
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. tOO, NO. B t0, PAGES 20,433-20,450, OCTOBER t0, 1995 

Channeling instability of upwelling melt in the mantle 
E. Aharonov 

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 

J. A. Whitehead and P. B. Kelemen 

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

M. Spiegelman 
Lamont-Doherty Earth Observatory of Columbia University, PalisaAcs, New York 

Abstract. We present results of a theoretical study aimed at understanding 
melt extraction from the upper mantle. Specifically, we address mechanisms for 
focusing of porous flow of melt into conduits beneath mid-ocean ridges in order to 
explain the observation that most oceanic residual peridotites are not in equilibrium 
with mid-ocean ridge basalt. The existence of such conduits might also explain 
geological features, termed replacive dunites, that are observed in exposed mantle 
sections. We show here, by linear analysis, that flow in a chemically reactive 
porous media is unstable in the presence of a solubility gradient, such as induced by 
adiabatic ascent of melt underneath mid-ocean ridges. The initially homogeneous 
flow becomes focused in time to produce elongated high-porosity fingers that act as 
conduits for transport of fast flowing melt. This instability arises due to a positive 
feedback mechanism in which a region of slightly higher than average porosity causes 
increased influx of unsaturated flow, leading to increased dissolution which further 
reduces the porosity. Even in the presence of matrix compaction and chemical 
diffusion the instability is demonstrated to be robust. Our analysis also indicates 
the existence of growing, traveling waves which transport and amplify porosity and 
concentration perturbations. 

Introduction 

Recent work [Klein and Lan•muir, 1987; 5alters and 
Hart, 1989; Johason et al., 1990; Johason and Dick, 
1992] indicates that upwelling mid-ocean ridges basalt 
(MORB) is in chemical disequilibrium with the upper 
mantle peridotires that constitute the matrix through 
which it flows. The•e observations place constraints 
on melting and melt extraction processes at ridges. 
In order to produce disequilibrium transport, small 
melt fractions must be efficiently segregated from their 
source and transported to the crust [Johason 
1990; Johnson and Dicl• 1992; Sobole• and Shimizu• 
1993; ltvamori, 1993]. Since diffuse porous flow of melt 
along grain boundaries would lead to extensive chemical 
reaction and erasure of observed trace element fraction- 

ation, some form of focused flow of melt into channels 
has been proposed to explain extraction of M ORB from 
the mantle [Spiegelman and Ken•1o• 1992; Hart, 1993]. 

The results of our study imply that one of the 
mechanisms responsible for focusing may be a coupled 
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chemical-hydrodynamical instability; uniform upwelling 
of melt flowing through a porous media is unstable when 
the melt is dissolving some of the matrix through which 
it is flowing and begins to form elongated, high-porosity 
channels. In ophiolites, geological observation of disso- 
lution channels (dunires) in chemical equilibrium with 
MORB, surrounded by mantle peridotires which are 
not in chemical equilibrium with MORB, confirms that 
this instability may operate during melt extraction from 
the mantle at oceanic spreading ridges [Keleme• 1990; 
Keleme• et •., 1994, 1995a]. 

Additional mechanisms for melt extraction from the 

mantle beneath mid-ocean ridges could include (1) hy- 
drofracture [e.g., Nicolas, 1990]; (2) focused flow of melt 
in sones of localized, active deformation [e.g., Ste•e•- 
so• 1989; Keleme• and Dick, 1995]; and (3) decom- 
paction into melt-filled lenses or veins [Sleep, 1988, also 
production of veins by magma solirons, submitted to 
J. Geoph•/s. Res., 1994]. Mechanisms 1 and 2 are most 
probable near and above the brittle/ductile transition in 
the mantle, where strain becomes localized into shear 
sones. This is supported by geological evidence that 
dikes and localized shear sones in the mantle section of 

ophiolites form mostly aoff-axis," away from a spread- 
ing ridge, near the brittle-ductile transition, and not 
in the adiabatically ascending, partially melting man- 
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tie beneath a spreading ridge [Keleme• a•d Dick, 1995; 
Keleme• et al., 1995b]. The third possible mechanism 
is poorly understood at present, and we are not aware 
of geological evidence supporting such a hypothesis. 
In contrast, the reactive infiltration instability is likely 
to operate in adiabatically upwelling, partially molten, 
ductile aathenosphere, and there is geologic evidence for 
focused flow of melt in porous dissolution channels in 
the mantle section of ophiolites. 

