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We explore a mechanism that uses inertia to produce flux across a geostrophic front that separates two fluids
of differing density in a rotating fluid. We ask “when the front is forced to be narrower than the Rossby
Radius R so the full Rossby adjustment cannot be reached, will fluid continue to flow in a cross-frontal
direction and if so at what rate?” A simplified model is considered with flow in a submerged horizontal slot
between two very deep basins containing motionless water. The inviscid rotating nonlinear equations for
exchange flow are solved for two configurations: The first has Cartesian coordinates and the slot is infinitely
wide but of length / in the cross-frontal direction. Volume flux decreases with increasing rotation rate and
ultimately goes to zero when Rossby radius R = . The second case has cylindrical coordinates. Flux also
decreases with increasing rotation rate and goes to zero when the difference between radii equals
2\/5 yR/(1 +7)./1 +v? where y is the outer radius divided by the inner radius. This may be important for
eddies or cyclones in the ocean or atmosphere. An experiment had an electrically heated cylindrical chamber
separated from an outer cold water basin by a horizontal annular slot. The temperature difference between
the two chambers was measured for known heat flux and various rotation rates. As rotation increases from
zero, temperature difference increases. Volume flux must correspondingly decrease. Above a critical rotation
rate a flow with eddies emerges (probably from baroclinic instability) with smaller temperature difference

(thus greater volume flux) than predicted.

KEY WORDS:. . Hydraulic contro}, continental shelves, fronts.

1. INTRODUCTION

Frontsin the atmosphere or the ocean separate fluids of different density. The principal
flow is along the front. Cross frontal transport is frequently important, but small and
difficult to both measure and estimate. Fronts in the ocean are frequently found near
topographic features, one of the largest being the edge of a continental shelf. Here,
fronts often serve as barriers between coastal water and deep sea water (Flagg and
Beardsley 1978; Walsh et al., 1988; Chao, 1990; Gawarkiewicz 1991; Gawarkiewicz and
Chapman 1992; Vincent et al., 1993), since in many cases water on the continental shelf
has distinctly different temperature, salinity, (thence usually density), dissolved
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2 J.A. WHITEHEAD AND R. KIMURA

materials and suspended particles than nearby deep ocean water at the same depth.
Time averaged components of the currents generally tend to follow bathymetric
contours, so that the front appears to correlate with the shelf break and “trap” or guide
the water along the shelf. This happens in spite of the fact that tides, winds, waves,
eddies, and meanders of fronts lead to large, temporary across-shelf velocities.

The small transport across shelf edge fronts is important (Walsh, et al., 1988).
Unfortunately the volumetric flux and transport of heat, salt or tracers across fronts
from shelf to deep ocean is poorly measured and understood. To determine transport,
the data of velocity and heat, salt or tracer concentration must be averaged over long
times or long distances. In this case, unfortunately, the state of the shelf may change
with the seasons and not remain in one stage long enough for oceanographers to
acquire significant data.

Cross-frontal flux must be produced by effects from either friction, mixing, or inertia.
The role of friction and mixing has been explored in a number of cases. Stommel and
Leetmaa, (1972) for instance, found theoretical solutions to a problem with a mean
cross-shelf density gradient, in which earth rotation, surface stress and the effect of
viscosity and diffusivity were included. The flux produced by the flow in the Ekman
layers was an essential ingredient in the cross-shelf transport. Csanady (1984) has also
utilized parameterized stress in Ekman layers to produce a flux across a front at the
edge of the shelf. Hignett, et al., (1981) studied convection from non-uniform bottom
heating in a rotating annulus. For small rotation, flow parallel to temperature gradient
(hence heat transport) is found only in boundary layers. There is no transfer in the
interior, which has a “zonal” thermal wind perpendicular to the temperature gradient.
Numerous other analytical and numerical models have produced cross-shelf flux using
viscosity to produce cross-shelf or cross-frontal exchange.

The role of inertia to produce cross-front transport is less well explored. There is no
doubt that the geostrophic shelf currents can be baroclinically unstable under some
circumstances and that inertia plays a role in that instability. Analytical studies of large
amplitude eddy transport remain poorly developed. In assorted cases an eddyresolving
numerical experiment, which uses for instance the quasi- or semi-geostrophic approxi-
mation can be constructed to estimate cross-shelf transport, but the understanding of
the transport processes gained from analytical solutions is usually absent.

In an attempt to quantify cross-shelf flux, one of us (Whitehead, 1993) recently con-
ducted measurements of heat flux from shelf to deep water in a laboratory model of
a shelf which was cooled from above and adjacent to warm offshore water. A principal
barrier to the heat flux appeared to be the front which developed over the shelf break.
The front was approximately a Rossby Radius of deformation in width, but it was not
clear whether the measured flux relationship came from an eddy flux or from Ekman
layer processes (or both). .

The presence of the front and its unknown role in the transport has motivated this
study, which explores the possibility that inertia leads to a cross shelf flux through
a mechanism different from baroclinic instability. The mechanism relies on the fact that
inertia is involved in the Rossby adjustment problem which involves cross frontal
transport during the adjustment. In this problem, two motionless fluids in a field of
gravity are initially separated by a vertical barrier (Figure 1a). When the barrier is
removed, an interface between the two fluids changes due to gravitational slumping
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Figure1 Sketch of the idealized thought experiment. (a) Initially a barrier separates regions of differing
density. (b) After the barrier is released, the fluid experiences the Rossby adjustment process and a front forms
that is approximately a Rossby radius in width. (<) We inquire here about the flux if the region is narrower
than a Rossby radiusso the full adjustment cannot take place. In that case, there continues to be a flow along
the channel in the adjustment direction.

(which we take to be cross frontal transport), accelerates the fluid, and ultimately
produces a sloping front whose width is the well-known Rossby radius of deformation
(Figure 1b)-At the final stage acceleration and cross frontal transport have ceased, and
a steady geostrophic (or in the case of continuous stratification-thermal wind) flow is
found. It is often thought that fronts are in this final state, and that they possess little or
no cross frontal transport.

