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The properties of gravitational instabilities formed within two-layer fluid systems are well known 
and have been applied to a variety of geophysical problems. We present theoretical and exper- 
imental results for the gravitational instability developed by a three-layer system, comprising a 
thin low-viscosity low-density fluid layer sandwiched between two thick layers of equal properties. 
Linearized equations can be used to solve for the initial growth rates as a function of perturbation 
wavelength. As is the case for two-layer systems, the results yield a fastest growing wavelength, 
termed the characteristic wavelength, whose value is much greater than the thickness of the low- 
viscosity layer. The experimental results confirm the ability of the linearized equations to predict 
the dominant wavelength of the instability. However, for very thin layers or smaller viscosity ratios 
a second instability is also observed at a scale much greater than the characteristic wavelength. 
Numerical solutions show that the wavelength of this instability matches that of a fast growing 
but short-lived mode arising from perturbations which predominantly involve thickening rather 
than translation of the buoyant layer. The analytical solution also shows that at the character- 
istic wavelength, the displacement of the lower interface will be initially a factor 2- •/3 = 0.268 
that of the upper interface. As the instability develops the characteristic diapir structures, the 
experiments show that the relative magnitude of these displacements increase, with underlying 
fluid being drawn up into the head of the diapir. 

INTRODUCTION 

When a body of fluid underlies a denser fluid a gravita- 
tional instability results, which in the particular case that 
the two fluids are separated by a horizontal boundary is 
commonly termed a Rayleigh-Taylor instability. The theo- 
retical and experimentally determined properties of such in- 
stabilities have been used to model a number of geophysical 
processes. These include the formation and distribution of 
salt domes [e.g., Nettleton, 1934; Selig, 1965; Blot and Ode, 
1965; Woidt, 1978], the emplacement of gneissic domes and 
granttic batholiths [Fletcher, 1972], the initiation of insta- 
bilities deep within the mantle [Ramberg, 1972; Whitehead 
and Luther, 1975], and the temporal and spatial periodic- 
ity of volcanic activity in a variety of geological settings, 
namely, island arcs [Marsh and Carmicheal, 1974; Fedotov, 
1975; Marsh, 1979], continental rifts [Mohr and Wood, 1976; 
Bonatti, 1985], Iceland [Sigurdsson and Sparks, 1978], and 
mid-ocean ridges [Whitehead et al., 1984; Schouten et al., 
1985; Crane, 1985; Whitehead, 1986]. Such models, how- 
ever, have been based largely upon the results of studies 
that were limited to a simple two-layer configuration. This 
simple geometry prohibits motion of the lower boundary of 
the buoyant layer, a constraint that may be particularly un- 
realistic when the layer is thin. Many of the geophysical 
processes of interest could be better modelled by the intro- 
duction of a gravitationally stable fluid beneath the buoyant 
layer. In this paper we report both theoretical and experi- 
mental results for the instability developed by a three-layer 
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system, comprising a thin layer of buoyant low-viscosity fluid 
sandwiched between two thick layers of equal properties. 

The initial stages of the Rayleigh-Taylor instability may 
be analyzed theoretically using linearized flow equations. 
Solutions may be obtained for the growth rate of instabil- 
ities as a function of wavelength and were first derived for 
invisid fluids by Rayleigh [1883] and Taylor [1950]. Harri- 
son [1908] generalized Rayleigh's treatment to include vis- 
cous forces, but it was not until Bellman and Pennington 
[1954] and Chandrasekhar [1955] that full solutions were ob- 
tained. The introduction of viscous terms in the analysis 
results in a finite-valued fastest growing wavelength termed 
the characteristic wavelength. Further analytical and nu- 
merical solutions have since been obtained for a variety 
of geophysically relevant two-layer configurations [Danes, 
1964; Selig, 1965; Biot and Ode, 1965; Biot, 1966; Ramberg, 
19684; Artyushkov, 1971; Berner et al., 1972; Whitehead and 
Luther, 1975; Turcotte and Schubert, 1982]. Inspection of 
nonlinear terms suggests that as an instability develops, the 
relative growth rate at the characteristic wavelength might 
be expected to increase [Danes, 1964; Whitehead and Luther, 
1975]. Thus it is generally assumed that the characteris- 
tic wavelength will become the dominant wavelength in the 
later stages of the instability, though finite element mod- 
els [Schmeling, 1987] show that this may not be the case 
when the initial perturbation is dominated by wavelengths 
longer than the characteristic wavelength. The theoretical 
two-layer studies have been complimented by a large num- 
ber of experimental studies using a variety of materiMs with 
both Newtonian [e.g., Nettleton 1934, 1943; Ramberg, 1967; 
Berner et al., 1972; Whitehead and Luther, 1975; White- 
head, 1986] and non-Newtonian properties [e.g., Parker and 
McDowell, 1951, 1955; Ramberg, 1967, 1968b, 1972; Tan- 
ner and Williams, 1968; Dixon, 1975]. These experiments 
confirm the ability of the linearized theory to predict initial 
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growth rates and the dominant wavelength. The charac- 
teristic diapir structures observed in the later stages of the 
instability are in good agreement with the results of finite 
element models [Berner et al., 1972; Woidt, 1978]. 

