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The theory for waves on a buoyant fluid conduit in a more viscous outer fluid is extended to include a
visco-elastic outer fluid. The external fluid is treated as a linear Kelvin-type visco-elastic medium and a
wave evolution equation is derived. This equation is identical to the purely viscous case with the exception
of a new term representing the elastic effects. A conservation law is derived and used in an analytic
treatment for a slowly-varying solitary wave (given initially by the exact solution to the purely viscous
case) for the case of small, but non-zero, elasticity. The theory shows that the wave amplitude will decay
and a shelf, required for the conservation of mass, will develop behind the wave. Numerical solutions of
the evolution equation support the analytic approximation. Laboratory experiments show qualitative
agreement with the analytic and numerical development. Geophysical applications suggest that these
effects may be most important for melt migration in the asthenosphere.
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1. INTRODUCTION

In recent years there has been considerable interest in the dynamics of buoyant
viscous diapirs and conduits in a more viscous fluid. A main application of these
studies has been to geophysics. Buoyant, low viscosity zones are thought to exist in
the Earth’s mantle as a result of heating, say at the core-mantle boundary, or as a
result of partial melting in the upper mantle. Rayleigh-Taylor instability then causes
the formation -of ‘diapirs and trailing conduits (Whitehead and Luther, 1975).
Applications to geophysical phenomena such as the formation and evolution of mantle
plumes and swells, flood basalts, hot spots, melt migration in the upper mantle and
magma chamber replenishment have recently been reviewed by Olson (1990) and
Whitehead and Helfrich (1990). Schubert et al. (1989) have shown that these ideas
apply to cartesian plumes in fluids with temperature dependent viscosity.

One of the interesting aspects of these studies is that buoyant low viscosity conduits
can support nonlinear solitary waves (Scott et al., 1986; Olson and Christenson,
1986; Helfrich and Whitehead, 1990). Numerical calculations and laboratory
experiments show that the waves are remarkably stable and are nearly preserved
upon collision. Furthermore, the solitary waves contain closed streamlines and
therefore transport isolated parcels of fluid over significant distances. This praperty
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may be important in the transport of isolated deep mantle material to the base of
the lithosphere (Whitehead and Helfrich, 1988).

Over the long times associated with mantle convection and the extreme pressures
deep in the mantle, the mantle is usually considered a viscous fluid. However, under
certain circumstances the mantle behaves as a non-Newtonian fluid. In particular,
over time scales of O(10*-10! s) (the visco-elastic relaxation time) the mantle behaves
as a visco-elastic fluid (Turcotte and Schubert, 1982). Although these times are short
compared to typical mantle time scales, if a solitary conduit wave propagates a
significant fraction of its wavelength over a time of O(10*!s) or less, then elasticity
may become important. For a large solitary wave with wavelength 4 and phase speed
c the time scale At of wave passage is (Olsen, 1990)

Az:ﬁ=<8"2>m. (1.1)

c g'c

Here v, is the kinematic viscosity of the outer fluid, g'=g(p,—p,)/p; is the reduced
gravity, g is the acceleration due to gravity and p, (p,) is the density of the inner
(outer) fluid. Following Whitehead and Helfrich (1988) and Olsen (1990) typical
values for the mantle are c=5x10"°ms ™!, ¢'=0.1ms 2 and v,=10""m?s ™!, With
these values (1.1) gives At=0(10'35s).

This value is two orders of magnitude greater than the upper bound of O(10'!s)
that Turcotte and Schubert (1982) suggest for elastic effects to be significant. Thus
one might expect elasticity to be relatively unimportant. However, mantle rheology
is not directly observed on those time scales. The estimates could easily be incorrect
by several orders of magnitude and verification could only come from direct
observation. In addition, over propagation distances that are long with respect to a
wavelength, the cumulative effects of even weak elasticity may become significant.
For example, solitary waves might be affected during transit from the core-mantle
boundary to the mantle-crust interface. Also, the above time scale is for passage of
an entire wave, but deformation is also occurring on faster time scales. Since conduit
waves may play an important role in mantle heat and mass transfer it is worthwhile
to see how the waves would be affected by this simple non-Newtonian rheology.

Another possible application concerns mixing in magma chambers. It is well known
that viscosity of magma increases with silica content due to polymerization of the
silica. Thus a condition could be found where conduits are formed which contain
solitary waves whose presence would greatly alter the mixing between ambient and
intrusive magmas. It is possible that such materials also become elastic from the
presence of the polymers or from suspended crystals. In that case, solitary waves
might be strongly effected by the elastic properties of the host material.