It has been known for some time [Chadare et al., 1986; 
Ortole•a et aœ, 1987; Hinch and Bhatt, 1990] that reac- 
tive flow through a soluble porous matrix may result in 
formation of finger-like embayments along an advanc- 
ing reaction front. The mechanism for this instability, 
termed the 'reactive infiltration instability"(RII), is 
simple: when unsaturated fluid flows through a solu- 
ble matrix, a region with slightly higher than average 
porosity will tend to have an increased influx of fluid, 
which will increase the rate of dissolution and so in- 

crease the porosity even further, in a positive feedback 
mechanism. Increased velocity in localized regions will 
cause lateral convergence of fluid upstream of the front 
into the high-porosity fingers [Kelemen et al., 1995a]. 

The characteristic wavelengths and growth rates of 
the front instability are determined by three parame- 
ters: chemical reaction rate, transport rate, and dif- 
fusion rate [Steefel and œv. saga• 1990]. Reaction and 
diffusion act to restore the system to equilibrium, while 
advection acts to make it unstable. When diffusion is 

strong (compared with reaction), it will act as the main 
stabilizing mechanism for this instability. The most un- 
stable wavelength in this case is determined by compe- 
tition between advection (which drives the instability) 
and diffusion (which tends to smooth perturbations). 
The ratio between these parameters is termed Pe, the 
Peclet number. 

Work on the RII with reaction-controlled smoothing 
is sparse but generally indicates that growing fingers are 
present [H0ef•er and Foglet, 1988; Steefel and 
1990]. Da, the DamkShler number, is the ratio be- 
tween reaction timescale and advection timescale and is 

the control parameter in this case. Hoefner and Foglet 
performed experiments and network simulations which 
indicate a dependence of coalescing or branching of dis- 
solution channels on Da. 

Past work on this subject is not directly applicable to 
Earth's mantle. The front problem as reviewed above is 
tranaient; there is no supply of new grains to the system, 
and once the reaction front has propagated through the 
matrix there are no porosity perturbations left. More- 
over, the instability (area of disequilibrium) is localized 
to & single interface between two areas of equilibrium 
rather than affecting the entire interior solution (al- 
though Hinch and Bhatt consider the case of a front 
of finite width). We see no evidence for the existence 
of such a propagating reaction front in the mantle, no 
evidence of a sharp reaction zone underneath which the 
mantle is composed purely of olivine and above which 
it is composed of pyroxene. In this paper, we investi- 
gate instabilities arising in a steady state mantle, where 
some background porosity, solid and liquid velocities, 

and mineral composition can be assumed. In this case 
there are no transient solution fronts, and if an insta• 
bility arises, it will be present in the whole region of 
upwelling and dissolution. 

In the mantle, decompression of ascending melt un- 
derneath mid-ocean ridges causes an increase in solu- 
bility of solid phases with height [Sleep, 1975; Kelemen 
et •/., 1995a]. Choosing a point along the ascent path 
of the melt, one can see that dissolution at this point in- 
creases the local concentration of soluble components in 
the melt but never to the point of equilibrium, since up- 
ward flow keeps bringing in undersaturated melt. This 
small departure from equilibrium allows an instability 
to occur, in the same manner as the feedback mecha- 
nism for the dissolution front described above. How- 

ever, instead of having a fingered front, we expect the 
instability to occur within the region of melt transport 
wherever there exists a gradient in solubility. 

In this paper we study a porous matrix confined in 
a box where grains are soluble, and there is a constant 
flux of melt from the lower end of the box. As solid 

material dissolves, the matrix is allowed to contract by 
compaction so as to keep the porosity constant in the 
steady state, with additional grains supplied at the top 
of the box. The solubility of the grains increases linearly 
with increasing height in order to approximate the in- 
crease in solubility induced by adiabatic ascent of melt 
decompresaing in the mantle. Thermal melting of the 
solid phases, as distinguished from reactive dissolution, 
is neglected, as is viscous shearing of the solid phases 
and advective heat transport by melt. In what follows, 
we present the governing equations, nondimensionalize 
them, •nd a possible steady state, and do a linear sta- 
bility analysis. 

