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Instability of Flow with Temperature-Dependent Viscosity: 
A Model of Magma Dynamics 

J. A. WHITEHEAD AND KARL R. HELFRICH 

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

In materiM whose viscosity is very temperature dependent, flow from a chamber through a 
cooled slot can develop a fingering instability or time-dependent behavior, depending on the 
elastic properties of the chamber, the viscosity-temperature relationship, and the geometry of the 
slot. A laboratory experiment is described where syrup flows from a reservoir through a tube 
immersed in a chilled bath to an exit hole at constant pressure. Flow is either steady or periodic 
depending on the temperature of the bath and the flow rate into the reservoir. A theory indicates 
that the transition from steady to periodic flow depends on nonlinearities in the steady state 
relation between pressure and flow rate. A general stability criterion is advanced that states that 
the Peclet number must be within a certain range for instability to develop. Parameters governing 
the oscillation period are determined. Theory also indicates that flow through a slot would develop 
finger-like instabilities under certain conditions. Qualitative laboratory experiments with paraffin 
spreading over a cold plate reveal the fingering. 

1. INTRODUCTION 

There are many examples in geophysics where hot ma- 
teriM from deep in the Earth flows to the surface, where 
it then cools, slows down and may ultimately even stop 
from that cooling. Obvious examples are found in volcanic 
magma flows, where stoppage is ultimately produced by so- 
lidification of the material. However, before the complete 
solidification is consummated, flow resistance can increase 
from the action of numerous processes that retard the flow 
upon cooling of the magma. Some examples of processes 
that increase the resistance of magmas flows are [Hughes, 
1982] constriction of the pipes and conduits from deposi- 
tion of crystals along the wall; an increase in fluid viscosity 
due to cooling; an increase in viscosity due to bulk compo- 
sition changes through preferential crystallization; and the 
addition of suspended crystals to the fluid upon cooling, 
with a consequent dramatic increase in bulk viscosity. One 
wonders whether novel flow structures such as fingers, time- 
dependent surges, and complicated free surface shapes such 
as pahoehoe or pillow lavas are the result of this increase in 
resistance. 

Magmatic systems are not the only flowing systems that 
encounter an increase of resistance upon cooling. Many 
aquifers dissolve away minerals under high pressure and tem- 
perature and some of these minerals may be redeposited 
along the walls in other locations of the system where there 
are lower pressures or temperatures. There are numerous 
cases both in terrestrial and deep-sea hydrothermal springs 
where the systems pulsate, become restricted to a few local- 
ized springs, or ultimately become clogged by the deposited 
minerals. 

by the development of fingers of melt-and time-dependent 
flows. We believe that this is one of the most prevalent 
processes in the cooling of hot geological and geophysical 
systems. The approach is to study simple problems, to il- 
lustrate the features that develop, and to suggest possible 
applications. Duplication of full geological complexity is be- 
yond our capabilities and in any case could only be done on 
a case by case basis. 

The closest analogy known to this situation is Saffman- 
Taylor instability [Saffman and Taylor, 1958], in which a 
fluid intrudes into a porous region or a Hele-Shaw cell (two 
plane walls separated by a small gap) that contains a second 
more viscous fluid. Under suitable conditions, the interface 
between the two fluids will develop finger-like protrusions 
that contain the lower-viscosity fluid and extend into the 
viscous fluid. The lower-viscosity fluid possesses less hy- 
draulic resistance to the large-scale pressure field and moves 
rapidly into the finger. This forces the finger tip to advance 
farther into the viscous fluid. The examples of Saffman- 
Taylor instability that have been studied to date, whether 
with mathematical analysis or with laboratory experiments, 
are inherently time dependent, and the tips continue to move 
indefinitely. After a long time the region is filled with veins 
of the low-viscosity fluid; each vein is surrounded by islands 
of viscous fluid that are slowly moving away from the source. 
The final state is never truly steady. 

An analysis similar to that of Saffman-Taylor but with 
more direct geochemical applications was conducted by Or- 
toleva, et al., [1987a]. In their problem, an advancing front 
reacted with host material to produce scallops. They sug- 
gest that numerous geological features may be generated by 
this geochemical self-organization Ortoleva, et al., [1987b]. 

The purpose of this study is to investigate the dynam- A second physical process for thermal control of basaltic 
ics of flows that develop increased resistance as they flow eruptions has been recently developed by Bruce and Hup- 
into cooler regions and particularly to understand a dynamic pert [1989]. Melt flowing through a dyke is shown to be fun- 
instability that develops. The instability is characterized 
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damentally unsteady and either gradually blocks or melts 
back the walls of the dyke. It was pointed out that these 
results show that such a process leads to flow localization as 
hypothesized by McBirney [1984]. 