Some circumstances may exist where fronts do not reach the full width of the Rossby
Radius. Possibly a shelf is too narrow, or possibly boundary layers remove fluid at the
edges of the front, for example. In this study we force a front to be narrower than the
Rossby radius of deformation. We wonder whether the cross frontal transport con-
tinues indefinitely. We therefore ask the question “when the region of adjustment is
narrower than the Rossby Radius, so the full Rossby adjustment cannot be reached
(Figure 1c), will fluid continue to flow in a cross-frontal direction and if so at what
rate?” , '
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Of all past laboratory studies of a fluid flow like this, the annulus experiments are
probably those with closest resemblance to the present problem. In these experiments,
an annular container of water was heated at one radial wall and cooled at the other.
Usually the fluid was thermally insulated along the top and bottom. It was found that
for very low rates of rotation the flow developed a Hadley cell, with rising at the warm
wall and sinking at the cold wall. In between there was an exchange flow similar to the
flow we describe here. The flows and structure of the Hadley circulation, and the
influence of rotation on that circulation was analyzed by Robinson (1959), and
Barcilon (1962). In contrast to the present study, the interior flows were set up by the
convergence and divergence in both thermal and viscous (Ekman) boundary layers. At
small rotation rates the flow was found to be symmetric and at greater rotation rates
the flow developed baroclinic instabilities. Barcilon (1964) showed that the basic flow
had more potential energy available than would be dissipated by friction and thus
showed how the annular flows become unstable. The instabilities were manifest by the
formation of eddies in some cases and a meandering of a jet from the inner to the outer
wall in other cases. Flow regimes were described as a function of the dimensionless
parameters by Fowlis and Hide (1965) and heat flux was measured by Bowden and
Eden (1965). Flow regimes and heat flow for the case of axisymmetric heating from
below were reported by Hignett, et al. (1981).

2. THEORY OF WIDE ROTATING LOCK-EXCHANGE FLOW

To study the effect of rotation on inviscid cross-frontal flux in as uncomplicated
a system as possible, consider first a simplified model of a uniformly rotating continen-
tal shelf region. A reservoir of still water in the deep ocean is separated by a planar shelf
of uniform depth from a reservoir of still water of different density near the coast. We
ask “what is the rate of exchange between the two regions?” In order to be sure that the
upstream fluids remain motionless even if there is exchange flow between ocean and
coastal region, two very deep basins instead of shallow layers containing motionless
waters of differing densities will be considered. They are separated by a vertical wall
except at mid-depth where there is a horizontal slot of depth 4, cross-shelf length [ and
of infinite width (see Figure 2). At some previous time the slot had been opened, the
interface between the two fluids slumped from gravity, and fluid started flowing back
and forth between the basins (as in the Rossby adjustment problem). A steady exchange
flow is reached where low density fluid flows along the top of the slot from basin 1 to
basin 2 and a counterflow flows along the bottom of the slot from basin 2 to basin 1. It
will be assumed that the reservoirs on either side of the slot are large but finite and that
fluid is not being added to either basin from the outside. Thus when enough time has
elapsed for pressures p; and p, to adjust, the volume flux from basin 1 to basin
2 becomes the same as the flux from basin 2 to basin 1. We seek to calculate Q, the
volume flux per unit slot width for the case of inviscid fluids.

It is necessary to position the slot at mid-depth to remove fluid from the region next
to the slot that is receiving the lighter fluid. If the slot were at the surface the low density
fluid would continue to pile up next to the slot and block the removal of additional
fluid. The slot at mid-depth causes the coastal front analogy to break down to some
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Figure 2 Sketch of the idealized problem that is studied here. A horizontal slot of length [ in a rotating
coordinate system separates two reservoirs with water of differing density. The slot is infinitely wide in the
direction out of the page.

extent because the continental shelf is at the surface. However, in the ocean possibly
mixed layers-or offshore currents could transport low density fluid away from the edge
of the shelf break and make the application more valid than is apparent at first glance.

Ineither layer, the steady inviscid Boussinesq shallow water equations of motion are

ou, ou 10p
n n__ — __"Fn 1
una +vnay fvn pax’ ()
oy ov 10p,
Pn gy En = _ 2% )
unax+vnay+fun pay’ ()
10
0=——F_, 3
p, 0z
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The coordinates and their origins are shown in Figure 2. The velocities u and v are in the
cross-slot (x) and along slot (y) direction, respectively. The subscript n= 1,2 refers to
the top (lower density) and bottom (higher density) fluid, respectively. Since the slot is
infinitely wide, the y derivative is zero so that

du, _ 10op,
unax_fvn—_;ax> (4)
v
u =0.
w2 S, g

If u, =0, flow is geostrophic and there is no cross frontal flux. If u, # 0, there is a flux.
We seek solutions to that case. Equation (5) implies

ov

==, ©

which integrates to
U= X+ Uy ()

The constant of integration for layer n is the velocity v,, at x =0. In addition, using
(6) in (4),

ou ov 1dp
e n_ _ _CPn g
u"6x+0"8x pox’ ®)

which integrates to Bernoulli’s equation

Tz +02) + pn(za z) _ p.(— lp")OO,Z)’ o

where it has been assumed that fluid is motionless i.e. u, = v, = 0 in the reservoirs. At
z=h1in layer 1,

+p1(x>h):p1(_poo’h)

3(uf +v})

(10)

and at z =0 in layer 2,

)+p2(X,0) :pz(oo’o)

3+ + ;
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The hydrostatic equation (3) is integrated vertically in the slot to give

p1(x%, h) + pig(h —n) + p,gn = p,(x,0), (12)

where #(x) is thickness of layer 2 in the slot. Subtract (11) from (10) and use (12) along
with the relation p,(c0,0) = p,(c0,h) + p,gh to get

27 +vi — 13 —v3) +(py — p1)g(h—n) = py(— 0, h) — p,(c0, h). (13)
Now sincev; =0at x=0 has been prescribed, equation (7) gives
v, = —fx. (14
Since v, =0 at x =1, equation (7) also gives
v, = —fx =), (15)
so (13) becomes
zpluf —u3 +f2x* —f2(x —1)* 1+ Apg(h — 1) = Ap, (16)
where Ap=p, —p;, Ap=p,(— 0,h)—p,(c0,h). For simplicity assume symmetry
between flow going to the left and right so that at x =1/2, n="h/2, u; = —u, and
Apgh/2 = Ap. The more general case without symmetry is solved in the next section
where it is shown that the symmetric flow has greatest volume flux Q per unit width.