A third possible application arises because conduits (and conduit waves) have also
been shown to be simple analogs of compaction driven porous flow of melt in a
viscous matrix (Scott et al., 1986). The area of the conduit is analogous to the melt
volume fraction (porosity) and the outer fluid is analogous to the viscous matrix.
Movements of melt in the upper mantle typically occur on shorter time scales than
deep mantle motions. Scott and Stevenson (1986) estimate a time scale for melt

~

~

e

g

(4



~

<

~

CONDUIT SOLITARY WAVES ’ 129

movement as magmons (analogous to conduit solitary waves) of 3x10''s.
Visco-elastic effects may well be important in that regime. Analysis of the conduit
problem should provide some insight into the dynamics of upper mantle meit
migration.

Studies of visco-elastic fluid processes have been extensively conducted in chemical
engineering, but few studies have been conducted in geophysical fluid dynamics.
However, the mantle of the earth (and presumably of other terrestial planets) has
both elastic and fluid behavior. Thus problems involving visco-elastic behavior are
particularly relevant to mantle dynamics. We consider this study to be a first approach
to this area. .

In Section 2 the viscous conduit theory is modified to take into account visco-elastic
behavior and a wave evolution equation is derived. The outer fluid is treated as a
Kelvin-type visco-elastic medium in which total stress is given by the sum of the
elastic stress and the viscous stress. In Section 3 analytical and numerical solutions
on the slow modulation of a solitary wave by weak elasticity are given. Laboratory
experiments which are used to qualitatively test the theory are presented in Section 4.
A discussion of the results and possible geophysical applications are contained in
Section 3.

2. DERIVATION OF THE EVOLUTION EQUATION

The theoretical model we adopt consists of a viscous fluid which in the undisturbed
state occupies a vertical cylindrical pipe of radius a, surrounded by an infinite
visco-elastic medium which we shall assume is denser, much more viscous and
endowed with an elastic property which tends to resist the deformation of the pipe
radius. Since the derivation of the governing equation is analogous to the non-elastic
case described by Scott et al. (1986), Olson and Christenson (1986) and Helfrich and
Whitehead (1990), we shall only sketch the derivation here.

We choose non-dimensional co-ordinates for which the length scale is the
undisturbed pipe radius a, the velocity scale is U=g(p,—p,)a*/4y,, and the time
scale is a/U. Here p, (p,) is the density of the inner (outer) medium and y, is the
dynamic viscosity of the inner fluid. The dynamic pressure (i.e., the pressure relative
to the hydrostatic pressure in the outer medium) is scaled by p, U/a. With this scaling
the Reynolds number is

R=p1aU=_gfip£:2££. @.1)
By 4uy
We adopt cylindrical polar co-ordinates in which x is aligned along the (vertical)
pipe axis, and r is the radial co-ordinate (see Figure 1). Then we seek axisymmetric
solutions in which the deformed pipe radius is given by #(x,?). Assuming that a
typical deformation of the pipe radius is associated with an axial wavenumber o, we
can make analytical progress by assuming that R« 1, and a?<« 1. In this solution
the flow in the pipe is just Poiseuille flow to leading order, and the dimensionless
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Figure 1 The coordinate system.

pressure deviation from hydrostatic pressure p and axial velocity u in the inner fluid
are approximately given by

p=B, (2.2a)
u=(1—41B,)n*-r*)+C. (2.2b)

Here B and C are functions of x and ¢, which are determined from the boundary
conditions at the interface with the outer medium. Conservation of mass within the
pipe gives the equation [using (2.2b)]

e+ {(1—ZB)in* +3Cn?} . =0. (2.3)

In the outer medium we assume that the viscosity is u, =mpy, where m> 1: indeed,
we assume that ma? scales with unity. It then follows that the dynamic pressure p
and axial velocity u in the outer medium are O(m™') and to leading order can be
ignored. In particular, continuity of u at the interface r=# then implies that C in
(2.2b)is O(m™1'), and can likewise be ignored. Next the radial velocity v in the outer
medium is given to leading order by

v=Dr1, r>n, 2.4)

where D is a function of x and ¢. This result follows most easily from convervation
of mass in the outer medium. Further, the kinematic condition at the interface shows
that to leading order