Here, a thermal approach similar to that of Bruce and 
Huppert is combined with instability considerations to pro- 
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duce a thermal equivalent to either the Saffman-Taylor in- 
stability or the geochemical self-organization. Instead of 
two materially differing fluids we will have one fluid with 
temperature-dependent viscosity. It will flow from the 
source as a hot fluid and will be cooled through thermal 
conduction to the cold sidewalls of a Hele-Shaw cell. Un- 

like the previously studied problems, the final state may be- 
come truly steady (although periodic or chaotic states are 
also possibilities). The only similiar study is by S. Morris 
(private communication, 1989), who predicts instability in 
the above problem in a semi-infinite half-space. 

In section 2 we describe a laboratory experiment that il- 
lustrates one possible situation, when hot fluid flows through 
a cold pipe from an elastic reservoir. The flow is found to 
be either steady or periodic, depending on the amount of 
increase in viscosity that is produced in the cold region and 
the replenishment rate of the reservior. 

In section 3 a simple theory is advanced to explain the 
observed behavior. A stability analysis is conducted for an 
idealized problem with flow from an elastic chamber through 
a slot. In the one-dimensional limit corresponding to the 

Q=constant 

h(t) 

T 
room 

BATH 

T 
cold 

unstable flow can develop oscillatory instabilities or spatially 
periodic instabilities. 

2. A LABORATORY EXPERIME• WITH COOLED 
CORN SYRUP 

The apparatus (Figure 1) consisted of a vertical glass tube 
3.8 cm inside diameter and 1 m long located below a reser- 
voir containing "Kar& brand corn syrup. A variable control 
valve leading from the reservoir allowed syrup to fall into the 
glass tube at a controlled rate. Projecting out of the bot- 
tom of the glass tube was a stopper with a hole and a 0.383 
cm inside diameter copper tube. Various lengths were used. 
The copper tube projected downward and was shaped like 
the letter "j•. The lowest part to the "j• was immersed in 
a refrigerated thermostatic bath, and a flexible plastic tube 
extended from the end of the copper tube to a point out- 
side the bath over a beaker placed to catch outflow. In an 

that an unsteady flow would develop even if flow from the 
reservoir was steady. Some estimate of how much viscos- 
ity change was necessary was obtained from the theoretical 
considerations in section 3. 

First, simple run-down experiments were conducted to 
obtain some estimate of the resistance as a function of the 
flow rate. Theoretical considerations in section 3 indicated 

that time dependence was not to be expected unless resis- 
tance could be made to be inversely proportional to flow 
rate. Figure 2 shows data from two runs. The first (left) 
had a bath temperature set to 0'C, a room temperature of 
24.1'C and with a copper tube 30 cm long; the second (right) 
had a bath temperature of -11.0'C, a room temperature of 
24.0'C, and a copper tube 14.5 cm. long. Figures 2a and 
2b show height versus time, from which the height versus 
velocity were determined to give Figures 2c and 2d. For the 
0'C run, the run-down is close to exponential (which one 
would expect for a strictly uniform viscosity). In contrast, 

long as the experiment continues. The paraffin everywhere model of a magma system. The glass tube represents a com- 
else gradually solidifies. pressible magma chamber, the height of the free surface in 

Both the laboratory experiments and the theory indicate the glass tube represents pressure in the chamber, and the 
that the flow rate must lie within a certain range for insta- copper tube in the refrigerated bath represents magma flow- 
bility so that a suitably defined Peclet number is of order ing to the surface of the Earth through cracks or fissures. It 
one. Both flow below this range, and flow above this range was hoped that if the refrigerator was sufficiently cold and 
will produce decaying infinitesimal perturbations. Linearly if the syrup has a sufficiently great viscosity upon cooling, 

experiment, syrup flowed from the reservoir into the tube. 
Syrup in the glass tube builds up to a height h that can be 
easily measured and flows out through the bottom copper 
tube. The frictional resistance to flow takes place princi- 
pally in the copper tube because it is much smaller that the 
glass tube. As the syrup flows out, it is cooled by thermal 
conduction through the copper tube. 

The apparatus was intended to be a simple upside down 

when it flows slowly, it gets very cold and viscous. slot. 