Two interesting unstable features are then shown to 
coexist: 

1. The system is shown to be linearly unstable to 
small perturbations, causing focusing of flow in elon- 
gated high-porosity channels, where the vertical dimen- 
sion is generally much longer than the horizontal dimen- 
sion, establishing conduits for ascent of melt. These 
channels form provided that the characteristic length 
for chemical equilibration is smaller than a characteris- 
tic length for compaction. A calculation using charac- 
teristic values for Earth's mantle predicts that the con- 
dition for formation of the instability is probably met 
and that the reaction-infiltration instability may play 
an important role in forming conduits for melt extrac- 
tion from the mantle. 

2. The system gives rise to unstable propagating 
waves, which in the limit of no dissolution are linear 
compaction waves [Spiegelman, 1993a]. The addition 
of dissolution during porous flow gives rise to waves 
whose amplitude increases with time, providing disso- 
lution features which propagate in space with a finite 
phase and group velocity. These results suggest a mech- 
anism for spontaneous nucleation of "magmons e [Scott 
and Ste•easoa, 1986; Spiegelmaa, 1993c]. 

Finally, we discuss the application of our study to 
focusing of melt flow in the mantle beneath mid-ocean 
ridges. 
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Formulation of the Problem 

General Equations 

In this section we present a set of equations describ- 
ing the essence of reactive flow through a soluble porous 
medium with a gradient in solubility. The setup of the 
problem is given in Figure 1. Fluid is driven upward 
by a pressure gradient, entering the soluble matrix at 
z = 0 and leaving it at z =/,. With decreasing pressure 
the fluid has increasing ability to dissolve the porous 
matrix. Since we would like to investigate a steady 
state and deviations from it, we have allowed for com- 
paction, though it is by no means crucial for the growth 
of the instability. Compaction provides a relatively sim- 
ple steady state where dissolution increases the porosity 
and compaction works to decrease it. 

The set of governing equations presented below 
closely follows the notation and form of some previ- 
ous work on deformable porous media [McKenzie, 1984; 
Scott an, d $te•er•.soa, 1986; $pieõelmaa, 1993a, 1993b]. 
This approach views the coupled solid-fluid system as 
two interpenetrating fluids with vastly different viscosi- 
ties and is valid for length scales much larger than a 
pore size. Inertial effects have been assumed to be neg- 
ligible. 

V= 0 

V=O 

L 

Figure 1. Setup of the problem: Fluid is driven up- 
ward by a pressure gradient, entering the soluble porous 
media at z - 0 and leaving at z -/,. Owing to decom- 
pression, the fluid has increasing ability to dissolve the 
solid matrix. The matrix is allowed to contract by com- 
paction and thus counteract to some degree the effects 
of increasing dissolution. 

Conservation of mass. Conservation of the solid 

phase is given by 

apo(1 -•) 
•3• + V. [p,V(1 - qb)] -- - Z r/, (1) 

i 

where •b is the porosity, p0 is the solid density in kg 
m -z, V is the solid grain velocity vector and I•i is the 
mass transfer rate of mineral i from solid to fluid in kg 
m -• s-1. 

Conservation of fluid mass is given by 

a• 
+ r,, 

i 

where p! is the density of the fluid and v is the fluid 
velocity vector. 

Component conservation equations in the fluid phase 
consist of three contributions: diffusion, advection, and 
a chemical source/sink term: 

+ v. (p•v•) = v. (D,p•V•) + r,, (s) 

where Di is the diffusion coefficient of component i in 
the fluid and c/ is the mass fraction of dissolved com- 
ponent i in the fluid, with Y]i c/- 1. 

Each individual component is also conserved in the 
solid phase such that 

0p, (1 - • 
+ v. [p.(• - •)v•] = 

v . [VIp.(i - •)v•I]- v•, (4) 

where c• and D• •e the m• fretion and the diffu- 
sion coefficient of component i in the solid ph•e and 
E•l = 1. 

ff one defin• • p•tition coefficient Ki = c•/• and 
•um• chemic• equilibrium betw•n the solid •d the 
fluid phis, then previous formulations c• be red- 
eriv• [e.g., McKe•ie, 1984]. However, since we •e in- 
termted in nonequilibrium chemic• re•tions, we sh•l 
not follow that pratice. 