D=17’7t' (2.5)
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It remains to impose the conditions for continuity of the normal and tangential
stresses at the interface. The condition arising from the continuity of the tangential
stress is not needed here, and hence we consider only the normal stress condition
which to leading order is

2mD
B= 7 +y9. (2.6)

Here the first term on the right-hand side arises from the viscous normal stress term
2mv, in the outer medium evaluated at r =7, and we have used (2.4) to determine v,.
The second term is that due to the elasticity in the outer medium, and arises from
the simple hypothesis that there is an elastic pressure in the outer medium which is
proportional to the pipe radius. This is true for a thick hollow elastic cylinder, whose
change in inner radius r’ corresponding to an excess pressure p’ is given by [Popov,
1952 (p.418)]

rp,
E 14

, 1+o
v =

where E is Young’s Modulus, ¢ is Poisson’s ratio and r; is the initial inner radius.
Since in dimensional variables the proportionality constant between r' and p’ is
E/r(1+0), then in our present non-dimensional co-ordinates

y=RE/p,U*(1+0). (2.7)

This hypothesis is essentially equivalent to taking the outer fluid to be a linear Kelvin
visco-elastic material (Turcotte and Schubert, 1982). One might want to picture the
conduit sheathed by a thin elastic pipe surrounded by a viscous fluid. We choose
this model, rather than a Maxwell-type material, for mathematical simplicity. This
assumption is discussed further in Section 5. We note in passing that if interfacial
surface tension is taken into account then an extra term én~ ' would appear on the
right-hand side of (2.6), where 6=S/u,U and S is the surface tension coefficient.
Whereas we shall show in the next section that the elastic term is stabilizing (i.e.,
leads to damping), it can similarly be shown that this surface-tension term is
destabilizing (i.e., leads to growth).

Finally with B given by (2.6), and setting C equal to zero in (2.3), we obtain the
desired evolution equation which is

2
nn,+{<l—%[ T’ﬂn] )%n“} =0. (2.8)

Here, we have used (2.5) to determine D in (2.6).
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3. ANALYTICAL AND NUMERICAL SOLUTIONS

The equation to be studied is thus (2.8). It is convenient to make the following
transformations

A=n? (3.1a)

and
= X=" (3.1b)

Note that (3. Ib) is consistent with the long-wave approximation already used (viz.
a®<«1 with ma? being a quantity which scales with unity), and A is proportional to
the cross-sectional area of the pipe. Then (2.8) becomes

o S ER) = S

(3.2b)

{\)_

E=
2

B

We shall base our discussion on the hypothesis that ¢ is a small parameter, but defer
until Section 5 any consideration of likely physical values for ¢.

When ¢=0 equation (3.2a) has Olson and Christenson’s (1986) solitary wave
solution given by

A=A,(0), (3.3a)
where
f=X—cT (3.3b)
and
cA3g=2c(Ag—1)>—2A42In Ay + (42 —1). (3.3¢)

Note that the condition A,—1 as |§]—6 has been used in deriving (3.3¢). In terms
of the maximum wave amplitude A,,, the speed ¢ is given by

2421 A, —(42—1)
O 2(4,—1)?

(3.4)

From this expression it can be shown that ¢>1 for all 4,>1, is a monotonically
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increasing function of 4,,, and ¢—1 as 4,,—0. These waves have a typical Gaussian
shape and at low amplitudes are given by

Ao=1+(A,,—1)sech? B+ 0O(4,,—1)?, (3.5a)
where
c—1=%4,,—1)+0(4,,— 1), (3.5b)
and
A,—1=6p% (3.5¢)

For large amplitudes,

Ao~ 1+ A, exp(— p26%), (3.6a)
where
cxind,,—3, (3.6b)
and
2cp?~1. (3.6¢)

Helfrich and Whitehead (1990) have shown numerically that these waves are extremely
stable, and tend to preserve their shapes after interactions. Indeed their behavior is
almost soliton-like in that the interactions produce only a very small amount of
radiating oscillations.

