=0, which is constant since OY/OE =0 at
r=0. : :

Since (2.15) is a measure of the mass flux between the centreline and some
radius 7, the location r* where (2.15) is equal to zero defines the streamline

enclosing the trapped fluid
AZ 1/2
* = —f =2
r _[2A C(cA+ 1 —c)j! ’

as a function of ¢ through the solitary wave solution A(¢). The stagnation points
occur where r*=0. Figure I(a) shows the streamlines for an example with 4,,=10.
Also shown in F igure 1(b) is the profile of vertical velocity at £=0 relative to the
moving reference frame. The trapped fluid circulates by ascending ‘in" the center

solutions of the conduit equations (2.6) and (2.7). The numerical method follows
Barcilon and Richter (1986). The areas- AT =A(jAz, mAt) and fluxes Q7 1), are
defined on staggered grids. Here Az and At are the space and time steps
respectively. From the areas at some time t=mA¢ the corresponding flux
distribution is found from (2.7). Employing second-order finite-differences this
gives

. A 2
(l—bjﬂ,z)Q;as,z—z(lJr (42)

jt1/2

)Q}"ﬂ/z +(1+b;, 1/2)Q}'— 12=—4;.41,(A2)%, (2.16)

where

m
i~ 1/2

bji1p=3In (‘LLA.H 2>,

Aj+1/2=(Aj+1 +Aj)/2'

Provided the disturbances are kept far from the boundaries, the relation Q=
On+1/2=1 holds. Equation (2.16) then results in a matrix equation of tridiagonal
form which is solved by standard methods. An estimate for the area at t=(m+
1/2)At is found from (2.6) as
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Figure 1 (a) Streamlines in a reference frame moving with the phase speed for a solitary wave with
A, =10. The thick solid line encloses the trapped fluid. (b) Profile of vertical velocity at £=0 in the
reference frame moving with the wave.
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Figure 2 Ratio of the volume of trapped fluid to the volume anomaly as a function of 4,,.
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At
A;‘” 2= A;'"‘ E (Q;"+ 1/2— Q;n— 1/2)-
Then (2.16) is solved for Q742 and the areas at t=(m+1)At are found from .

At
1 2
AT = AF = QTR - r ),

integrations were Az=0.3 and Ar=0.05.

Phase shifts from numerical calculations of solitary wave interactions were
evaluated for comparison with the experimental results. To improve the accuracy
of the phase shift estimates the location of a wave crest after collision (usually
between grid points) was found by fitting a cubic spline to the five grid points
closest to the wave crest. The maximum value of the interpolating polynomial was

identified as the crest.

3. EXPERIMENTAL METHOD

and 120cm deep. The tank was filled approximately 110cm deep with Karo corn
syrup. The intrusive fluid, a 70:30 mixture by volume of Karo syrup and water
dyed blue for visualization, was introduced through a hollow tube positioned over
the centre of the tank bottom. Previous experiments (Whitehead, 1987) have been
hindered by a conduit which was a few degrees out of vertical. To generate a

estimated to be less than 2 percent.
Runs commenced by generating a “slow” small amplitude wave. After a given
time interval a second “fast” large amplitude wave was produced. Photographs
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Table 1 Physical and scaling quantities

Fluid plgmem™3) wlegmem™ts™h
external

(Karo syrup) 1.424 450 +45
intrusive

(70:30 syrup
and water mixture

by volume) 1.257 0.4040.04
Ag L T U=L/T

0.0115cm?, 023cm  1.24s 0.185cms ™!

shapes and positions (denoted by the location of the maximum amplitude). The
wave locations could be measured to within 0.lcm and the conduit and wave
diameters to within 0.005 cm.