Mass tr•sfer by chemic• reaction. A•uming 
firstorder chemi• re•tion, one •n write the rate of 
m• tr•sfer • 

(s) 

where R/is the reaction rate constant of component i in 
kg m -a s -x, A is the specific area (ma/m a) available for 
reaction, and c.qi(z ) is the equilibrium concentration of 
mineral i in the fluid given in mass fraction. 

Solubility is taken to be a linear function of height, 
as approximately the case for melt that is adiabatically 
rising [Sleep, 1975; Kelemen, et al., 1995a]: 

=a, (6) 

where f//is a proportionality coefficient describing the 
steepness of the solubility gradient with units of m-x. 
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Darcy's law, Darcy's law relates the pressure p and 
the relative velocity between the fluid and the solid m•- 
trix: 

- V) = - Vp, 
where the permeability k• of the porous medium is usu- 
ally taken to be & power law function of the porosity 
k• = d•'/b, with d a typical grain size, n between 
2 and 3, and b a constant [e.g., Turcotte and Schubert, 
1982]. p is the viscosity of the fluid and p is the pressure 
in excess of hydrodynamic pressure. 

Matrix deformation. The closing equation is the 
momentum conservation equation which relates pres- 
sure changes to the rate of compaction, viscous defor- 
mation of the solid phase and body forces acting on the 
system [McKenzie, 1984; Spiegelman• 1993&]: 

0 2 

(( - n)v. v - - (8) 
where •, ( are the solid phase shear and bulk viscosities 
and Ap- p,-p! is the buoyancy difference. Equa- 
tion (8) states that any change in the pressure field 
can be expressed as the force the solid exerts on the 
fluid. In & rigid material where the grain velocity goes 
to sero (V --• 0), the viscosity of the matrix will go to 
infinity (•, • • oo) and the product will always remain 
bounded. 

The resulting set of dynamical equations are similar 
to those introduced by workers on compaction of molten 
rocks [McKenzie, 1984; Spiegeiman• 1993&], but here & 
specification of & dissolution mechanism (equation (5)) 
with increasing di•aolufion as & function of height (equ•. 
tion (6)) brings in interesting beh&vior. Our goal is 
to •tudy •he combined effect of di•olufion and porous 
fiow• r&•her th•u •o concen•r&•e on •he compaction ef- 
fecta. 

Simplified Equ•tion• 

For •implicity• we •ume t;he existence of & fully sol- 
uble solid phase compo•,• solely of one mineral (½' - 1) 
which ca• chemically react with the fluid by dissolution 
or precipit&tion• with flr•t•order kinefic•. Since only 
one reacting component i• presen• •]•e •ubscrip• • will 
be dropped from here on. •he fluid phase is composed 
of & ca, tier fluid wi•h ma• fraction I - ½. •he ca, tier 

fluid component does no• enter the solid pha•. The 
dis•lved mineral ha• ma• fraction ½ and effective re- 

action r&te •eff '- 2?..4, where we assume th&i; reactive 
surface •re• ca• be taken as cons•an• to leading orders. 

The density of •he fluid phase i• presumed cons•an• 
as the composition of •e mel• c•ges due •o c•emi- 

dung di•lution re,flora involving b•fic mel• •d 
m•tle miner•. T•e •lid p• density in • one com- 
ponen• system is • • co•t•t. 

Negl•ting m•rk s•e•r• •e momentum 
•u•tio• (S) • 

4n)ve- (1 - •b)Apgi, (9) vp = (i + 
where we have defined a compaction rate as C = V. If 
and i is a unit vector in the vertical direction. 