In section 4 a second type of laboratory experiment is de- 
scribed with paraffin spreading radially from a point source 
over a cold plate. It is found that when the Peclet num- 
ber is of order 1, the radially symmetric flow experiences a 
transition to a fingering flow. At first, a number of fingers 
are visible at the outer front of the expanding circular pool 
of paraffin. In the intermediate stage, these fingers advance 
substantially. Each finger is fed by a tube of flowing melted 
paraffin. The rest of the paraffin stops and ultimately solid- 
ifies. At a later time all but one of the tubes slow down and 

stop, and the melted paraffin flows only in one tube for as 

experiments in section 2, the theory predicts linear insta- 
bility for certain parameter ranges. The nonlinear theory Fig. 1. Sketch of the apparatus for generating flow modulation 

from temperature-dependent viscosity. Corn syrup is fed into a 
shows that a limit cycle oscillation will result. For two- horizontal tube at a constant rate. As the syrup accumulates, it 
dimensional flow, linear theory predicts a spatial fingering increases pressure across a small outlet tube that is in contact 
instability which would laterally concentrate the flow in the with a cold bath. When the syrup flows rapidly, it stays hot, but 
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Fig. 2. Results from two run down experiments with different bath temperatures. On the left, (Figures 2a, 2c 
and 2e) the bath is at OøC, and on the right (Figure 2b, 2d, and 2f) the bath is at -11.OøC. Height versus time is 
plotted in (Figures 2a, 2b), height versus velocity is plotted in Figures 2c, 2d), and log height versus log velocity 
is plotted for (Figures 2e, 2f). 

the -11.0øC run was similar to the first run for only roughly 
the first thousand seconds, then there was a transition to a 
very much slower run-down. Presumably at the later time 
the viscosity of the syrup is very large due to cooling in the 
copper tube. The difference between the two states is par- 
ticularly clear on the height versus velocity plot (Figures 2c, 
and 2d) and even more so when shown as a log-log plot 

(Figures 2e, and 2f). For the run at -11.0øC, the transi- 
tion region from fast to slow run-down is characterized by a 
plateau in the height-velocity logarithmic curve. Consider- 
ations developed in the theoretical section will illustrate the 
significance of the plateau. 

When the volume flux of the source was set at a value 
corresponding to the middle of the plateau, the height oscil- 
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lated with time. Figure 3 shows height versus time, height 
versus velocity and the log height versus log velocity for one 
example. This run was started as a run-down, but then the 
volume flux from the reservoir was turned on at the time de- 
noted by the arrow shown in Figure 3a. Three complete and 
nearly identical oscillations were seen thereafter. The plot 
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Fig. 3. An experiment that first had a run-down and then had 
a steady source turned on at the time shown by the arrow in 3a. 
Plotted are (a) height and temperature versus time, (b) height 
versus velocity, and (c) log height versus log velocity. 

of height versus velocity was made from these data, but it 
was necessary to subtract the constant velocity of the source 
from the time derivative of the height record to determine 
velocity out of the end of the tube. This was accomplished 
by measuring the abrupt change in slope immediately before 
and after the arrow. The oscillations produce a closed curve 
in height-velocity space that lies on the top of the plateau 
from the run-down portion of the experiment. The plots of 
the logarithms (Figure 3c) more clearly show the limit cycle 
oscillation on the plateau. 

Additional runs have verified the reproducibility of the 
oscillations when the parameters were set close to those in 
Figure 3. When the flow rate of the source was set at a value 
outside the plateau or when the bath was set at 0øC, no 
oscillations were found, and the height would asymptotically 
approach a steady value. 

The experiments exhibited a transition from steady flow 
to a more complicated flow when the velocity w ranged be- 
tween 0.003 and 0.03 cm/s. Peclet numbers wr]• (see sec- 
tion 3) based upon the above velocities, a radius r of 0.2 cm, 
and thermal diffusivity • = I x 10 -s cm2/s, range from 
0.6 to 6. The parameter wr2/•L, where L is the length of 
the copper tube, ranged from 0.01 to 0.1. 

3. STABILITY OF UNIFORM FLOW 

The purpose of this section is to develop a theory for hot 
fluid flowing through a slot that is cooled from the side- 
walls. A slot, rather than a circular tube, is incorporated 
so that spatial, as well as time-dependent, instabilities may 
be investigated. It will be shown that both temporal and 
spatial instabilities are expected for Peclet numbers within 
a certain range. 