The major sources of uncertainty in the experiments were the viscosities of the
external and intrusive fluids. Densities were measured using a precision balance
and densimetric flask. The viscosity of the external fluid was estimated by timing
the fall of steel spheres through the fluid and then applying Stokes’ relation.
Numerous trials with several different diameter spheres gave a consistent average
of u,=450gmem~*s™!. The viscosity of the intrusive mixture was determined
using a standard glass Poiseuille-type viscometer to be p;=040gmem~'s™ ! In
both determinations care was taken to have the temperatures of the fluids equal to
23+1°C, the temperature in the experimental apparatus. The viscosity estimates
are good to within + 10 percent.

The physical characteristics of the fluids, the base conduit area A,, and the
scaling quantities L, T and U=L/T are summarized in Table 1. The values shown
for Ay, L, T and U were used to nondimensionalize the results presented in the

next section.

4. DISCUSSION OF RESULTS

A photo montage of a typical collision event is shown in Figure 3. The individual
waves both before and after the collision are isolated. Detection of a weak
dispersive tail generated by the collision was unsuccessful and was concluded to be
beyond the sensitivity of these experiments. A phase shift of each wave was easily
observed. The summary of wave characteristics and results from 10 experimental
runs in which 11 collision events occurred is given in Table 2.

4.1 Individual Waves

Before discussing the collision events we first examine the characteristics of
individual waves away from the interaction region. In Figure 4 the measured
phase speeds are plotted as a function of amplitude 4,, for all the experiments.
Phase speeds were determined by a linear least squares fit of position vs. time
using data away from the interaction region (see Figure 7). The computed slopes
had correlation coefficients of 0.999 or better. The figure contains data for both
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' Figure 3- Photomontage of a collision event (run 3)
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Table 2 Summary of the quantitative measurements from the laboratory experi-
ments. Shown are the maximum areas of waves before (4;) and after (4) the collision
normalized by A,, phase speeds before and after the collision normalized by U, ratios
of amplitudes and phase speeds, and the phase jumps normalized by L. In column 1,
S denotes the small slow wave and F the large fast wave

Run A; + A, + A/A; [ cr cijey Az
35 512 009 543 005 094 374 378 0.989 -8.30
3F 16.13 0.13 1653 033 098 6.14 590 1.045 6.31
481 S.12 0.11 543 012 094 370 373 0.991 —8.46
4F1 2096 0.08 2142 031 098 6.73 649 1.037 - 5.35
482 543 012 527 015 1.03 373 373 1.000 —8.86
4F2 11.36 028 11.36 028 1.00 5.13 497 1.032 7.26
58 559 008 559 016 1.00 3.87 3.89 1.007 —8.60
SF 13.59 0.13 1471 0.13 092 1.106 1.069 1.035 591
6S 578 0.16 559 0.16 1.03 385 374 1.029 —8.26
6F 1142 028 11.59 0.17 099 529 5.09 1.039 5.95
78 5.59 035 547 008 1.02 376 3.59 1.045 —8.15
7F 739 027 776 0.14 095 431 414 1.042 7.80
8S 559 0.19 559 016 1.00 376 371 1.025 —7.95
8F 699 022 790 0.14 088 442 424 1.043 9.51
9§ 555 0.16 543 0.12 1.02 371 361 1.031 —6.59
9F 1120 011 11.59 017 097 511 494 1.036 7.80
108 9.55 012 935 014 1.02 465 457 1.017 —9.60
10F 13.04 022 1439 0.17 091 543 535 1.015 8.95
I 574 009 586 007 098 371 385 0.962 —8.40
{1F 16.80 0.11 1833 021 093 599 5.86 1.106 6.66
128 562 0.08 560 0.15 1.00 372 372 1.000 —8.36
12F 17.85 0.09° 18.68 020 0.96 6.14 5.89 1.042 6.66
Average Slow 1.00 1.01
Fast 0.95 1.04

before and after the interactions. Also shown are the theoretical dispersion
relationship (2.9) and estimated errors based upon uncertainty in the fluid
properties. For A4, <10 the theory and experiment agree quite well. For 4,210
the measured phase speeds are generally larger than the theoretical predictions.