Equation• (1)-(5) •d (•) c• now be written • 

• + V. V• = (1 - •)C - Re•c - ceq(z))/p,, (10) 
04 
• + V. (v•) = -Reff(c- Ceq(Z))/pl, (11) 

Oc 

+ = vv. (vc) 
-(1 - C)Re•C - ceq(z))/p•, (12) 

-•(v - V) = • (i + ,)VC- (1 - d)A•i (13) 
where (12) i, are, ult of ,ubtr•ting (2) from (3), equ• 
tion (4) is identical to (1) in the cme of c' = 1 •d 
u.ion i,. r=ul of,ub,ituin in 

Bound•y conditions. In general, equations (10)- 
(13) will require five bound•y conditions to wive for 
v, C, •, •d c. M• conservation requir• that the 
fl• •r• a bound•y be continuous or ••ced by 
a murce or a sink. FI• bound•y conditions include 
impermeable, rigid, or •r• fl•"bound•y conditions. 
When the bound•y is impermeable, the norm• fl• 
is zero either be•• k, = 0 or because Vp. • = 0, 
where • is the direction norm• to the bound•y. The 
latter condition p• constr•nts on VC. •. At a rigid 
bound•y C = 0, •d • • the ab•nce of di•olution 
•d mat• flow, a rigid bound•y hm dw a const•t 
porosity (equation (10)). Finely, a fre•fl• bound- 
my hm VC. • = 0 •d yields no resist•ce to volume 
ch•g• for the normal fl•. In •dition to the total 
fl• bound•y conditions, m• co•ervation pos• con- 
str•nts on fl• of individual components in the fluid. 
Thin co•tr•nts trylate to specification of concen- 
tration of wlute in incoming or outgoing fluid. 

Nondimen•ion•ation. In nondimensionalhing 
•u,tio• (•0)-(lS) w, ,h•l u,, •h, follow•g &•ni- 
tio•: A•uming zero wlubility at z - 0, from (6), 

= 

The ch•ge in wlubility of the matr• between the bot- 
tom •d top of a box of size L is defined m cz - 
Ceq(L)- Ceq(0), and ,o 

cs = L/•. (14) 

The only imposed parameter value in (14) is/•, the sol- 
ubility gradient, known from thermodynamic calcula. 
tions to be of the order of 2 x 10 -am -1 (an account of 
calculations made by Keleme• et sl. [1995a] is given in 
Appendix A). If we choose to investigate a small-scale 
box, then c•, the change in solubility across the box, 
will be small as well; ct • 0.2 over the vertical extant 
of decompression melting, roughly the upper 75 km of 
Earth's mantle beneath oceanic spreading ridges. Cor- 
respondingly over 100 m, cz is of order 10 -z. 
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Porosity is nondimensionalized to a characteristic 
value, •b0, of the order of 10 -3 in the partially molten 
upper mantle beneath spreading ridges [e.g., 
ß •d Dick, 1992; $obolet• •d $himizu, 1993], 

= 

Permeability is non-dimensionalized to this porosity 

t0 = 

Fluid velocity is characterized to be of the order of ve- 
locity driven by gravity forces such that 

•0w0 = kOApg. 

Characteristic solid velocity is taken as 

V0 = 

Finally, we define a compaction length h to be 

where h --• 0 is an infinitely weak matrix, which com- 
pacts instantly, and h --• oo is a rigid medium; h has 
a typical value of 100-1000 rn in the mantle [McKenzie, 
1984]. 

The nondimensional variables will be denoted by 
primed letters: 

- 

t = t • 
tooc• 

C = VøC' 

V - •V* 
C = C•C • 

Ceq -- c • z • 

Where the fact that time is scaled to 1/cz is a result of 
our choice to scale time to the characteristic time for 

change in porosity due to dissolution. In the limit of no 
gradient of solubility (and thus no dissolution), cz --* 0, 
and the characteristic timescale for change in porosity 
due to dissolution goes to infinity. 

We now write the nondimensional equations: 

c,-• + V. (•b'v') - -c, Da(c'- z'), 
c• 'ac' •'v' • + ß Vc'-- -(1 -c,d)Da(c'- z') 

Iv. +Pe ' 
0v') - - (1 - 

+ •b0V' ß V•b' - (1 - •b0•b')½' - DaPl(c ' - z'), (15) 
P. 

(16) 

(17) 

(18) 

where Da is defined as advection time across a box ver- 
sus reaction time: 

Ds- Reft/; ;b0to0Pl ' (19) 
Alternatively, if we define the %eaction length," 

Leq = •owoP! (20) Ref t ' 

to be the length scale over which a perturbation in con- 
centration will equilibrate with the solid matrix if it is 
traveling at speed too, then the DarnkShler number is 
simply the system size in reaction lengths. The reac- 
tion length and compaction length are the two inherent 
length scales in this problem. 