Consider the simple system sketched in Figure 4. A nar- 
row slot with cooled walls is fed from below by fluid in a hot 
chamber. The bottom of the chamber is fed by a uniform 
volumetric flux per unit length Q. The slot width is d and 
the slot height is L. Take the chamber to be elastic so that 
pressure in the chamber is related to inflation or deflation 
of the chamber by the formula 

E_• Op -- Ov a-'•' = Q - wd - A -- (1) Oy 

where A is cross-sectional area of the chamber, which we 

SLOT 

w,T 

z 

CHAHBER 

Fig. 4. Sketch of the idealized system. A constant flux Q comes 
in at the bottom of the chamber. It can flow up the slot with local 
velocity w and cool through the side walls. It can also flow along 
the chamber. The chamber has elastic walls. 
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have taken as a constant on the right-hand side in order to 
keep (1) linear. Here E is a positive coefficient of elasticity, 
and velocity v is the velocity along the chamber axis. E -• 
is analogous to glass tube area and p is analogous to H 
in the experiment in section 2. In the chamber, we assume 
there is Poiseuille flow, so there is a balance between viscous 
resistance from velocity v and along-chamber pressure drop, 
so that 

..•,_ • Op (2) œ2c -- p 0y 
where vH is the viscosity of the hot fluid in the chamber and 
l• is a length scale of the chamber. Combining (1) and (2), 

E_• Op •l• 0-"•' -- Q - wd -!- (3) v•p 0g 2 

If we assume that the vertical flow in the slot is indepen- 
dent of the across-slot direction, the viscous flow is governed 
by 

Ow 12.(T) I Op 
• + d• • = (4) p 0z 

where the viscosity 

. = .. + •(•r. - •r) (•) 

z 

L 

0 

Tcenterline 

I 

T o T H 
Temperature 

Fig. 5. Sketch of the temperature of the wall and the temperature 
of the centerline of the fluid for this idealized problem. 

and T is the temperature of the fluid in the slot. 

It is desired to find the pressure drop through the slot / •2to (i.e., resistance to the flow) as a function of w. To do this, • 

it is necessary to determined the temperature in the slot, 12•//-•Lto 
which can be found analytically under certain assumptions. 
First, we look at steady flow through the slot and assume which can be normalized to 
that the material is flowing as a uniform slab so that 

OT O2T 
w"•' z = • a;c2 (6) 

Let the temperature of the boundary decrease linearly in the 
z direction at a rate AT/L so 

AT 

T = Ts- -Z- • •t I• I= d/2 (7) 
A particular solution to (6) and (7) of the form 

T= TH --•- z + 2•L - z (8) 

exists. A homogeneous solution T (z, z) must be added to 
(8) match the boundary condition T = TH at z = 0. The 
homogeneous solution gives the boundary layer adjustment 
at the entrance, and decays rapidly to zero with an e-folding 
scale ~ wd:•/• '•. Rather than use the combersome full so- 
lution, we will approximate the centerline (z = 0), temper- 
ature by TH for z < wd2/8• and by (8) with z = 0 for 
wd •/8• < z • L. The temperature of the sidew•l and the 
centerline is sketched in Figure 5 . 

It is helpful to inspect a solution to the momentum equa- 
tion (4) with Ow/Ot = 0 and • given by (5). The tempera- 
ture •ong the centerline is used to give 

p -- • PHdz+ 
(•) 

•t • s• ) dz 

Thus 

VHL + •2'-• 'T' L- s,, } w < -- d-•- 

w> •-•-- 
(10) 

pod • ---• 1+ • 1- w < wr • for •rr 
p12vHLw,. to w > w,. 

(11) 

Here 

8•L 

• = d• (•2) 
and 

aAT 
A = (13) 

VH 

Figure 6 is a plot of equation (11) for three values of A. An 
important physical result is that for A > 6 pressure can drop 
off with an increase in velocity over the range 

• •(• - ])• < -- < • (•4) Wr 

The lower limit of the inequality is equal to 2/3 when A = 6, 
and is equal to 1/3 for A >> 6. In dimensional terms this 
gives a pressure drop off with an increase in velocity for 

2 wd 2 
•-< 8-•<1 for A= 6 

and 

1 wd 2 
•< 8-•-• < 1 for A •:• 6 

This parameter range is extremely important because a 
drop off in pressure with an increase in velocity leads to 
various instabilities to the uniform flow as observed in the 

experiment. The stability equations will now be derived. 
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0 1 2 : 

The flow resistance in the slot is 

= { + - 
The parameters 7 and • are given by 

•=\d 2 ,/ •-• 
and 

w<l 
-- (19) w>l 

(20) 

(2•) 

The parameter 7 is a measure of the ability of the chamber 
to expand with pressure and • is a measure of the frictional 
resistance along the chamber. 

3.1. One-Dimensional Flow 

-1 

With no spatial dependence (Olay -- 0), (17) and (18) 
correspond to the experiments discussed in section 2. The 
pressure is analogous to the height of fluid in the column. 
The velocity w corresponds to the average velocity out of 
the copper tube which is directly proportional to the rate of 
change of the level in the column. 