Here we show that the effect of the elasticity of the outer medium, represented
here by the e-term, is to cause these waves to decay. A typical numerical solution is
shown in Figure 2. Note that associated with the wave decay is the production of a
trailing shelf which is visible as a slight elevation behind the wave. This is to be
expected as these solitary waves have only a single degree of freedom, say the speed
¢ in terms of which the amplitude A,, and the width, §~*, are completely determined.
Hence as the wave amplitude decays the wave mass decreases, so fluid is deposited
behind the wave in the conduit as a trailing shelf. The situation is analogous to that
for the solitary wave solutions of the perturbed KdV equation (see Johnson, 1973
or Grimshaw, 1979). Indeed, in the weakly nonlinear limit, Whitehead and Helfrich
(1986) have shown that (3.2a) with =0 can be reduced to a KdV equation, and the
same analysis with ¢#0 will obviously produce a perturbed KdV equation.

We shall quantify these observations by two complementary approaches for the
case when ¢ is a small, but non-zero, parameter. First we consider the implications
of two conservation laws for equation (3.2a). The first of these is just (3.2a) itself and
represents the conservation of mass. The second is obtained by multiplying (3.2a)
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Figure 2 Numerical solution of (3.2a) with ¢=0.2 and an initial condition of a solidary wave [given by
(3.3c)] with A,,=5.0. The numerical method is that used by Helfrich and Whitehead (1990).

by A~2 and subtracting (3.2a) from the result. We then get

where

and

E;+Fy+eG=0, (3.7a)
(A—1)* | A3
E= v +%A—’2‘, (3.7b)
F=%(A2—1)—1nA—§(A2—1)<%I> , (3.7¢)
X
1
G=<142—1>[5A2<\/Z)X1X. (3.7d)

Strictly speaking this is not a true conservation law as the ¢G-term cannot be written
as a flux. The physical interpretation of (3.7a) is not immediately evident, but it is
analogous to a conservation law discovered by Barcilon and Richter (1986) for an
equation similar to (3.2a). We shall call (3.7a) the equation for conservation of
“energy” since in the weakly nonlinear limit E is quadratic in (4 —1).
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To proceed, we now propose that (3.2a) has a slowly.varying solitary wave solution
given by

A=Ay0,1)+ed (0,T)+ ..., (3.82)
where
1
f=X—- jc(t’)dr’, (3.8b)
€
0
and
t=¢T. (3.8¢)

Here 7 is a slow time variable; a slow spatial variable eX could also be used but for
simplicity is omitted here. A4, is given by (3.3a,c) where the speed c(t) is now
slowly-varying and hence (3.3b) is replaced by (3.8b). To obtain the behavior of ¢(q),
and hence that of the amplitude A,,(t) [see (3.4)], we use the conservation law (3.7a).
Expressing this in terms of 6 and t, and integrating over 0 we find that

OE, +G,=0, (3.92)
ot
where
(4,—1)? Aée}
E,= | {3 "2 417090 4p, 3.9b
° J { 4, A (3:99)
and |

0

2
Gy= J {%%, /AO} de. (3.9¢)
’ 6]

—

In deriving the expression for G, we have integrated by parts. Since both E, and G,
are clearly positive, equation (3.9a) shows that the wave amplitude must decay. Note
that, using (3.3¢), it can be shown that

E,= j{(Ao—n—%lnAo}de, . (3.10a)
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and
Fo = ch,

where F, is the corresponding flux term obtained from (3.7c). Indeed if a slow spatial
variable £ =¢X is included, then (3.9a) is replaced by

0E, 0
—+ —(cEy)+G,=0. 3.11
e 65(6 o) 0 ( )

At this point it may be queried why the conservation law (3.7a) has been used in
preference to (3.2a). We shall show below that a direct calculation of 4,, leads to
(3.9a), thus justifying our choice. First, however, we give a more intuitive explanation.
We anticipate that as the solitary wave deforms a trailing shelf is formed whose
amplitude scales with ¢, and which extends horizontally over a distance ¢~ . Hence
the mass [i.e., (4—1)] of this shelf scales with unity and is comparable to the mass
of the solitary wave itself. Thus the conservation law (3.2a) cannot be used on the
wave alone. However, the “energy” E of the shelf scales with ¢ becaue E is quadratic
in (4 —1) [see (3.7b)]. Hence, to leading order, we can use (3.7a) applied to the wave
alone, and the outcome is (3.9a). Returning to the mass conservation law (3.2a) let
us now suppose that the amplitude of the trailing shelf at the rear of the solitary
wave is A7 . Then, integrating (3.2a) over the wave we readily deduce that

0
(c=DA]=—— f (4,—1)d6. (3.12)
ot
Since here the solitary wave is decaying, the right-hand is positive, and hence the
trailing shelf is one of elevation.