In contrast to the exhaustive work conducted on two- 

layer systems, studies of more complex geometries have been 
limited. Ramberg [1968c] developed a numerical model for 
studying multilayered systems. More recently, Lister and 
Kerr [1989] presented analytical solutions for a buoyant layer 
sandwiched between two half-spaces and for a horizontal 
cylinder. In this paper we present analytical and experi- 
mental results for a buoyant low-viscosity layer sandwiched 
between two thick layers. Our analytical solution differs 
from the more general solution of Lister and Kerr [1989] in 
that the relative amplitude of the perturbations applied at 
the two interfaces is treated as an unknown, an approach 
that is necessary to explain more fully the experimental re- 
sults. Barnberg [1972] also studied similar three-layer con- 
figurations. However, the numerical results that he presents 
are not fully in accord with our analytical solution, and the 
experimental work was confined to non-Newtonian materials 
with little contrast in viscous properties between layers. 

AN ANALYTICAL SOLUTION FOR A Low-VISCOSITY LAYER 

This section is concerned with the analytical solution 
of the simple three-layer geometry shown in Figure 1 . 
This comprises a central layer of thickness h(- 2d), sand- 
wiched between two equal half-spaces of higher density 
(pl = p3 > p2) and considerably higher viscosity (#1 = 
#3 >> #2). 

The viscous flow within each fluid layer can be described 
by the incompressibility condition: 

v ß u = o 

and the linearized Navier-Stokes equation: 

where u is the velocity, •, is the kinematic viscosity, p is the 
density, and P is the deviatoric pressure. Equations (1) and 
(2) may be combined [Chandrasekhar, 1955] to give 

'I• z P z, ,u z h 

Fig. 1. Sketch showing the configuration of the three-layer system 

where • is the stream function defined by 

u = V x •k (4) 

in two dimensions or the vertical component of velocity in 
three dimensions. 

Dimensional analysis yields a criterion for slow viscous 
•tOW: 

ghaAp 
<< I (5) 

where g is the gravitational constant, h is the l•yer thick- 
ness, Ap is the density controt between l•yers, •nd p is the 
density of the l•yer. Since this condition is gener•y s•t- 
isfied by geophysicM processes, the inertial terms m•y be 
dropped from (3) which reduces to 

= 0 

A periodic solution •thin e•ch l•yer is 

•i =(Aie -• + Bize -• + 
Dize+•,) eik.x+,t (7) 

where k is the horizontM w•ve number, n is the exponentiM 
growth r•te constant, •nd Ai, Bi, Ci, •nd Di are unknowns. 
The necessity for finite flow eliminates two of the exponen- 
ti• terms from (7) in the outer l•yers. The remMning eight 
unknowns •re determined by the requirement for continuity 
of verticM •nd horizontM velocity •nd of horizontM •nd ver- 
tic• stress •t the interfaces which for sraM1 perturbations 
m•y be line•rized •nd written 

D• = D•+• (Sb) 

#, (D 2 + k •) •, = S/i+1 (D: + k •) XI/i+I (8C) 

#i (-D • + 3k 2) Dq•i = #i+• (-D • + 3k:)Dq•i+• (8d) +k•(pi+• - pi)g,li 

where i = I and i = 2 correspond to the lower and upper 
interhces, respectively, D is O/Oz, and Oi is the amp•tude 
of the interface perturbation. 