Equations (17), with c9/c9y -- O, and (18) can be combined 
to give 

d2w t df dw I (w-Q) _- 0 (22) 
dt • dw dt 7 

This equation has the steady fixed-point solution 

-2 -1 0 1 
,, 

wo = Q 

po = f(o) 
(23) 

It is straightforward to show that this steady solution is 

(24) 

Fig. 6. (a) Pressure drop across the slot calculated from equation linearly unstable when 
(11) as a function of velocity of the fluid for the three values A = 0 
(solid curve), 10 (dashed curve), and 100 (dash-dot curve). (b) df 
The same data plotted as log-log. dw u• 0 

Assuming that the viscous resistance in the slot can be 
approximated by the steady result (11), integrating the mo- 
mentum equation (4) from z = 0 to L gives 

L-•-+-•- vHL+ 2L L- 4r / =• (15) 
Norm•izing (15) and the chamber pressure equation (3) 
with 

w'=w/W,. p'= pd 2 
p12vHLw,• 

Q'= Q/w•d y'= y/L 

we get, after dropping the primes 

Op 

and 

c92 p 
c9y :• 

+ = p 

(16) 

(17) 

(18) 

This inequality corresponds to a decrease in fricitional resis- 
tance (or pressure drop) with an increase in velocity. This 
criterion is met by equation (11) for A > 6 in the range 
given by (14) and illustrated in Figure 6, 

The behavior of the nonlinear solution can be deduced 

by recognizing that (22) is in the form of an equation de- 
scribing a mass-spring system with a nonlinear friction co- 
efficient, here given by df/dw. The topology of df/dw is 
similar to the classic. V•n der Pal equation (for example, see 
Davies and James, [1966]), with a region of negative fric- 
tion bounded by increasing positive friction outside of this 
region. For Q in the linearly unstable regime a limit cycle 
oscillation will always develop. When A is large and f(w) 
has a region of large negative slope, w will oscillate between 
periods of nearly constant low flow and an eruptive phase in 
which w increases rapidly and then returns to the low flow. 
As A approaches the critical value of 6, the oscillations will 
become nearly sinusoidal. If other parameters are fixed, in- 
creasing 7 causes the period of the limit cycle to increase. 
For Q in the stable regions the solution will asymptotically 
approach the steady fixed point. 

This behavior is illustrated with numerical solutions to 

(17) and (18) with O/Oy = O. Figure 7a shows an example 
with [A, Q, 7] = [50.0, 0.7, 1.0]. We picked the parame- 
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Fig. 7 (a) Numerical solution of (16) with o/oy = 0 •d 
(17) for p (dashed curve) and to (solid curve) with (A,Q,'•) = 
(50.0,0.7,1.0). (b) p- to phase plane plot of the solution (solid 
curve). The steady state relation p0 = f(w) from (18) is also 
shown (dashed curve). 

ter A large so there is a sizeable increase in viscosity. The 
parameter Q = 0.7 has been picked so the steady flow w0 
is near the center of the unstable region. The parameter 7 
was. arbitrarily set to 1. The solution quickly achieves a limit 
cycle in which the flow periodically has spikes of high flow, 
separated by periods of low flow. The pressure p follows an 
asymmetrical sawtooth pattern with a slow increase during 
the stable low flow phase and a rapid decrease during the 
eruptive phase. Figure 7b shows the corresponding limit cy- 
de in the p- w phase plane. The steady relation p0 = f(w) 
is also plotted. The solution closely follows the stable low 
flow branch of the steady solution, jump{ng quickly across 
the unstable region, then looping back to the stable low flow 
branch. Decreasing Q increases the period of oscillation, and 
the eruptive phase occurs over a smaller fraction of the pe- 
riod. The qualitative character of the solution is unchanged 
from Figure 7. Increasing Q has the opposite effect. The pe- 
riod decreases and duration of the eruptive phase increases. 
Increasing (decreasing) Q causes the chamber to refill more 
quickly (slowly). 

Figures 8a, and 8b are for a case with 7 = 5 so the cham- 
ber is "weaker" (i.e., more expansive with an increase in 

pressure). Increasing 3' (see (20)) corresponds to a decrease 
in the elasticity of the chamber compared to the viscous re- 
sistance in the slot (measured by either the momentum dif- 
fusion time de/es or the slot aspect ratio L/d). The other 
parameters are unchanged from Figure 7. For larger 3', the 
evolutions of p and w are similar to Figure 7. Increasing 
3' causes the period of oscillation to increase. During the 
deflation phase, the falloff of w is slower than for 7 - 1. 
The p- w phase plane (Figure 8b) shows that the solution 
approaches the high w branch of the steady solution during 
deflation. 