To conclude, we now return to the perturbation expansion (3.8a) and consider the
equation for A4,, which is

0 A A
—-cA19+_{A1A0[1+c<JE> }%cAg(A) }+F1=O, (3.13a)
09 AO /] AO 00

0 0 (Ao,
F1=Aot—%{%A§%< > +«/A0>}. (3.13b)

Ao

where

Equation (3.13a) can be integrated once with respect to 6, assuming that 4, -0 as
6—co ahead of the solitary wave, but note that we are anticipating that 4, —»A4;
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which is not necessarily zero as 0— — co at the rear of the solitary wave. Thus we get

Ay A,
—cA;+A4 A0[1+c< >}+§ A2< > +G, =0, (3.14a)
AO g AO 66

G,= —jFldG’. (3.14b)

2}

where

Equation (3.14a) is a linear second order ordinary differential equation for A, where
the homogeneous part is the linearization of the corresponding equation for A,
which is not explicitly shown here but can be obtained by differentiation of (3.3c).
Since this equation for A, is invariant with respect to phase shifts in 6, it follows
that A,, is a solution of the homogeneous part of the equation A4,. Given this, we
can solve (3.14a) for A,. We shall not give details as the main result is the following
compatibility condition which is necessary and sufficient for 4, to be bounded with
respect to 0,

A
f A";’ d6=0, (3.15a)

or

j F1<1—iz>d9=o. (3.15b)
%

—

Substitution of (3.13b) into (3.15b) determines the variation of ¢(r). It can now be
demonstrated that (3.15b) is equivalent to (3.9a). Further, letting — — oo in (3.14a)
we can recover the result (3.12) for the trailing shelf.

It remains to use (3.9a) to determine the predicted rate of decay for c(z) [or A(x)
through (3.4)]. Unfortunately, because an exact analytical formula for 4,(6) cannot
be obtained from (3.3c), we are unable to find analytical formulas for E, and G, as
functions of # (or equivalently as functions of 4,,). However, the approximate formulas
(3.6a—c) can be used to deduce that for large amplitudes,

24, (InA,)* ~(t,—1)2 (3.16)

where 7, is a constant. Similarly, the approximate formulas (3.5a—c) can be used to
deduce that for small amplitudes,

A, — 1 ~45/2(ty+1). (3.17)
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Figure 3 E, given by (3.10a) as a function of 4,,.

For arbitary amplitudes numerical solutions were used to obtain A,,(t) [or ¢(z)].
First (3.10a) and (3.9c) can be combined with (3.3c) and (3.4) to calculate Ey(A,)
and Gy(4,,). These functions are shown in Figures 3 and 4, respectively. Next, (3.9a)
can be rearranged and integrated once to give

dE, 1

=0 g4
dA,, G,

T—Tg= — (3.18)

me

This equation can be integrated numerically using the previously calculated functions
Eo(4,) and Ggy(A4,). The resulting relationship between A4, and t is shown in
Figure 5. Note that an arbitary constant has been added to t=¢T. The time to decay
from 4,,, to A, is

T=T(Ap2) = (A1) (3.19)

From Figure 5 we can find that the time (or distance) for one-half amplitude decay
decreases as A,,; or ¢ increases (recall that t=¢T). Large waves decay more rapidly
than smaller waves and the decay rate increases as the elasticity of the outer fluid
increases.

Wave decay determined by numerical solutions of the full wave equation (3.2a)
was compared to the predictions of the slowly-varying theory (Figure 5). Figure 6
shows the results of this comparison for initial wave amplitude A4,,, =5.0 and several
values of e. Figure 7 shows the same except for 4,,=10.0. The slowly-varying
approximation agrees reasonably well with the full numerical solutions, with the
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Figure 4 G, given by (3.9¢c) as a function of A4,,.
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Figure 5 Half amplitude decay time 7 from (3.18) as a function of A4,,.
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Figure 6 Comparison of the slowly-varying approximation (3.18) (——) and numerical solutions of wave
decay using (3.2a) for A,,; =5.0 and £¢=0.0707 (O); 0.1414 (A); 0.3535 (+).

A/,

0.2 1+

0.0 + t + J
0 5 10 15 20

T

Figure 7 Same as Figure 6 except 4,,; =10.0.

approximation predicting slightly smaller decay. The agreement improves as A4,,; or
¢ is decreased and as t increases.