Finally let Q = u; (h — 1) = — u,n, then define 6(x) = h/2 — n(x) and ¢’ = gAp/p. Equa-
tion (16) becomes

1Q2[ 1 1 ]—f2(12“2XI)+g'5:0.' a7

2% | Gh+6? Gh—35) 2
To investigate properties of this solution, it is useful to define
, - ‘4Q
9= Nk
transform to x’ = (2x/I) — 1 and write (17) in the form

02 1 1 _ s,
T[(l—s)z_(1+a)2]_8+a x/, ‘(18)

where o> = f?1? /g’ h and &(x") = 25/h. The variable « is the length of the slot divided by
the Rossby Radius R and is a measure of the strength of rotation. The variable ¢(x’) is
a freely adjustable parameter corresponding to deviation of the interface from the
midplane of the slot.
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Let us investigate the effects of different values of Q' x" and o as a function of &. The
functions corresponding to the left and right hand sides of (18) as a function of ¢ are
drawn in Figure 3a, c,and e. For fixed Q" and « the solution is the intersection of a curve
corresponding to the left hand side of (18) and a series of straight lines with unity slope

I x'=1
l=_l

€

-
L
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Figure 3 Sketch of the different solutions of equation (18). (a) Generating hyperbolas, curve forQ'>1,and
two end lines corresponding to the end points of the flow at |x'| = 1. A smooth solution extends from A to B.
(b) Sketch of the interface between the two fluids along the slot. (c) Curve for Q' = Q.. The curve touches the
end lines in points C’ and D’ and a smooth solution extends between these two points. This critical flow is
expected to be physically realized. There are also nonsymmetric solutions from Cto C’ and D to D’.(d) Sketch
of the interface for the critical flow solution. The light curve is the extension of the solution from C’ to C and
D' to D. The heavy curve is the expected outflow beyond the slot. (¢) For 0’ > @’ the solution extends from
A to A’ and then must jump to B’ before arriving at B. This violates the assumption of symmetry.
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that correspond to different values of x’ from the right hand side. It is helpful to note
that the curve corresponding to the left hand side is the sum of two hyperbolas (Figure
3a) and this ensures that fe[ < 1.

First note thatif Q' > 1 (Figure 3a), the slope of the curve is greater than 1 everywhere
but each member of the group of straight lines has unity slope. Thus cach line intersects
the curve at only one point so there is only one value of & for each x'. The solution
extends continuously from point A (where the line corresponding to x” = 1 intersects
the curve) to point B (where the line correspondingto X' = — 1 intersects the curve). The
curve of ¢ versus x’ (Figure 3b) is typical of supercritical flows, with the fluid flowing
from a thin part of the layer to a thicker part. The flows shown in Figure 3a will be
called supercritical, even though they have not been shown here to possess Froude
number greater than one.

For Q' < 1 (Figure 3c, and ¢), the slope of the curve from the left hand side is less
than one near ¢ =0 and the solution becomes more complicated. Only when Q'
becomes small enough can a smooth solution connect the two ends of the channel
for fixed value of « (ie. fixed ratio of channel length to Rossby radius of defor-
mation). The curve for which this happens is shown in Figure 3c. It is marked by
the letters C’ and D’ which are the end points for the smooth solution. This appears
to be the solution that would be physically realized. It exists for only one value
of Q' which will be called Q] (a critical value). It is also the largest possible value of
0’ for Q' <1 with continuous flow between the endpoints. The slope of the curve
is 1 where it intersects the two lines (whose slopes are also 1), so that the change of
¢ with x' is infinite at X' = 4+ 1. Whitehead and Porter (1977) found the same results
for unidirectional axisymmetric flow. They asserted that this corresponds to a cri-
tical control condition, since a slightly wider slot requires that the volume flux must
change. ’

At larger values of |¢| lie two more trajectories which can be followed from C’ to
C or D' to D. The value of |¢] increases toward a value close to [¢f = L. This solution
branch should also be rejected as it violates our assumption of symmetry between
left and right hand flow directions (these branches are shown as thin lines in Figure 3d).
They represent solutions in which flow in one Jayer is rapid and flow in the other layer
is slow. ‘

For a given value of o, and 1> Q' > Q;, solutions do exist but they are asym-
metric and discontinuous as shown in Figure 3e. A solution follows the curve
from x =1 downward from point A at e=o? to a point A" where the curve has
a slope of one. Beyond that point if the curve is followed the interface returns to
larger values of x'. It is unphysical to follow this bend, as it corresponds to the
interface doubling back toward larger x'. To proceed to smaller x/, the solution
must jump to point B’, then move smoothly to B. This violates our assumption
of symmetry and we consider such solutions ill behaved. Moreover, at the jump
point the slope of the curve is one so the change of ¢ with x' is infinite. Thus this
is a shock.

There are trajectories Q' < Q. and these represent symmetric subcritical flows. Such
flows would be physically realized if the upstream and downstream basins each
contained both fluids with interfaces at depths close to the depth of the slot. In such
a case the flows are not hydraulically controlled by the slot.
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Proceeding, equation (18) at x' = 1 can be rearranged to become

0= [(1 —“;>(1 —82)2}1/2. (19)

This makes it easy to see that ¢ is negative for Q' > 1. In addition Q' is unbounded as
negative ¢ approaches 0. This feature makes the supercritical solutions appear to be
very unphysical, so the subcritical solution appears to be preferable. For these
0 <& < 1, and the equation shows that a real solution is not possible for « > 1. Also, in
general the term 1 — a%/¢ is negative for O < ¢ < &2 in which case no flux is possible and
fluxis zero at e = a®. For ¢ > «?, flux increases rapidly with ¢ but then it must decrease to
zero for ¢ = 1, so there is a maximum value of flux in the range «®> <e < 1.

The dependence of Q' on ¢ for 7 values of a2 is shown in Figure 4a. When a2
approaches zero, flux is maximum for ¢ = «*/® and takes the value Q' = 1 which is the
well known value for the non-rotating exchange problem (Yih, 1980, p 206).