One final example is shown in Figures 9a, and 9b for 
smaller viscosity contrast [A, Q, 3'] = [10.0, 0.7, 1.0]. For 
this low value of A the solutions for p and w are nearly si- 
nusoidal. The limit cycle in the p- w plane forms a near 
ellipse around the unstable fixed point. 

The behavior of the theoretical model is qualitatively sim- 
ilar to the experimental results shown in Figure 3. In Fig- 
ures 3b and 3c the h- v phase plane plots show an apparent 
limit cycle connecting two stable branches delineated by the 
results of the rundown phase of the experiment. The h ver- 
sus t plot in Figure 3a shows an asymmetrical sawtooth pat- 
tern similar to p versus t in Figure 7a. Slow periods of build 
up ef height (or pressure) are interrupted by periods of rapid 
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Fig. 8. Same as Figures 7a and 7b except (A,Q,•y) = 
(50.0, 0.7, 5.0) so the chamber is more expansive. 
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Fig. 10. Plot of the growth rate Re(el) from (27) as a function 
of k 2. Here Re(•l) is divided by 1/2d.f/dw Iw0 and k 2 is divided 
by • df/dw Iwo. Fottr values of the parazneter '•/4 df/dw Iwo are 
illustrated. All curves asymptote to 2 for large wavenumbers. 

Taking w• = W• e iky+•rt, where W1 is a constant, 
quadratic dispersion relation is obtained from (26). The 
two roots •r•,2 are given by 

to o + 5k2 ] 7 

Same as Figures 7a and 7b except (A, Q,-y) = req•tired for instability. For k = 0 and 7 •' 1, 

o'• -- df 4- 0 (7 -1) 
d W too 

deflation and eruption. Note that when the height rapidly 
decreases, the temperature of the outflowing fluid rapidly 
rises. Finally, the plateau in the rundown experiments cor- 
responds to a jump from the fast to the slow branch. Of 
course, the model is highly idealized, but it does reproduce 
the main features of the experiment. 

3.2. Two-Dimensional Flow 

+ ; •ww •o - • ] +•k•ww •o 

The real part of the plus root, •r•, is always larger than the 
other root, •r2, so we will consider •r• only. For k = 0 we 
recover the one-dimensional result that df/dwlto o < 0 is 

and when 7 >> 1, 

1 df 
R•(,•) = 

2 dw 

We now return to the two-dimensional problem and ask 
whether spatial perturbations can grow. If spatial instabil- 
ities do grow the flux of fluid from an eruption would be 
spatiMly concentrated, resulting in along-slot fingering. 

First, (17) and (18) are linearized about the steady solu- 
tion (23) with 

W ---- W0 4- 

P = Po 4- ep• 

where e >> 1, and one equation for w• is found 

02 w• df Ow• 
'r Ot• +'•ww ,oo at 

o a g•_•fwl o= • w• a w• OIOy 2 too OY '----•- 4. w = 0 

(25) 

(26) 

too 

(28) 

This root is growing oscillations. 
Analysis for k y• 0 shows that df/dw Itoo < 0 is still a 

necessary condition for instability. Since • always multiplies 
k 2, it can be removed by rescaling y and therefore will be 
set to 1 in (27). For k •, 1, (27) becomes 

df 
+ (30) O'1 • -- •WW too 

and the root is purely real. 
For k • O(1) the behavior is slightly more complicated. 

Figure 10 illustrates the behavior of Re(•). For 7 • 1, 
Re(•) is independent of k. As 7 decre,es the growth rate 
for k = 0(1) decre,es untH a band of wavenumbers have 
Re(a, ) < 0. When 7 > 4/(df/dw I•o )' the roots •e purely 
•M. Wh•n • < 4/(df/d• I•o th• roots are complex (i.e., 
oscillatory) for 5k • < 2 7 -'/• + 7 (df/dw 1•o ) and reM for 
larger k •. The transition occurs at k corresponding to the 
minimum of Re(•) shown in Figure 10. 

The linear stability anMysis of the two-dimensionM proN 
lem shows that a fingering instability resulting in the laterM 



concentration off outflow is possible. However, the linear 
analysis does not give a single wave number of maximum 
growth and therefore does not suggest a dominant length 
scale. A more complete analysis in the nonlinear regime, or 
an improved model incorporating lateral flow within the slot 
is necessary. 