4. EXPERIMENTS

Laboratory experiments were conducted to test the qualitative predictions of the
theoretical and numerical work. The method follows that used by Helfrich and
Whitehead (1990) where solitary waves were observed in conduits of a water-syrup
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mixture in syrup. The essential difference here is that the outer fluid, although much
more viscous than the inner fluid, is also slightly elastic. The experiments were
conducted in a cylindrical column of 7.6 cm diameter filled to a height of 40 cm with
a visco-elastic fluid (see below). The buoyant intrusive fluid was introduced through
a vertical steel tube of 0.17 cm inside diameter positioned over the center of the tank
bottom. Intrusive fluid was fed from a reservoir with a constant head to creat a
steady vertical conduit. Waves on the conduit were produced by injecting a volume
of intrusive fluid from a syringe into the feeder system. The previous work by Helfrich
and Whitehead (1990) showed that one solitary wave of the type given by (3.3c) will
develop rapidly, within several wave lengths from the tube. The intrusive fluid was
dyed for visualization and side view photographs were taken. The photographs were
used to extract quantitative information on wave evolution.

The inner fluid was a 70:30 mixture by volume of Karo brand light corn syrup
and water. At 23°C this mixture has viscosity u; =0.40+0.04 gmcm ™' s~ ! and density
p1=1.257 gm cm~? (Helfrich and Whitehead, 1990). The outer fluid was a 4:1 mixture
of Karo corn syrup and 1% solution by weight of carboxymethylcellulose (CMC) and
water. CMC is a commercially available polymer which when mixed with water gives
a viscous fluid with elastic properties (Aqualon Company, 1989). CMC solutions have
complicated rheologies, but do show typical visco-elastic characteristics such as partial
recovery after strain (a feature of Maxwell fluids) and the phenomenon of rod climb.
Both the viscosity and the elasticity of the solution increase as the weight fraction of
CMC is increased. At 25°C a 1% CMC solution has a viscosity of approximately
28gmcm™'s™! which decreases as the strain rate increases (Aqualon Company,
1989). However, the shear stress is linear with strain rate for 0.5% CMC solution in
water for strain rates less than 10s~!. Our experimental rates are significantly less than
this, so non-Newtonian behavior is limited to elastic rather than more complicated
behavior such as a power law relation between stress and strain. The mixture of 1%
CMC solution and corn syrup gives a fluid with u,=30—40gmcem™'s™!,
p,=1.34gmcem™3 and weak but observable elastic behavior. This gives m=p,/u;
=75—-100. We estimate the visco-elastic relaxation time to be 1-2s. This was
determined by observing the relaxation after the cessation of an applied strain. Precise
measurement of the rheological properties of the visco-elastic outer fluid was not
possible with our available laboratory equipment. Therefore quantitative comparison
of the theory and experiment was not possible, but qualitative behavior can be
examined.

Figure 8 shows side view photographs of solitary wave evolution in a visco-elastic
outer fluid. Figure 8a shows the wave shortly after emerging from the injection tube.
In Figure 8b the same wave is shown 48s later when it is 14.1cm further up the
conduit. Figure 8¢ is the same wave 88s after, and 24.6cm above, the wave in
Figure 8a. There is noticeable wave decay with distance. The amplitude has decayed
by a factor of 0.69 from Figure 8a to 8c. The photographs show that the conduit
behind the wave is slightly bigger than the conduit ahead of the wave, indicating the
presence of a trailing shelf. In Figures 8a,b and c the ratio of conduit area ahead of
the wave to the area 2-3 wavelengths behind the wave is 0.73 £0.02.

Figure 9 shows photographs of solitary waves produced by injecting dyed conduit




142 R. H. J. GRIMSHAW, K. R. HELFRICH AND J. A. WHITEHEAD

Figure 8 Photographs of solitary wave evolution along the conduit. The horizontal lines are separated
by Scm. (a) A Solitary wave shortly after emerging from feeder tube. (b) Same wave 48 s after and 14.1 cm
above (a). (c) Same wave 88s after and 24.5cm above (a).