Since ¢ is a free parameter, its value that gives maximum flux will be selected if the
flow is critically controlled. We now assume that the flow is critically controlled, and
seek an expression for flux. Setting 6Q’/de = 0, we find

g2 —32a%e? —1a* =0, (20)

where subscript ¢ denotes the critical value. It is easy to calculate the value of a for given
g, it is

o? =4¢2/(3e2 + 1). (21)
(a)
10 <+ alphasq.=.01
< alphasg.=.1
f = alphasq.=.2
; 0.81] - alphasq.=3
E = alphasq.=5
o alphasq.=7
E -+ alphasq.=.9
3 0.6 & Qmax
S
- > .
=
g 047
=
g
o 0.2
z
0.0 ’ ¥ T T ’
0.0 0.2 0.4 0.6 0.8 1.0
€

Figure4 (a) Normalized volume flux Q’ as a function of scaled interface displacement e at the edge of the slot
for different rotation rates. The trajectory of the maximum of the seven curves is also shown. (b) Values of
& versus o2 for maximum flux. (¢) Maximum normalized volume flux Q. versus .
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Figure 4 (Continued.)

This relation is drawn in Figure 4b. It can now be inserted into (19) to give
0. =[(1—¢)*/(3eZ + I 22

This is also included in Figure 4a. Figure 4c shows @, versus o2. This is most simply
calculated by using (21) and (22) and varying ¢, between 0 and 1.
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We see, starting from the value ¢, = 0, that in equation (21), o2 also starts from 0 and is
equal to 4 &> so that for a® « 1

3 3f o J¥3

~l-Zg2=1-_2|2| . 3

O ~1 280 1 5 [ ZJ (23)

Fora = 1 there is a large effect of rotation. To solve, leta®> = 1 — &, and e = 1 — pin(19),
.| € - |2

o= | EHE e

Assuming y « 1 and taking the derivative with u yields u, = 2¢/3, then (24) reduces to

4 a4
e 3f 3./3

This tells us a very simple fact: The flux is equal to the flux for zero rotation times a term
that goes to zero as the length of the slot approaches the Rossby radius of deformation.
If slot length equals the Rossby radius a flow similar to the Rossby adjusted flow (but in
a Cartesian geometry) exists; it has a front lying in the slot and no fluid travels through
the slot. When length is close to the Rossby radius (i.e. for small ), then (25) has become
identical to the equation governing a critical control problem for a rotating one-layer
problem (Sambuco and Whitehead, 1976; Whitehead and Porter, 1977). This is because
firstly the thickness of the fluid layer p at the control point is very small compared to the
depth of the layer above or below it, and secondly the velocity in the thin fluid layer is
much greater than the velocity of the fluid in the other layer.

—=(1—a?)*2 (25)

3. TWO-LAYER EXCHANGE FLOW IN CYLINDRICAL
COORDINATES

In hope of formulating a theory applicable to a laboratory experiment, a two-layer flow
in an axisymmetric cylindrical geometry is analyzed using approaches that are similar
to those used in-the preceding section. The results may be interesting in their own right
since they could apply to features in the ocean (for instance gulf stream rings or
meddies) or atmosphere (cyclones or other mesoscale eddies). A sketch of the geometry
is shown in Figure 5. Fluid of density p, flows inward within a bottom layer from the
“outer” radius r, to the “inner” radius r,. Fluid of density p, flows outward in a top
layer. The steady axisymmetric horizontal equations of motion are

ou, v2 14p,
“or 1 A _; or’ (26)
0
un v, + un [2% +fun — 0 (27)
or r
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|
1

Figure 5 Geometry of the cylindrical problem.

The velocities « and v are now in radial and angular directions, respectively. Since
u, # 0, equation (27) requires that

v, v
n n 0 28
o + 7 +f=0, (28)
which has a solution
¢, fr
—n_ 29

Using (28), then (26) integrates at z=hinlayer 1 to
3p(; +v})+pi(r,h) =py(r, h) (30)
and at z=01in layer 2 to
303 +v3) + py(r,0) = py(0,0). (31)

The hydrostatic equation (3) is the same as before. It is integrated vertically in the slot
to give

p (r,h) + pg(h—n) + pagn = p,(r, 0). (32)
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Subtract equation (30) from (31) and use (32) plus p,(c0,0) = p,(c0, k) + p,gh to get
1 2 2 2 2 —_
20Uy + 07 —uz —v3) +(py — p)g(h—n) =p,(r, h) — p,(c0, h). (33)

Equation (29) with the assumption that upstream fluid is motionless in layer 2 so that
v,=0atr=r,is

fri fr
=2 _ 7 4-
2T T2 (34)
and v, =0atr=r;so
P S
e T 35
T T (33)

Equation (33) becomes

%p[W?—@%+G%~§>'—G%—§>J+ﬁwmh—m=An 36)

As before, Ap=p, —p, and Ap=p,(r,h) — p,(co,h). Finally assume that volume
flux F in through the bottom layer equals volume flux out through the top layer. To
picture a situation that leads to this case, assume that the lower fluid flows into the
region where r <r,, it is heated there, mixed and then flows out in layer 1. Define
F =2nu, r(3h + 6) = 2mu,r(3h — 3) where 5 + 6 = 3h. Equation (36) becomes

F? 1 1 [P = y . Ap
. _ S i o _ 2 _ (1 — 7
87!2 I:T’Z(%h‘l'é)z FZ(%h_5)2:|+ 8 l: ’,2 2(rz ro) +g(2h+5) 0 > (3 )

where g’ = gAp/p. In the preceding Cartesian case, Ap was eliminated with a symmetry
assumption. It is not possible to invoke symmetry here. Instead, to eliminate Ap,
equation (37) is first applied at r; then at r, and the former is subtracted from the latter.
The results can be rearranged to become