Before ending, it must be pointed out that the overall 
features of the results are not dependent upon the specific 
thermal model of the slot that has been adopted here. A 
second calculation has been made that parameterizes the 
temperature of fluid rising through the slot with a model 
equation of the form 

aT • (T - Tw) (31) = -c 
where w is velocity through the slot and Tw is the wall 
temperature. The constant C' is a geometrical variable that 
was set for convenience equa• to 1. The solution is 

T = Tw + (T. - Tw) 
where TH is temperature of the fluid in the chamber. 

For this thermal model it was necessary to have viscosity 
dependence upon temperature be represented as a quadratic 
function 

. = .. + - T) + T) = (.9.3) 

in order to obtain a relationship between steady pressure 
drop p0 and w that is anologous to (10). If •3 is set to zero, 
there is no region of decreasing pressure drop to increasing 
w and therefore no instability will develop. 

4. EXPERIMF_•TS WITH PARAFFIN 

Experiments with liquid paraffin have been conducted 
that demonstrate a transition from uniform flow to fingering 
flow as time progresses. The apparatus consisted of a 1.2 cm 
thick square rolled aluminum plate 61 cm on a side placed 
horizontally in a pan of ice water so that the underside of the 
plate was in contact with the water. The temperature of the 
ice water is estimated to be approximately 5øC in contact 
with the plate, since the ice floated only around the edges of 
the plate. The plate was carefully placed in the water so no 
air was trapped under it, and then it was carefully leveled. 
The leveling was essential because preliminary experiments 
had raised the question of whether the direction of flow was 
influenced by poor leveling. A 1.1-cm-thick square plexiglas 
plate 46 cm on a side was clamped over the aluminum with 
spacers between the aluminum and plexiglas so a narrow 
gap 0.241 4- 0.007 cm remained. A hole drilled in the center 
of the plexiglas was connected by heated hose to a reservoir 
containing melted paraffin. A camera was positioned above 
the apparatus to take photographs every 4 s. 

4.1. Qualitative Observations 

As a run commenced, paraffin was delivered to the hole at 
a rate of 5.5 cm 3 s -•. For approximately the first 16 s, the 
paraffin spread out in a growing pattern that was close to 
perfectly circular (Plate l a). Small deviations from perfect 
circles appeared to be produced from surface tension effects 
arising from slight irregularities in the texture of the black 
painted aluminum, but these deviations produced less than 
10% deviation in the radius of the circle. After 16 s, the cir- 
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cular front rapidly developed little notches (Plate lb) that 
signified a sudden decrease in velocity at a point on the cir- 
cle. Next to these notches, there was shortly a rapid growth 
of radial finger-like bulges (Plate 1 c) with round tips. Ten or 
12 fingers grew within 4 s but many of them stopped grow- 
ing during the next 4 seconds (Plate 1 d). The only change in 
the pattern subsequently was that four fingers reached the 
edge of the tank, the rest gradually froze. Oil-soluble dye 
was injected into the paraffin source, and it was observed 
that when the dye had arrived in the cell, 28 s after Plate 
l d, most flux was into the two largest fingers (Plate l e). 
The dye had begun to intrude into a third tube, but it ap- 
parently stopped shortly after arriving in the cell. Forty 
seconds later, dye of another color was injected, and by that 
time, flow was only going out of one finger (Plate lj). For 
40 s more, flow out through that finger continued in a clearly 
defined channel with little apparent change. 

J.œ. Quantitative Measurements 

To measure the progression of the front, distances were 
taken from the photographs with dividers and tabulated. 
For the photographs with an almost circular intrusion, the 
extremes of the radius were measured. For the finger cases, 
the distance of the tip of every finger from the outside of 
the feeding tube was measured and one measurement was 
also taken in between each pair of fingers. The results are 
shown in Figure 11. During the time when the front was 
circular, the front advanced as it would from simple laws of 
•on•e•.•ion of ma•; •. •ine •ith the fo•m,• r = (Qt/•h) • 
is shown for comparison. In this formula the volume flux Q 
is 5.5 cm 3 s -• time is t and gap width h is 0.241 cm. As the 
fingers developed, the fronts on the fingers speeded up, and 
the front between fingers slowed down and finally stopped at 
which time the paraffin appeared to begin to solidify at the 
stopped regions. As time commenced, many of the smaller 
fronts of fingers a•so stopped, but the remaining ones sped 
up even more. The width of the fina• channel as marked by 
the colored dye varied along the channel from 1.4 to 1.7 cm. 