In the analysis of Lister and Kerr [1989] the term Oi is 
replaced by •i/n, which •sumes that the interhce pertur- 
bation is proportion• to the growth rate. In this an•ysis 
we •sume that the magnitudes of the initi• lower and up- 
per interface perturbations have a ratio •. The solution of 
Lister and Kerr [1989] may then be recovered by equating 
this v•ue to the ratio of interface growth rates a. 

To solve the equations, we assume kd (( I and approx- 
imate e •a by its first-order Taylor expansion I • kd, an 
appro•mation that can be shown subsequently to be valid 
for the f•test growing wavelength provided the viscosity ra- 
tio e = p•/p• is at le•t 10. The flow in the middle layer 
may then be expressed 

kX -(1-•)X k (1+•)] A, 0 

k -(1+ •)X kX (1 )X] B, 0 -X -dX I • G2 = G 
-1 d X -dX J D: fig 

described in the text for which an analytical solution is obtained. where 
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*;=kh 

X = (1 - *;)(1 - e)/(1 -t- *;)(1 -t- e) 

To first order in k, the solution is 

A2 -- G(m, + flm2)lms 

B2 = kG(-m3 q- flm4)/ms 

ca = G(-ma -/•m•)/ms 

D2 = kG(m4 - flm3)lms 

where 

(10a) 

(10b) 

(10c) 

(10d) 

ml =X[(1-X 2)+*;(X 2+3)] 

m2 -(X 2 - 1)-*;(3X 2 + 1) 

ms = X(X • -1- 4,;) 

X 2 X 2 m• = -- 1 -- 4*; 

ms = (1 -- X2) 2 - 16.; 2X 2 
Figure 2 is a plot of the solution for a viscosity ratio 

• = 1000. Two sets of curves are drawn to show the wave- 
length dependence of the growth rate for fixed ratios of inter- 
face perturbations f/ and growth rate or. The bold line cot- 
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Fig. 2. Growth rate as a function of wavelength for the analytical 
solution assuming a viscosity contrast ½ = 1000. Constant ratios 
of lower to upper interface displacements/3 and growth rates are 

responds to the equilibrium growth mode for which 
Inspection of Figure 2 shows that for a given wavelength 
the growth rate increases as cr increases and /!/ decreases. 
Thus any system initially perturbed in such a way that it 
does not fall on the equilibrium curve will deform in a way 
so as to evolve toward it. At long wavelengths it is appar- 
ent that nonequilibrium modes with smaller fi values than 
the equihbrium growth mode will initially grow very rapidly 
with growth rates that may exceed that of the characteristic 
wavelength. The apparent tendency for these growth rates 
to continue increasing indefinitely with wavelength results 
from the failure to include inertial terms in the solution. 

In practice, the growth rates will be limited by either the 
inertial length scale or the finite thickness of the confining 
layers. 

Inspection of 1• values along the equihbrium curve shows 
that at smaller wavelengths the lower and upper interfaces 
are uncoupled. Since the lower interface is stabihzing, any 
perturbations in it flatten ont. As the wavelength increases 
the flow associated with the deformation of the upper inter- 
face penetrates further from the interface and viscous forces 
couple the motions of the two interfaces. The lower and 
upper interfaces move together with the stabilizing density 
stratification across the lower interface acting so as to de- 
crease the rate of growth. 

At large values of • it can be shown that the fastest grow- 
ing equihbrium mode has a characteristic wavelength A given 
by 

22/3 
k = T t[--1/3 --'• = •'(2,) 1/$ ' h 

The corresponding exponential growth constant is 

1 gAph ell3 (12) n = 3112 2s/3 
and the equilibrium ratio of interface perturbations at the 
characteristic wavelength is 

/• = a, = 2 - • = 0.2679 (13) 
These results differ from the numerical solutions presented 
by Ramberg [1972]. At large viscosity ratios his results do 
not very accurately match the characteristic wavelength pre- 
dicted by (11). Moreover, his results lead him to suggest 
that the equilibrium value of fi decreases indefinitely with in- 
creasing viscosity ratio rather than attaining the fixed value 
defined by (13). 