F? e, d¢; A} " . gh
271:2}127?‘ |:V2(1 &2 - 1— 8i2)2:| - 8)° (1= —y )_7(80 —&)=0, (38)

where y =r,/r;, &;=26,/h, and ¢, = 26, /h. With further rearranging, volume flux is

o) 12
& —&, ——=(1—yH)(1 _yz) yz(l_gg)z(l_gz)z
27'”’1'W [ O 4y i o
B el =P —al— &7 . 39)

where o =f?r?/g’'h. As in the Cartesian case, flux is scaled by the term outside the
brackets which we presume is the solution of the non-rotating problem. The flux also
depends on the following other parameters that are inside the brackets: First is the
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dimensionless number a,, which is a dynamic variable that expresses the strength of the
rotation. It has a direct counterpart in the Cartesian problem, although we will find
that values of this parameter which govern the volume flux may differ from those in the
Cartesian solution. Second is the dimensionless number y, which is the ratio of the outer
and inner radii. It is a geometric variable and has no counterpart in the Cartesian
solution. The Cartesian results are recovered in the limit when y gets close to 1. The
other two parameters ¢; , represent the deviation of depth of the fluid from mid-depth at
the inner and outer radius, respectively and can be freely varied from —1 to 1.Itis
usually thought that a critically controlled solution will have the maximum value of
Q for all possible values of these two parameters.

It is easy to show that the Cartesian limit [equation (19)] can be recovered from (39)
when y is slightly greater than one. For other values of y simple analytical solutions
have not been found, but numerical solutions for any value of y and a, are readily
obtained using standard computers and programs (we used Matlab). Illustrations of
the results are shown in Figures 6-9. Results for the Cartesian case are almost exactly
recovered for y=101, ¢, = —¢. Flux per unit length at the inner radius
Q'[ = 4F/2nr, /g h*] was calculated using (39) as a function of ¢, for seven values of a,.
The results are shown in Figure 6 and the agreement with Figure 4a for the Cartesian
counterpart is closer than the width of the lines.

Of course, this formulation allows ¢; and g, to be varied independently. Contour plots
of Q' for the full range of ¢, and ¢; with y=1.01 and three values of «, are shown in
Figure 7. These illustrate the manner in which increasing rotation cuts off flux at larger
values of both ¢, and ¢,. They also show that for this value of y the greatest flux is found
when &, = — ¢, so the symmetry assumption used in the previous section is verified.

Larger values of y reveal some new features that are produced by the cylindrical
geometry. Contour plots are shown for the values of y = 1.1, 2.0, and 100 in Figure 8.
We first describe results for o, = 0 (left) which are functions only of the geometry as
quantified by y.

Normalized YVolume flux

0T 02 03 04 05 06 07 08 09 1

epsilon

Figure 6 Normalized volume flux Q' versus ; for seven values of «? equivalent to the values of o’ in Figure 4.
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Figure 7 Contours of values (equally spaced) of volume flux as a function of —¢, (labeled —eo) and ¢;
(labeled ei) for y = 1.01. Values of «, are left to right 0, 40 and 80. Values of maximum flux are 1.007, 0.65 and

0.17, respectively. The contours for «, =0 are identical to contours calculated for «, =0.1.
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For y = 1.1 and 2.0 the results are very similar to the Cartesian (y = 1.0) case except
that ¢, # — ¢, However, for y = 100 there is the curious result that F > 1. This means
that flux is greater than the maximum flux that one would calculate for the Cartesian
case using the inner radius to calculate the cross section area of the slot. Using the inner
radius is quite reasonable since it is well established (Wood 1968) that flux is
determined by the minimum opening width. Figure 8 shows that maximum flux is
found at very small values of ¢; and appears to exist at moderate values of ¢, but exactly
at what value cannot be seen in that figure. The limit for very small values of ¢; is shown
in Figure 9, which was obtained by setting ¢; to the constant values of 0, 1073, and
2 x 1073, respectively and varying ¢, between 0.01 and 0.99. There is a singularity when
both are zero. It is quite clear that Q' approaches 100, which is the value of 7.

(a)
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0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9
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Figure8 Contours of values (equally spaced) of volume flux as a function of —e¢, (labeled —e¢,) and ¢;
(labeled ei) for three values of y and assorted «,. The dimensionless cylindrical parameter y increases

downward and the rotation parameter o, increases left to right. In (a)-(c) y=1.1 and &, = 0.1, 3.0, and 9.0.
The maximum values of flux are 1.08, 0.8, and 0.06, respectively. The results are close to those of the Cartesian '

geometry. In (d)-(f) y= 2.0 and «, =0.05, 0.3, and 0.7. The maximum values of flux are 1.78, 1.06, and
0.18, respectively. The results differ noticeably from the Cartesian results. Notably, the maximum does not
happen for ¢, = — &, for small o,. In (g)-(i), y = 100 so the cylindrical geometry is very pronounced and
a=0, 0.0002, and 0.00025. For small rotation maximum flux is 8.80 and is found for small &,. A closer
examination of the £, = 0 axis is shown in the next figure. For moderate rotation maximum flux is 0.84 and is
found for ¢, of order one and ¢, small. For rapid rotation maximum flux is 0.21 and is found for ¢, > ¢, where
both are of order one.
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Figure 9 Normalized volume flux Q' versus ¢, for g;= 0, (solid), 10~ * (dashed), and 2 x 1073 (dotted) in the

pronounced cylindrical geometry y = 100 and without rotation (&, = 0). Flux equals y in the limit &, = &, = 0,
but departs significantly from that value for small changes in ¢; Or &,.

To analytically clarify what is happening in this limit, we investigate the results for
large y with &, =0in (39). For 1> ¢,> ¢ using g = — Pe,, it simplifies to

2, 1+8
e fgh?[_—lﬂzﬁ]. (40)

The function in brackets is maximum at =0 and has a negative slope of 1—92
so F is greatest at ¢;="0. Now setting & =0, (B =0) in (39) with & =0 but allowing
&, to vary, we get

2
F:%& [g 13 (1 —&2), (41)

which is greatest at &, =0. This can also be found from (38) without invoking large 7.
Thus the value of F for (40) with =0 or in (41) with ¢, = 0 is a local maximum. The
contours in Figure 8 showed no other maximum, so the maximumat ¢; = ¢, = O appears
to be a global maximum. This value of volume flux is puzzling. It is the value of volume
flux for a two layer Cartesian solution for the widest part of the opening (of radius ro)
rather than the narrowest part of the opening (of radius r;). This surprising result is in
contrast to other two-layer problems where the minimum cross-section area determines
the maximum volume flux that can be achieved. Perhaps this is related to the
supercritical solution branch shown in Figure 3a.