Figure 9 Photographs of dyed fluid in a clear conduit that is being carried by a solitary wave. When
the outer fluid is visco-elastic (a), dyed fluid is deposited behind the wave at the center of the conduit.
This forms the “shelf” that forms as the result of wave decay. For a Newtonian outer fluid (b), no fluid
is deposited behind the wave. The arrows define the clear conduit ahead of the waves.

fluid into a colorless conduit. With the visco-elastic outer fluid (Figure 9a) dyed
material which makes up the wave is continuously deposited behind the wave in the
center of the conduit. With a Newtonian outer fluid (pure corn syrup) (Figure 9b)
no material is left behind. These photos show that in the case of a visco-elastic outer
fluid the trailing shelf that develops behind the decaying wave is formed from conduit
fluid which leaks from the parcel of fluid that is transported with the wave, A
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Figure 10 Plot of wave measured amplitude A,, normalized by initial amplitude 4,,; as a function of
distance along the conduit x. Here A4, =9.9.
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Figure 11 Plot of wave position x versus time ¢ for the run shown in Figure 10. Also shown is a solid
line which corresponds to a constant phase speed calculated from the first two data points.

Newtonian outer fluid leads to closed streamlines within the wave and no leakage
(cf., Helfrich and Whitehead, 1990).

In Figure 10 the maximum measured wave area (amplitude) A,,, normalized by
the initial wave amplitude A4,,;, is plotted as a function of distance up the conduit
from an experiment with A,;=9.9 (normalized with the initial conduit area). The
data show a clear trend of amplitude decay. Figure 11 shows the wave position x
versus time ¢ for the run in Figure 10. Also shown is a straight line which corresponds
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to a constant phase speed calculated from the first two data points. There is continuous
decrease of phase speed, consistent with the reduction in amplitude shown in Figure 10.

The propagation distances are large with respect to the initial solitary wave
half-width (~0.5cm). If we take m=75 and the initial measured conduit radius
a=0.073cm (3.1b) gives X =44.6 and 77.3 for Figures 8b and 8c respectively. From
Figures 8 and 11 we estimate a length scale A~0.5cm and an average phase speed
c~0.3cms~ 1. This gives a wave passage time scale At=1/c~1.7s. Given our estimate
of 1-2s for the visco-elastic time scale, we have that the ratio of visco-elastic to
propagation time scales is & 1. The effects of elasticity are important, but do not
dominate viscous effects.

Other runs with different initial amplitudes and conduit diameters showed the
same behavior. In experiments with a purely viscous outer fluid Helfrich and
Whitehead (1990) found no measureable reduction in wave amplitudes and constant
phase speeds over propagation distances a number of times longer than those
considered here. The effects observed in these experiments are certainly due to a
visco-elastic affect from the presence CMC in the outer fluid. The observations of
wave amplitude decay, phase speed reduction and the formation of a trailing shelf
are all consistent with the predictions of the theoretical and numerical work.

5. DISCUSSION

The theory and experiments show that a visco-elastic outer fluid results in wave
damping. As a solitary wave decays a shelf is formed behind the wave. Fluid is
continually squeezed out of the wave and deposited along the conduit centerline.
The volume of expelled fluid is proportional to the amplitude reduction since the
volume anomaly of a wave is directly proportional to A4,, (for 4,,> 1). This contrasts
with the purely viscous case in which solitary waves have closed streamlines and
transport isolated parcels of fluid (Whitehead and Helfrich, 1988).

The relevance of these results to geophysics depends upon ¢, the elastic parameter,
and the distance the wave travels. Figure 5 shows that a wave with initial amplitude
A, =10 decays by one-half in t=¢T ~20. The dimensional one-half decay time is

40 p,m'’?
Lip®— 1, ) 5.1)
e g'ap,
where, from (2.7) and (3.2b),
2E
E= —72 . (5.2)
gm'ap,(1+0)

For typical antle values m=10% u, =3x10¥%kgm 's™! g =01m?s"!
p;=3x10%kgm™2 and a=10*m we find from (5.1),

5

1
tl,zzglo6 yI. (5.3)
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Taking E=10!Pa and ¢=0.3, (5.2) gives ¢~ 5 x 10>. This value of ¢ is extremely
large and (5.3) gives unrealistically short damping times of O(103 yr).