EXPERIMENTAL RESULTS 

Experiments were conducted to study the instability de- 
veloped within a thin horizontal layer of buoyant syrup- 
water mixture embedded in a medium of pure syrup; the 
viscous properties of these fluids having been previously 
shown to be Newtonian. The layer is emplaced by drag- 
ging a squared U-shaped tube with a wide (30 cm) hori- 
zontal base through a 50x40x15 cm tank filled with syrup. 
A dyed syrup-water mixture is injected out of finely spaced 
holes on the front of the tube. The mixture flows around 

the tube merging into a single sheet in its wake. A mirror 
angled at 45' beneath the tank allows side and plan view 
photographs of the developing instability to be taken simul- 

shown as dashed and dotted lines, respectively. The solid line taneously. The experiment was repeated for a variety of 
is the equilibrium curve for which a = B. Any system initially layer thicknesses and viscosity contrasts. 
perturbed so as to lie off this curve will evolve toward it. The principM drawback of this experimentM configura- 
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tion is that there may be significant local variations in the 
thickness of the injected layer, the magnitudes of which are 
difficult to quantify. Experimental considerations suggest 
that such variations will be primarily orientated perpendic- 
ular and parallel to the plane of the U tube. Those in the 
perpendicular direction can be largely eliminated by drag- 
ging the U tube at a constant speed, which for the experi- 
ments reported here was achieved by the use of a stepping 
motor. To avoid a consistent thinning of the layer between 
the edges and the center, the U tube diameter was cho- 
sen large enough that there is no significant drop in flow 
pressure along its base. The most important cause of un- 
evenness in these experiments results from the finite hole 
separation which produces small scale thickness variations 
aligned parallel to the base of the U tube. For these exper- 
iments the hole separation (2 mm) was chosen to be signifi- 
cantly smaller than the characteristic wavelengths predicted 
by the linear theory, and no instabilities were observed at 
this small a scale in the experiments. Moreover, finite ele- 
ment calculations by Schmeling [1987] for a two-layer sys- 
tem show that dominant wavelengths differing significantly 
from the characteristic wavelength may result only from an 
uneven distribution of of perturbations dominated by wave- 
lengths greater than the characteristic wavelength. Thus 
the initial variations in the thickness of the buoyant layer 
are not expected to affect the dominant wavelength, though 
they probably cause a consistent orientation of instabilities 
observed in the experiments. 

Figure 3 shows the instability formed by a 0.18 4-0.02- 
cm-thick layer centered in 10 cm of syrup with a viscosity 
ratio of 350 4- 50. The instability forms first in a direction 
parallel to the U tube, an orientation that coincides with 
the primary cause of layer unevenness. The noticably earlier 

development of the instability on the righthand side of the 
tank results from the finite time (about 1 minute) required 
to emplace the layer. The final wavelength is 4.0 4- 0.5 cm, 
a value in good agreement with the predictions of linearized 
theory (equation 11). The instability in the perpendicular 
direction develops more slowly and has a slightly greater 
wavelength (5.0 4- 0.5 cm). This is presumably because the 
instability in the second direction forms on the thickened 
crests of the earlier developing instability. 

As the instability develops, the regions of upwelling pro- 
gressively narrow. Marginal differences in growth rates be- 
tween adjacent upwelling regions are magnified because the 
fastest growing instabilities are able to drain fluid from 
neighboring regions. Eventually, characteristic diapir struc- 
tures [Whitehead and Luther, 1975] are formed, consisting 
of a bulbous head fed by a narrow neck whose dimensions 
are much smaller than the diapiric separation. Adjacent di- 
apirs are connected by faint spoke-like structures which are 
the manifestations of ridge structures in the buoyant layer 
which feed the diminishing supply of fluid into the diapirs. 