To investigate the effects of rotation, the values of o in Figure 8 were selected to show
specific aspects of the solutions from the weakly rotating, through the moderate and
strongly rotating limits. For all three values of y the manner in which rotational effects
come in as a, is increased resembles that shown in Figure 7. As o, increases from zero,
flux decreases most at small values of ¢; and &, which are the values that also produce

S
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maximum flux. As «, is increased some more zero flux happens firstate; = ¢, = 0. As o,
further increases maximum flux is found at progressively larger values of ¢; (which in
addition approaches — ¢,). For sufficiently large a, the parameters of maximum flux
approach g; = — ¢, = 1. In this limit ar? approaches the limit 8y2/(1 — y*)(1 — y*) which
for large y is 8y ~* (a number much less than 1) and maximum flux becomes very small.
For still greater a,, flux becomes zero for all &. In dimensional units this happens when
To—ti= 2\/5~VR/(1 +9)V/1+72

In summary, the axisymmetric problem contains many features found in the
Cartesian problem, but it also contains some surprising results. For small rotation the
values of maximum volumeflux and fluid depths at the inner and outer radii are close to
those for zero rotation. For greater values of rotation, flux decreases and fluid depths at
the inner and outer radii get small. Above a certain rate of rotation no flux is possible, as
was true in the Cartesian case. An unexpected result is that maximum volume flux for
no rotation and large y is determined by the width based on outer radius rather than
inner radius. This has no simple explanation to date.

4. LABORATORY OBSERVATIONS OF THE RELATION BETWEEN
TEMPERATURE DIFFERENCE AND HEAT FLUX

A lock-exchange experiment driven by heat flux was constructed to test the preceding
theories. It was hoped to check the predictions for voluime flux versus rotation rate and
observe the interface shape and fluid depth near the edge of the openings. It was also
important to investigate the possibility of instability of these flows. The apparatus
(Figure 10) consisted of a square water tank 60 x 60 cm? that was filled with water
30cm deep. A cylindrical plastic chamber with a flat annular rim was inverted and

Heater

Figure 10 Sketch of the experimental apparatus.
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suspended 5 cm above the flat bottom so that the annular rim was horizontal. The inner
radius of the rim was 15 cm. Inside this radius was a cylindrical chamber with a top 5 cm
above the lower edge of the rim. The outer radius of the rim was 20 cm. On the bottom
of the tank, but centered under the plastic chamber and rim was a flat horizontal disk of
20cm. radius elevated 2cm above the bottom of the tank. Centered on it was
a waterproof electrical heating pad of 15cm radius. The idea was that after steady
voltage was applied to the heater, warm water would rise in convection cells and spread
out in the chamber above the heater. Once that was filled with warm water, the heated
water would flow outward under the rim until it passed to the outer edge of the rim.
Then it would rise to the top of the tank and pass out of the area of interest. To replace
this outflow, cold water at the bottom of the tank would flow inward until it passed over
the heating pad. Once there it would be heated from below, acquire convection cells,
and complete the flow cycle by rising into the chamber above. To insure that the
bottom cold water had no large circulation at a radius greater than 20 cm, small rocks
of about 1/2cm size were piled outside the 20 cm radius of the bottom disc to the depth
of its elevation above the bottom—roughly 2 cm. Inward flowing water passing over
and through the rocks will be spun up to approximately the tank rotation rate.

Thus there was a lock-exchange flow under the rim. Just above the bottom, cold
water flowed inward from beyond a 20 cm radius to the heated region which began at
a radius of 15cm. Above that layer of cold water, but below the rim, was an outward
flowing layer of warm water. In steady state it is expected that if conductive heat losses
through the walls in the inner regions can be neglected, the heat flux of the exchange
flow should equal the heating rate of the heater.

Figure 11 Shadowgraphs of the interface in the axisymmetric geometry (y = 1.33)for zero rotation (top)and
/=045s""(bottom).
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Figure 11 (Continued.)

A photograph of the interface was obtained using shadowgraph. Light from a distant
slide projector was beamed horizontally through the sides of the tank and onto frosted
mylar attached to the side of the tank. Once each revolution the beam would line up
with the screen so a shadowgraph would be viewed. A shadowgraph has bright regions
from maxima in the second derivative of the density field that signify fronts. Photo-
graphs are shown for zero rotationand f= — 0.4 s~ ' (Figure 11). Itis expected from the
Cartesian theory that the interface would stay flat midway between the two plates for
zero rotation (ie. ¢ at r, and r, stays close to 0). This does not seem to be the case in
detail, and £ seems to be closer to 1/2 at r and r,. The rotating case does seem to possess
large ¢ at r at r, since the layer depths seems to be relatively small. This agrees with the
theory.

Measurements of temperature difference between the outflowing and inflow-
ing water were taken for a fixed heater voltage of 69.0 volts (rms). Since the heating
pad had an electrical resistance of 12.0 ohms, this voltage produced 397 watts of
heat flux. Two thermistors were used to measure the temperature of the warm water.
One thermistor was located at a level 1 or 2 mm above the level of the rim in the cavity.
The other was located under the rim at a radius of 16 cm, and about 3 mm below the
level of the rim. A third thermistor recorded the temperature of the cold inflowing
water. It was at approximately 21 cm radius from the center and touched the bottom of
the tank.