A likely explanation for this difference is that the small slope assumption
required for the Poiseuille flow relation (2.2) and used to determine the external
fluid contribution to the conduit pressure (2.3) has been violated. The parameter
assumed to be small in deriving the correction to the conduit pressure due to the
presence of waves is ka~2n{(a,,—a,)/A, where a,, is the maximum radius of the
wave, a, is the base conduit radius and 4 is a measure of the wave length (half
width of a solitary wave). From the experiment kax0.1 for 4,~5 and kax~0.25
for A,,~10. The Poiseuille flow assumption is valid for slowly varying conduits
provided (Batchelor, 1967) aaup;/u;« 1, where « (aka/2m) is the conduit wall slope
and u (=c) is a representative conduit flow velocity. This gives the relative
importance of inertial to viscous effects. For the experimental parameters and
A, =10 we have ux2cms™*, ax0.6cm, kax025 and u/p;=032cm?s™'. This
gives aaup;/u;~0.15. The assumptions on conduit slope and Poiseuille flow are
starting to be violated. Furthermore, we must have ka«1 for the presence of the
tank walls not to be important in the derivation of (2.3).

In a similar set of experiments, Olson and Christensen (1986) also found that
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larger waves traveled faster than the theoretical prediction. When their results
(plotted as phase speed vs. disturbance volume), are converted to speed vs.
amplitude using the solitary wave solution (2.8) we find that waves with A,213
move faster than predicted. Their results are consistent with the present study.
They also attributed the error to large wave slopes.

In Figure 5 measured wave shapes are compared with the solitary wave profiles
found from numerical solution of (2.8). The measured amplitudes were used in the

The photographs are qualitatively similar to the streamline pattern shown earlier
in Figure 1(a). Trapping of fluid is an observable feature of all the experiments.

4.2 Wave Interactions

In Figure 7 two phase diagrams (z vs. £) are shown. The phase speeds of the waves
ay from the interaction regions are constant as discussed above, Figure 7(a)
shows an experiment in which three waves were present. The first, and smallest,

wave interacted twice. The difference in amplitudes, and therefore phase speeds,
are relatively large. The interactions occurred quickly over a length of about one
to two wave lengths. In F igure 7(b) the two waves are nearly the same amplitude
and the interaction takes much longer, about five wave lengths. In all experiments
the only obvious effect of the interaction is phase shifts,

Further information regard the effects of interactions is given in Table 2
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Figure 5 Comparison of measured solitary wave profiles ([J) with the theoretical solution (
numerically calculated from (2.8) for A,,=(a) 5.59, (b} 7.39, (c) 9.55, (d) 13.59, (e) 16.80, (f) 20.96.
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TIME ——»

Figure 6 Time sequence of photographs at about 1s intervals showing circulation of dyed fiuid in a
solitary wave in a clear conduit. ’

For a hypothetical collision event between two waves with initial amplitudes of
. 5.0 and 15.0 {typical of the experiments) a five percent increase in the amplitude of
the large wave requires a 15 percent decrease in the amplitude of the small wave if
transported mass is to be conserved between the two waves. This calculation was
made using the theoretical wave shapes (2.8) and trapped mass region (2.15). A 15
percent decrease in the small wave amplitude is much larger than either the
measured amplitude changes of the errors in measured amplitudes shown in Table
2. The cause for the amplitude increase of the large wave is not understood. It
could be that interaction entrains some conduit fluid into the trapped region, but
there is no clear experimental evidence for any entrainment.

A further comparison of the theory and experiments is shown in Figure 8, where
numerically calculated phase shifts are plotted against the experimental measure-
ments. The numerical calculations used the measured wave amplitudes from an
experimental run (prior to the interactions) and the corresponding solitary wave
solutions from (2.8) as the initial conditions. The experimental phase shift data
were determined from offsets at the center of the interaction region in the linear
fits to the position data from before and after the interaction. The numerical
solution to the conduit equations overpredict the magnitude of the phase shift by
about 40 percent for both the large and small waves. The reason for the
disagreement is unclear, but again may have to- do with, the violation of the small
slope or Poiseuille flow assumptions.