A simple explanation of why the instability must happen 
is that the paraffin would become cold and very viscous if 
it remained in circular flow because then it would stay in 
the gap for more than a thermal time constant. However, it 
was clear that the paraffin had never completely solidified 
anywhere during this run; it just appears to experience a 
dramatic increase in bulk viscosity as it cools. Assuming 
that both the lid and the aluminum plate cool the paraf- 
fin as it flows along the slot, the value of the thermal time 
constant for the paraffin in a gap of 0.241 cm can be esti- 
mated from the formula h2/4k. Using the above value of h 
and k = 0.0004 cm 9' s -•, the time constant is 36 s. In the 
experiment the interface become unstable after 16 s. Also, 
the fina• channel of approximately 1.5 cm width admits a 
flow from the hole to the edge of the plate of about 15 cm/s. 
Therefore, fluid leaves the region after being in the slot for 
less than 2 seconds, a time that is short compared to the 
time constant estimated above. Of course, these numbers 
have considerable uncertainties and are meant to be only 
approximate, but the simple concept that a flow pattern is 
formed that would allow fluid to escape before it cools is 
consistent with the experiment. 

We also estimate the parameter group ud 9'/8•L at which 
the fingers were first detected. Here u = 3Q/4rrd, where 
r = 13 cm, the radius when fingering developed, and L is 
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upon cooling. The hypothesis by McBirney [1984] that flow 
through a dyke is fundamentally unsteady and is either grad- 
ually blocked or melts away the wall, as developed by Bruce 
and Huppert [1989], seems to be the closest actual applica- 
tion. A study by Lowell [1990] attributes focusing of feeder 
fluid to black smokers to contraction upon cooling of the vent 
walls and thus is similiar in spirit to the present study, but 
alludes to a different mechanism. Recent gravity data [Lin, 
et al., 1984] show that the accretion of magma at a series 
of segment along the Mid-Atlantic Ridge is focused at dis- 
crete centers along the spreading axis. Whether this arises 
from the present mechanism or from diapirism from deeper 
in the mantle [Whitehead et al., 1984] is unknown. Finally, 
R. Kent (private communication 1990) has pointed out to 

Plate 1. Photographs of the evolution of paraffin flowing with us the presence of lamprophyre intrusions in the Damodar 
constant volume flux through a cooled slot from a point source. Valley of north east India whose cylindrical melt tubes have 
From left to right: (a) At 12 s after start of the experiment a apparently arisen from low-viscosity melt penetrating into 
circular intrusion is seen. (b) At 16 s two small notches have 
grown. (c) By 20 s numerous fingers break out. (d) At 24 s the carbonaceous sediments. Whether these can be understood 
fingers have grown considerably. (e) At 52 s, dye reveals there in the context of this mechanism is still open. 
is flow through two channels; there is also evidence that third We close by noting there is still an enormous number of 
channel stopped just as the dye entered the tank. (f) At 92 s, problems to be done. The finite amplitude behavior is not 
darker dye reveals that there is flow in only one channel. 

also set to this radius. Using these valves and the values of 
Q, • and d from above, we get 

ud • 3Qd 
8•œ 32•rr2• 

--0.6 

This value is within the range predicted by the idealized 
theory (14) for A '.,• 6, which is the case for parrifin. These 
are numerous differences between the experiment and the 
model, but the agreement is encouraging. 

understood yet nor is the full two-dimensional stability prob- 
lem. We wonder wheter these problems are very sensitive 
to geometry. Can fluid intrusions through porous flow de- 
velop similiar instabilities if the interaction between fluid 
and porous medium increases hydraulic resistance? 
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CONCLUDING PtEMARI<S 

The central result is that flows are unstable if Peclet num- 

ber wd/• is in the range 

and 

8 œ wd 8L aAT 

3 d <•< for '.,•6 

16 L wd 8L aAT 

3 d <--< for > 6 
Unstable flow can be either time dependent or spatiMly de- 
pendent. Both laboratory and numerical experiments show 
that time-dependent flows are periodic for the very simple 
one-dimesnional problem studied here. Little is known in de- 
tail abcut the spattally dependent system, although the lin- 
earized stability analysis indicates that fastest growth rates 
are for large wave numbers, or short wavelengths. The small 
wave numbers have growing oscillations if the chamber is ex- 
pansive enough. Crude transient experiments with paraffin 
exhibited fingers suddenly developing as a circular front 
vanced over a cold plate. However, the number of advancing 
fingers rapidly decreased with time to one, but that one per- 
sisted for a very long time thereafter. This indicates that 
spatial finite amplitude behavior may be quite complicated 
to analyze theoretically. 

A detailed application to any geological system has not 
yet been made, but numerous magmatic and hydrother- 
mal systems are known to possess an increase in resistance 
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