The linearized theory predicts the lower interface dis- 
placement initially will be about one quarter that at the 
upper interface (equation 13). Inspection of Figure 3 clearly 
shows that the relative magnitude of such displacements in- 
crease as nonlinear terms become important. The side views 
of the later stages show that the necks of diapirs are primar- 
ily composed of a core of fluid from the lower layer. The final 
frame was taken at a stage when most of the buoyant fluid 
had reached the surface. In most cases, fluid from below 
has reached the surface to form a plug in the center of the 
diapir. This indicates that the lower layer had been drawn 
up to the base of the diapir head. However, in a few of the 
larger diapirs the underlying fluid forms an annulus. This 
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Fig. 3. Photographs recording the development of an instability by a 0.18-era-thick (4- 0.02 cm) layer of a syrup- 
water mixture centered in 10 cm of syrup. The density contrast Ap =0.1 gcm -3 and the viscosity ratio • = 350 
4- 50. Photographs are for times (a) 3:00, (b) 6:00, (c) 9:00, and (d) 18:00 rain after emplacement of the buoyant 
layer. For each frame a side view with dimensions 45 X 7 cm is shown above a plan-view with dimensions 45 x 37 cm 
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shows that fluid from the lower layer has been entrained into 
the diapir head and subjected to the characteristic circula- 
tory flow [Batchelor, 1963]. A similar experiment conducted 
for a buoyant layer emplaced at a greater depth suggests 
that fluid from the underlying layer will eventually be in- 
corporated into the heads of all aliapits. 

Figure 4 shows the results for a layer with the same 
viscosity as the previous example but with a thickness of 
0.03 4-0.005 cm, nearly an order of magnitude thinner than 
the previous example. Not only is the time scale of the insta- 
bility significantly longer as is to be expected but the style of 
deformation is different, showing a bimodal distribution of 
wavelengths. As for the thicker layer an early instability ini- 
tially forms parallel to the U tube. The wavelength is about 
0.8 4- 0.2 cm, a value similar to that predicted by the lin- 
ear theory. However, there is also significant deformation at 
a much longer wavelengths. A second long instability with 
a wavelength of 10-15 cm is clearly visible on side views 
but since it involves only a small degree of thickening, it is 
not readily apparent on plan views. The formation of well- 
developed diapirs by the first instability only occurs after 
considerable displacement of the layer and coincides spa- 
tially with upwelling regions of the second instability. By 
this stage the surface of the layer has a very complex shape 
including significant displacements at a range of intermedi- 
ate wavelengths. The final separation of diapirs, especially 
in the direction perpendicular to the U tube, is significantly 

greater than predicted by the linear theory, a discrepancy 
that may be attributable to a number of causes other than 
shortcomings in the theory. As postulated above, the asyn- 
chronous development of the short-wavelength instability in 
two orthogonal directions may result in a longer wavelength 
in the second direction. Similarly, since the diapirs form 
on the crests of the long-wavelength instability any thicken- 
ing that has occurred in these regions may contribute to the 
larger spacing. Finally, on the time scale of this experiment, 
diffusive thickening of the layer may be a significant factor. 

Figures 5 and 6 summarize the principal wavelengths of 
deformation observed in two sets of experiments. In Fig- 
ure 5 the observed wavelengths of instabilities are plotted 
against the thickness of the buoyant layer for constant vis- 
cosity ratio (e = 350 4- 50), while Figure 6 shows a more 
limited set of experiments conducted for variable viscosity 
ratio and constant layer thickness (h = 0.12 4- 0.02 cm). For 
smaller viscosity ratios or layer thicknesses, a bimodal in- 
stability develops with the smaller wavelength matching the 
characteristic wavelength predicted by the analytical model. 
A thicker layer or a larger viscosity contrast results in a sin- 
gle instability in good agreement with the linearized theory. 

NUMERICAL SOLUTIONS 

A qualitative understanding of the differences between 
the two styles of deformation observed early in the experi- 

-::;;. :•..{%•:;• ........ •½• *.•:. •;•.• •. 

Fig. 4. Photo•aphs r<or•n$ the development of • bst•bBty in • system the s•e • that of FiFe 3, except 
the l•yer t•c•ess is 0.• • 0.•5 m. Photo•aphs •e for t•es (a) 2:•, (b) 40:00, (c,d) •:00, •d (½) 120:00 
Mn. For •ch fr•e • side view with •ensions 45 x I m is shown •bve 
Whe •ensions of side •d ½< views e 40xl • •d 40x32 cm, r•p<tively. FiFe 4 c • is a side view 
tAen •t < •gle of 45 * to Fi• 4 c, • orientation that sho•s •o• cle•ly the long-wavelenSh component of 
defomation. 
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Fig. 6. Experimental observations and linearized predictions of 
wavelengths of instabilities as a function of viscosity ratio ½ for 
a fixed layer thickness of 0.12 4- 0.02 cm plotted using the same 