The transfer of trapped fluid between interacting waves is shown in Figure 9. A
large wave containing a trapped parcel of dyed fluid is initially behind a small
clear wave on a clear conduit (undyed fluid). When the large wave catches the
small wave it injects some dyed fluid into the lead wave. The lead wave is then
enlarged and propagates away from the diminished trailing wave. This exchange of
identities (amplitudes) is a common feature of solitary wave interactions in many
physical systems. However, in this situation the new lead wave now contains
trapped fluid particles from both of the interacting waves. The trailing wave
contains only fluid from the original trailing wave.
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Figure 7 Phase diagrams of wave position vs. time showing the uniform speeds before and after

collision. (a) Run 4. (b) Run 8.



50 K. R. HELFRICH AND J. A. WHITEHEAD

15

Az

Figure 8 Numerically calculated phase jumps Az vs. measured Azg phase jumps. O, small waves; @,
large waves. The phase Jumps of the small waves were all negative, but the absolute values are plotted.

TIME —

Figure 9 Sequence of photographs at equal time intervals showing the transfer of trapped fluid during
wave interaction. The initially small lead wave and the conduit consist of undyed fluid and are not
easily visible in the photographs. The arrows give the location of the lead wave in the first two frames.
The trailing wave contains a parcel of dyed fluid, ' ’
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Figure 10 Shadowgraph showing a conduit penetrating the interface between two layers of external
fluid. The upper layer is less dense and less viscous that the lower layer.

4.3 Layered External Fluids

Several preliminary experiments were performed to examine conduit and wave
behavior in a vertically inhomogeneous external fluid. The experiments were
conducted as described above except that a layer of 80:20 mixture by volume of
Karo syrup to water was floated on a layer of pure Karo syrup. Figure 10 shows a
shadow-graph of the interface and an established conduit. The viscous stress at the
conduit walls is sufficient to cause an uplift of the interface and a secondary
circulation in the upper layer. Heavy viscous fluid from the lower layer is dragged
into the upper layer as a coating around the conduit. This may have implications
for conduits in a layered mantle. Passage of solitary waves through the interface
does not change these features. The waves are able to pass through the interface
with no significant changes in properties. No wave fissioning, which can occur in

_inhomogeneous media (e.g., solitary surface waves over variable depth (Whitham,

1974)), was observed.

5. CONCLUSION

A conduit of buoyant low viscosity fluid rising through a more viscous fluid is
another physical system in which solitary waves and soliton-like bebavior are
robust features. Individual wave characteristics of shape and phase speeds derived
from experiments compared quite well with theoretical predictions. Larger ‘ampli-
tude waves tended to be predicted less well, presumably due to the presence of
large wave slopes. Interactions of waves resulted in a measurable phase shift
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convective processes at the core-mantle boundary Olson et al, (1987) conducted
numerical simulations of two-dimensional convection in a fluid with a temperature
dependent viscosity. A robust feature of their calculations was the development of
vertical conduits and the unsteady generation of waves on the conduits. The waves
propagated vertically away from the lower heated (core-mantle) boundary. As

wave. In contrast, the solitary wave solutions to the one-dimensional compaction
driven flow equations do not contain trapped packets of melt which propagate
with the wave (Scott and Stevenson, 1986). Fluid particles undergo a finite

This mass trapping property of conduit waves is important for two reasons. The
first is that the wave velocity is faster than the maximum undisturbed conduit
velocity, so that materia] packets will be delivered to the upper mantle more
quickly than by regular conduit flow, Secondly, material transported with the
waves will be mixed significantly less than material in a central streamline
undergoing regular pipe flow (Whitehead and Helfrich, 1988). Newly injected
material in regular pipe flow will be stretched by the shear and enhanced lateral
diffusion will occur (Taylor, 1953). Injected material that forms solitary waves will
be retained within the dividing streamline and thus remain isolated.
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