The reason for the short damping times lies in the choice of the Kelvin-type model
for visco-elastic behavior. This model does not allow viscous stress relaxation, so
that large elastic stresses can be generated even for very low strain rates. In the wave
equation (3.2a) the ratio of elastic to viscous influence in the external fluid is given
by the ratio of the two terms in the square brackets,

A3/2
S=el . Y

T

Taking the value of ¢ given above, a wave amplitude A =10, and the corresponding
time scale for solitary wave passage, AT =1, we find § =0(10°). The elastic stress is
much larger than viscous stress, which is not true for the deep mantle on long time
scales.

A more appropriate model for geophysical applications is thought to be the Maxwell
fluid (Turcotte and Schubert, 1982) which does permit stress relaxation. However,
the wave equation (3.2b) did a good job of describing wave behavior. The theory
predicted amplitude and phase speed decay along with formation of a trailing shelf,
all observed in the experiments. The mixture of corn syrup and CMC solution does
permit stress relaxation and to first order might be considered a Maxwell fluid. Thus,
some insight into wave damping in a Maxwell fluid is gained from this simpler Kelvin
model.

A crude assessment of wave decay in geosphysical conditions may be made with
this model if a more realistic estimate for the elastic parameter ¢ can be obtained.
In a Maxwell medium the ratio of elastic to viscous effects is given by

2u, )
=*’ 5-5
EL (5.5)

where ¢, is the time scale of change of strain (i.e., wave passage). The quantity 2u,/E
is the visco-elastic relaxation time discussed in Section 1. Equating the ratios of elastic
to viscous effects from the two models [(5.4) and (5.5)] we get an estimate for &,

0

= APAT (5.6)

We can test this scaling with the laboratory experiments. For the experiments
8y~ 1. Now, for the run shown in Figures 10 and 11, 4,,;=9.9 and AT =1, which
gives £20.3 from (5.6). Taking u, =0.40gmem™'s™ !, p, =1257gmem™>, m=75,
p,=134gmem ™3, g=980cms~ 2, and a=0.07 cm we have from (5.1) that ¢,,, ~80s.
From Figures 10 and 11, the wave decays to 4,,/4,,; =0.56 in y~160s. The data do
not extend to a decay of one-half, but extrapolation gives t;;,, £200s. The ad-hoc
scaling gives a decay time that-is within a factor of two to three of the observed
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value. Although the above analysis is crude we can apply the scaling to construct
order-of-magnitude estimates for geophysical systems. The goals are not precise
estimates, but rather explorations of possible relevance.

For deep mantle conditions we have previously estimated that §,,= O(10~2), which
gives e~3 x 1073 for A=10 and AT =1. From (5.3) t1,2~300Ma. For a wave with
phase speed c=5x10""ms ™" this corresponds to a decay distance x,;,,~5x 10" m.
This is much greater than the mantle depth, therefore visco-elastic damping, as we
have already noted, is not likely to be important for conduit waves propagating from
the deep mantle. However, there are a number of uncertainties that argue against
making a direct application at this stage. First, as mentioned in the introduction, the
deep mantle rheology is not well known for the time scales of interest so the conclusions
may change. Second, no detailed knowledge of actual solitary waves in the mantle
exist at present. Third, the argument developed here is only approximate at best.

In the upper mantle, where melt migration may occur by porous flow, the analogy
between the compaction problem and the conduit problem can be exploited to
estimate the effect of damping of magmons. Here t,~10''s (Scott and Stevenson,
1986) giving J,,=0(1). Again taking A=10 and AT =1 we get from (5.4) that ex 1,
which gives t;,,~3 x 10'3s. Taking a velocity scale for magmons of 3x 10 9ms™?
(Scott and Stevenson, 1986) we get x,,,~100km. This distance is consistent with
estimates of the depth in which porous flow of melt may occur (Scott and Stevenson,
1986). Magmons will experience a reduction of their maximum porosity as they
propagate vertically through the matrix and higher melt concentrations will be left
behind the magmon.

Of course, other effects such as melting (Fowler, 1990), or two- and three-
dimensional effects [since the conduit analogy is for one-dimensional porous flow
[Scott et al., 1986)] may alter these conclusions. Furthermore, the estimates were
based upon an ad-hoc equivalence of ratios of elastic to viscous effects for two different
rheological models. Correct analysis of the conduit problem, or the complete porous
flow problem, with a more realistic constitutive relation is necessary. The present
model was chosen for mathematical simplicity and to provide insight into the physics.
Incorporation of even the linear Maxwell model greatly complicates the present
problem. However, it does appear possible that visco-elastic rheology could influence
melt migration in the upper mantle.
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