The temperature differences between the two thermistors in the hot water
and the thermistor in the cold water are shown for fourteen different rotation rates
in Figure 12. There is a systematic increase in temperature difference with ro-
tation. There is not precise quantitative agreement with a formula based on
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AT (°C)

Figure 12 Measurement of temperature difference versus rotation rate for constant heating. The solid curve
comes from equation (44). The dashed curve is an empirical formula from the experiment in Whitehead
(1993).

the lock-exchange theory. To find this out, equation (25) was used along with the
volume flux scale given after equation (17) and the relation between volume flux
and heat flux H

H=2nr,pC,ATQ. (42)
This gives
1 gAH \*?
AT = = 22, 43
glh[ <2nripCp> +f *3)

where /s coeflicient of thermal expansion, C , is specific heat, H is heat flux, and r; is the
inner radius. This equation is not precisely correct as f approaches zero. It predicts
about 20% larger temperature difference than the correct zero rotation solution given
by equation (23) with « = 0. In addition, it comes from the Cartesian solution although
the experiment is axisymmetric. But, for this value of radii ratio (less than y = 2) there is
little difference. Therefore for a crude comparison with data, it is useful to have
a formula as simple as this. Using values pC,=4.18 x 10°jm > °C™}, g =9.8ms~?,
A=3x10"%°C™ !, ]=0.05m, h =0.05m, and » = 0.15m, the formula becomes

AT =091+17.0f2°C. (44)

This curve is also plotted as the solid curve in Figure 12. Predicted temperature
difference AT is a little lower than the measured data in the region near zero rotation
(probably because the fluid is gradually warming and transient effects have been
neglected). As rotation increases, the measured temperature difference increases in
parallel with the prediction curve. However, at roughly f =0.4s™" the predicted
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temperature difference starts increasing with f much more strongly than the data so
that for /> 1.0s ™! disagreement is more than a factor of two.

Inspection of the recording of temperature with time reveals that there is a transition .
to a flow with eddies as rotation is increased. These eddies have been seen both by using
dye visualization of the flow and with a time series of the temperature record. This
transition apparently increases the heat flux to a value above the rotating lock-
exchange prediction. The eddies probably come from baroclinic or barotropic instabil-
ity. The possibility of developing baroclinic instability is estimated here using the
results of Barcilon (1964). He showed in his Figure 4 that instability in a heated annular
channel with y =3 may develop if the slope of the isotherms (in that notation

ATy /AT,) > /200 Ek. Here Ek is the Ekman number v/f (r, — r;)?, where v is kinematic
viscosity. In our experiment, v=0.0lcm?/s so that f=04s"! the quantity
/200 Ek = 0.45. If the interface slope is greater than roughly 1/2 this criterion is met. In
addition, his parameter § (which is equal to our 1/¢?) must be less than approximately
0.6. This means that R <./0.6 times the difference of radii r, —r,=4cm. In our
experiment for f =0.4 s, the value of AT is approximately 4°C. Using the above
formulasfor R and a coefficient of expansion for water as given before, R is 2.75 cm and
it appears that R at this value of f is just small enough to fit this instability criterion
(although just barely so). For the experiments with larger f the instability criterion is
clearly exceeded and instability should be present.

Finally, the empiracle curve for a recent experiment with a large laboratory model
(Whitehead 1993) of a cooling continental shelf is included in Figure 12. The data are
close to the same value of the curve at low rotation rates but they diverge at larger
rotation rates. Since that curve is believed to include some effects of thermal conduc-
tion, the divergence is expected.

5. SUMMARY

The results for the Cartesian case are not surprising. Volume flux decreases as rotation
increases (hence R decreases) and flux goes to zero when R equals slot length. However
as that length is approached, both crude estimates and laboratory observations
indicate that baroclinic instability develops. The laboratory experiments indicate that
the instability allows more heat (and probably volume) flux. It may not be difficult to
produce a theory of flux of the baroclinic waves since the conserved properties of the
flow are known, but such a theory has not been developed here nor has it been
produced elsewhere.

For the case of a cylindrical geometry flux decreases to zero when the difference
between radii equals 2\/§yR/ (1+y)</1+ 7> This may be important for eddies or
cyclones in the ocean or atmosphere. When the outer radius is smaller than R, the flow
appears to take the form of a stable, stationary eddy that can have very strong swirl at
even relatively small rates of rotation if the inner radius is small. Our results indicate that
in that case there will be radial flux of fluid. For conservative (adiabatic, dry,
frictionless, etc.) eddies, this would cause the eddy to gravitationally slump until it
approached the Rossby Radius. However, if there is some departure from conservative
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motions, this slumping may be impeded and the radial flux may continue indefinitely.
Such an effect may happen in cyclones, in which case the present considerations may
have some bearing since the Ekman layer is not required to be an agent of the inward
flow as in the usual picture of the CISK (conditional instability of the second kind
(Charney and Elliassen, 1964; Emanuel, 1991; Yoshimoto and Kimura, 1993) instability.

At slow rotation rate the lock-exchange experiment driven by electrical heating
produced temperature difference measurements for given heat flux and rotation that
had the correct order of magnitude as the theory for slow rotation but differed in detail
by tens of percent. There was poor agreement above a critical rotation rate where
a transition to a flow with eddies (probably from baroclinic instability) shows evidence
of increased heat flux.

Acknowledgements

Stimulation for this joint work was provided by the program “Study on water exchange processes across the
shelf edge” organized by Professor Sugimoto, Ocean Research Institute, University of Tokyo with Grant-
in-Aid by the Japanese Government under grant number 03045018 which supported visits of the investiga-
tors to each other’s institution during the past two years. Support for the research of J.W. on laboratory
studies of fronts on shelves is provided by the Coastal Sciences Section, Code 321 CS of the Office of Naval
Research, under grant number N00014-89-J-1037. We thank Steve Lentz for useful suggestions. Woods Hole
Oceanographic Institution Contribution number 8609.

References

Barcilon, V., “Thermally driven motion of a stably stratified fluid in a rotating annulus,” Ph. D. Thesis,
Harvard University, (1962).

Barcilon, V., “The role of Ekman layers in the stability of the symmetric regime obtained in a rotating
annulus,” J. Atmos. Sci. 21, 291-299 (1964).

Bowden, M. and Eden, H. F., “Thermal convection in a rotating fluid annulus: temperature, heat flow and
flow field observations in the upper symmetric regime,” J. Atmos. Sci. 22, 185195 (1965).

Chao, Shenn-Yu., “Instabilities of fronts over a continental margin,” J. Geophys. Res. 95, C3, No. C3,
3199-3211 (1990).

Charney, J. and Elliassen, A., “On the growth of the hurricane depression,” J. Atmos. Sci. 21, 68-75 (1964).

Csanady, G. T., “The influence of wind stress and river runoff on a shelf-sea front,” J. Phys. Oceanogr. 14,
1383-1392 (1984).