Fig. 5. Experimental observations and linearized predictions of conventions as Figure 5. 
dominant wavelengths as a function of layer thickness for a system 
comprising a syrup-water layer centered in 10 cm of syrup, with 
a viscosity ratio e = 350 4- 50. Experimental results are shown as 
sohd circles together with estimates of uncertainties. Where the this wavelength which involves a local thickening of the layer wavelength varies with orientation, the value in the direction that 
forms first is assumed. Dotted lines connect observations from will initially grow very rapidly. While the mode will always 
experiments exhibiting a bimodal wavelength instability. Char- 
acteristic wavelengths predicted by the numerical model and by 
equation (11) are shown as solid and dashed lines, respectively. 
The dot-dashed line shows the wavelength of maximum growth 
rates for the fi = 0 curve of the numerical model. 

ments can be obtained by numerically solving a linearized 
formulation similar to that presented earlier, except that the 
outer layers are ascribed a finite thickness using appropriate 
boundary conditions. Figures 7 and 8 show two solutions 
for configurations that correspond closely to the experiments 
shown in Figure 3 and 4, respectively. 

For the thinner 0.025-cm-thick layer (Figure 8), the char- 
acteristic wavelength is virtually that predicted by the an- 
alytical model. However, at long wavelengths there are 
nonequilibrium modes, with low b values, growing up to 
10 times more quickly than the characteristic wavelength. 
At such wavelengths the motions of the two interfaces are 
strongly coupled and flow extends throughout the system. 
The middle layer serves to provide the buoyancy driving the 
instability, while the viscous properties and thicknesses of 
the outer layers control the style of deformation. The fastest 
growing nonequilibrium wavelength can be predicted by con- 
sidering a two-layer problem with layers of equal thickness 
and viscosity. Such a solution has been derived by Turcotte 
and Schubert [1982] for no-slip boundary conditions, yielding 
a characteristic wavelength: 

A = 2.568b (14) 

where b is the layer thickness. This solution predicts a wave- 
length of 12.8 cm in reasonable agreement with Figure 8. 

The wavelength of this nonequilibrium mode corresponds 
closely to the second long-wavelength instability observed in 
the corresponding experiment (Figure 4). A perturbation at 

evolve to the much slower growing equilibrium curve with 
high b values, there may be a significant amplification of 
the perturbation in the process. A crude integration down 
Figure 8 predicts that there will be more than a tenfold am- 
plification of a fi = 0 perturbation before its growth rate no 
longer exceeds that of the characteristic wavelength. More- 
over, the integration predicts only a small change in the layer 

Wavelength, cm 

Fig. 7. Numerical solution for the exponential growth rate con- 
stant as a function of wavelength for a three-layer configuration 
similar to that of the experiment shown in Figure 3. Constant ft 
curves are shown as dashed lines, and the equihbrium solution is 
shown as a solid hue. 
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Fig. 8. As for Figure 7 except the configuration is similar to that 
of the experiment shown in Figure 4. 

thickness, in good agreement with the experimental obser- 
vations. The presence of fast growing nonequilibrium modes 
also fiattens the equilibrium growth curve which shows only 
a threefold decrease in growth rates at wavelengths ten times 
the characteristic wavelength. This may explain the exper- 
imental observation of significant deformation at a range of 
intermediate wavelengths (Figure 4). 

For the 0.2-cm-thick layer (Figure 7), the maxima in the 
equilibrium curve is more pronounced. A nonequilibrium 
mode is still apparent, but since its properties are largely 
unchanged from Figure 8, while the growth rate and and 
wavelength of the characteristic wavelength have both in- 
creased substantially, it is not as prominent. The growth 
rate of the nonequilibrium mode for /• = 0 is less than 3 
times that of the characteristic wavelength. Such features 
can explain qualitatively the simpler style of deformation 
observed in Figure 3. 

Ramberg [1967] suggests that the linearized formulation 
maybe considered valid provided the amplitude of the in- 
stability is less than 10% of the wavelength. However, for 
a three-layer problem the linearized equations are also only 
accurate while neither interface has broken the initial plane 
of the other, after which the buoyancy predicted by (Sd) 
will be too large. For thin buoyant layers in which the cri- 
terion is rapidly violated, the linearized equations might be 
expected to predict too fast a growth rate. A comparison 
of Figures 3 and 4 shows that the difference in growth rates 
appears significantly greater than the factor of 6.0-4-1.2 pre- 
dicted by (12), but since the initial interface perturbations 
are not known in these experiments, a more quantitative 
comparison is not possible. The error in the buoyancy term 
might also be expected to change the shape of growth rate 
versus wavelength curves shown in Figures 7 and 8. How- 
ever, the wavelengths of instabilities predicted by the nu- 
merical model, which are shown in Figures 5 and 6, are in 

reasonable agreement with the experimental observations, 
suggesting the effect is not large. 

DISCUSSION 

The experimental results presented in Figures 5 and 6 
together with (11) and (14) yield an approximate expression 
for the criterion for the development of a dual wavelength 
instability' 

b 
> ~ 10 c > 10, b/h • 1 (15) hc•/a 

where b and h are the thicknesses of the confining and buoy- 
ant layers, respectively. To satisfy this criterion requires a 
relatively small contrast in the viscosities and a large ratio 
of layer thicknesses. This condition may be met by composi- 
tionally or thermally buoyant layers embedded deep within 
the mantle. Such layers might be expected to show a signifi- 
cant component of deformation at wavelength much greater 
than the characteristic wavelength. It should be noted that 
the origin of the dual wavelength instability described in this 
paper is not the same as that previously proposed for the D" 
layer [Yuen and Peltier, 1980; Christensen, 1984; Olson et 
al., 1987] since these works considered a two-layer problem 
for which the shorter-wavelength instability was confined to 
a thermally growing boundary layer with strongly tempera- 
ture dependent viscosity. 

For problems such as salt dome formation and volcanic 
periodicity, (15) is probably not satisfied, and the insta- 
bility developed can be adequately described in terms of a 
single characteristic wavelength derived from the linearized 
equations of flow. The wavelength and growth rate of the 
three-layer analytical solution (equations (11) and (12)) pre- 
sented above can be compared with two-layer solutions in- 
corporating an infinite upper layer [Selig, 1965; 14rhitehead 
and Luther, 1975; Lister and Kerr, 1989]. The solutions fol- 
low the same power law dependencies, while the constants of 
proportionality differ only slightly, those for the three-layer 
case lying intermediate between two-layer solutions with no 
slip and free slip at the base of the buoyant layer. Thus it 
can be concluded that quantitative solutions for characteris- 
tic wavelengths and growth rates obtained using a two-layer 
geometry are not seriously in error because of the failure to 
use a three-layer model. 

However, the use of a three-layer model yields important 
information about the nature of deformation at the base of 

the buoyant layer. For the case in which the confining lay- 
ers have the same properties, (13) predicts displacements 
of the lower interface initially one quarter those of the up- 
per interface. The experimental results presented above and 
those of Ramberg [1972] for instabilities developing between 
layers with little viscosity contrast show that in the later 
stages, fluid from the lower layer reaches up into the neck of 
the diapir and may mix with the buoyant layer. These ob- 
servations are in accordance with the deformation observed 

around a sphere moving through a viscous medium [Schmel- 
ing et al., 1988]. As Ramberg [1972] points out, such large 
motions of the lower interface are only energetically feasi- 
ble when the density of the fluid immediately beneath the 
buoyant layer does not exceed that of the fluid immediately 
above. However, numerical solutions for cases which do not 
satisfy this criterion still show initial displacements of the 
lower interface. 

Applying these results to geophysical problems suggests 
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that for relatively shallow features such as salt domes and 
granitic batholiths, anticlinal structures may exist beneath 
the dispits. The magnitude of such structures may depend 
upon the contrast between the properties of the underlying 
and overlying units. Diapirs which form at large depths and 
which undergo considerable motion may inevitably incorpo- 
rate material from underlying regions. If diapirs develop 
in thermally or chemically buoyant regions deep within the 
mantle, such a process might have a significant effect on the 
composition of partial melts derived at a later stage from 
such features. 
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