Emanuel, K., “The theory of hurricanes,” Ann. Rev. Fluid Mech. 23, 179-196 (1991).

Flagg, C. N. and Beardsley, R. C., “On the stability of the shelf water/slope water front south of New
England,” J. Geophys. Res. 83, C9, 4623-4631 (1978).

Fowlis, W. W. and Hide, R., “Thermal convection in a rotating annulus: effect of viscosity on the transition
between axisymmetric and non-axisymmetric flow regimes,” J. Atmos. Sci. 22, 541-558 (1965).

Gawarkiewicz, G., “Linear stability models of Shelfbreak fronts”, J. Phys. Oceanogr. 21, 471-488 (1991).

Gawarkiewicz, G. and Chapman, D. C., “The role of stratification in the formation and maintenance of
shelf-break fronts,” J. Phys. Oceanogr. 22, 753—771 (1992).

Hignett, P., Ibbetson, A. and Killworth, P.,“On rotating thermal convection driven by non-unform heating
from below,” J. Fluid Mech. 109, 161-187 (1981).

Robinson, A. R., “The symmetric state of a rotating fluid differentially heated in the horizontal,” J. Fluid.
Mech. 6, 599620 (1959).

Sambuco, E. and Whitehead, J. A. Jr., “Hydraulic control by a wide weirina rotating fluid,” J. Fluid Mech.73,
521-528 (1976).

Stommel, H. and Leetmaa, A., “The circulation on the continental shelf,” Proc. Natl. Acad. Sci. 69,3380-3384
(1972).




ROTATING HYDRAULIC MODELS OF FRONTS 27

Vincent, C. L., Royer, T. C. and Brink, K. H., “Long time series measurements in the coastal ocean:
A workshop”, Woods Hole Oceanographic Institution Technical Report WHOI-93-49 (1993).

Walsh, J. I, Biscaye, P. E. and Csanady, G. T., “The 1983-1984 shelf edge exchange processes (SEEP)-I
Experiment: Hypothesis and highlights. Cont. Shelf Res. 8, 435-456 (1988).

Whitehead, J. A,, “A laboratory model of cooling over the continental shelf,” J. Phys. Oceanogr. 23 (11),
2412-2427 (1993).

Whitehead, J. A. and Porter, D. L., “Axisymmetric critical withdrawal of a rotating fluid,” Dyn. Ocns. Atm. 2,
1-18(1977).

Wood, I. R, “A lock-exchange flow,” J. Fluid Mech. 42, 671-687 (1970).

Yih, C. S, “Stratified flows, Academic Press, San Diego CA (1980).

Yoshimoto, M. and Kimura, R., “A source-sink vortex as a hydrodynamic model of tropical cyclone,” Fluid
Dyn. Res. 11, 171181 (1993).




GEOPHYSICAL AND ASTROPHYSICAL
FLUID DYNAMICS

A.M. Soward, University of Newcastle upon Tyne, UK

Associate Editors

F. H. Busse, University of Bayreuth, Germany

G. A. Glatzmaier, Los Alamos National Laboratory, New Mexico, USA

R. H. J. Grimshaw, Monash University, Victoria, Australia

J. A. Whitehead, Woods Hole Oceanographic Institution, Massachusetts, USA

Editorial Board

S. L. Braginsky, University of California, Los W. H. Munk, University of California, San
Angeles, USA Diego, USA

S. Friedlander, University of lllinois, Chicago, L. A. Mysak, McGill University, Montreal,
USA Canada

U. Frisch, Observatoire de Nice, France E. N. Parker, University of Chicago, Illinois,

P. A. Gilman, High Altitude Observatory, USA
Boulder, Colorado, USA W. R. Peltier, University of Toronto, Canada

R. Hide, University of Oxford, UK E. R. Priest, University of St Andrews, UK

1. A. Johnson, University of East Anglia, UK P. H. Roberts, University of California, Los

S. Kato, Kyoto University, Japan Angeles, USA

M. Kono, Tokyo Institute of Technology, A. A. Ruzmaikin, IZMIRAN, Russian Academy
Japan of Sciences, Troitsk, Moscow Region, Russia

F. Krause, Zentralinstitut fiir Astrophysik, R. K. Smith, University of Munich, Germany
Potsdam, Germany D. D. Sokoloff, Moscow State University,

P. F. Linden, University of Cambridge, UK Russia

T. Maxworthy, University of Southern E. A. Spiegel, Columbia University, New York,
California, Los Angeles, USA USA

J. C. McWilliams, National Center for S. A. Thorpe, University of Southampton, UK
Atmospheric Research, Boulder, Colorado, 1. Tuominen, University of Helsinki, Finland
USA

Book Review Editor
C. A.Jones, University of Exeter, UK

AIMS AND SCOPE

Geophysical and Astrophysical Fluid Dynamics cxists for the publication of original rescarch papers and short communications,
occasional survey articles and confercnce reports on the fluid mechanics of the earth and planets, including oceans, atmospheres
and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic
behaviors are investigated. Experimental, theoretical and numerical studies of rotating, stratified and converging fluids of
genceral interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.

Notes for contributors can be found at the back of the journal.

© 1994. Published by Gordon and Breach Science Publishers SA, a member of the Gordon and Breach Publishing Group. All
rights reserved.

Except as permitted under national laws or under the Photocopy License described below, no part of this publication may be
reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying or othcrwise, or stored in a
retrieval system of any nature, without the advanced written permission of the Publisher.

Ordering Information

Four issues per volume. 1994 Volumes: 75-79,

Orders may be placed with your usual supplier or directly with Gordon and Breach Science Publishers SA in care of the
addresses shown on the inside back cover. Journal subscriptions are sold on a per volume basis only: single issues of the current
volume are not available separately. Claims for nonreceipt of issues will be honored free of charge if made within three months
of publication of the issue. Subscriptions are available for microform editions: details will be furnished upon request.

All issues are dispatched by airmail throughout the world.

Subscription Rates

Base list subscription price per volume: ECU 266.00 (US $290.00)*. This price is available only to individuals whose library
subscribes to the journal OR who warrant that the journal is for their own use and provide a home address for mailing. Orders
must be sent directly to the Publisher and payment must be made by personal check or credit card.

(continued on inside back cover)