The Peclet number is deœned as the advection rate 
versus diffusion rate 

Pe- tool; D ' (21) 
Finally, we define a rigidity parameter c,, which is a 
combined measure of the change in solubility over one 
compaction length and the size of a system/; relative 
to & compaction length, 

h 2 h 

• = •-• x cz - • x ca, (22) 
where ca - f;h is the change in solubility over one com- 
paction length. Since L can be as small as we choose, c, 
is not necessarily small even if ca is small. When c, • 0, 
the matrix is easily compacted, and when c, --• oo, the 
matrix is effectively rigid. 

We then neglect all terms of order ;b0 (since ;b0 is of 
order of 10-3). The effects of retaining terms of or- 
der ;b0 when ;b0 •:[ I have been shown to be small for 
many problems [B•'cilo• •d liichte•', 1986; Scott, 1988; 
$;•iegelm•,., 1993a]. In addition, we temporarily neglect 
diffusion, Pe • oo, so that (15)-(18) become, dropping 
the primes, 

-•- = ½- Da---(c- z), (23) P, 

-V. (•v) - c;Da(c - z), (24) 

c,•b• ---c = -•bv. Vc- (1 -c,c)Da(c- z), (25) 
= i]. (26) 

The value of c• increases with system size, but since we 
are interested in physical systems that have an upper 
limit in size (the whole region of decompression melting 
• 75 kin), c• will be less than or equal to the concen- 
tration change over that whole region, cz < O(10-z), 
and so will be taken here as a small enough parameter 
to allow for expansion techniques. 
' Equation (23) tells us that the important timescale 
in the problem is the timescale over which porosity 
changes. This happens due to compaction on the one 
hand and reaction on the other. Equation (24) predicts 



20,438 AHARONOV ET AL.: CHANNELING INSTABILITY OF MELT 

that the timescale for divergence of flux is fast compared 
to that of changing the porosity, since c• is & small pa. 
rameter. Equation (25) predicts that the concentration 
in the fluid is nearly constant with time. Finally, (26) 
tells us that pressure gra•iients will manifest themselves 
as gradients in compaction rates. 

Steady State 

We seek unidirectional steady solutions to (23)-(26), 
of the form 

[•(,), e(,), e(,), c(,)] = [•o(,), •o(,), •o(•), co(,)] 
+•[•'(:), •'(•), •'(•), c'(•)], (27) 

where e(z) is the fluid velocity in the z direction, •ø(z) 
• the zeroth-order solution of the ste•y state, •d 
cz•X(z) • a sm•l p••eter corr•tion to it; cz will 
be shown to be unimport•t in the initi• ste•y state 
solution but • included here in order to simpl•y the 
su•quent line• stability •&ysis. 

•uations (23)-(26) will be solvM with a physic• 
picture in mind: at the bottom of the melt column, 
where melt is entering in equilibrium with its surround- 
ings, there • no di•lution •d porosity is const•t. 
Thus we require a 'rigid bound•y • condition g = 0, 
•d a chemicM constrent on the concentration field at 

z = 0. Th• le• to the d•irM const•t porosity at 
z - 0. We • requke that fluid fi• is continuous 
•r• this bound•y. T•ing into •count that only 
thr• bound•y conditions •e needed, now that dif- 
f•ion of •lute •d divergence of porosity have been 
negl•tM, the bound•y conditions take the form of: 

•(0) = 1, e(0)= 1, e(0)= 0. 

Solutions for the zeroth-order fi• •e obt•ned from 

the fluid corerration equation (24) •d the bound•y 
conditions (28) 

•o•o= 1, (29) 

•om the solute concentration equation (25) one then 
•ds that 

1 (e_O, z _ 1)+ z, (30) ½0(•) = N• 
where 1/Ds is a measure of the thickness of a boundary 
layer, i.e., the dimensionless reaction length (1/Ds = 
Z,q/Z). 

One can see from (30) that nowhere (except for z = 0) 
does cO(z) = z, the equilibrium value. Rather there is 
always a deviation of the concentration from the equi- 
librium concentration, and when the nondimensional 
height z •, œeq/œ, the deviation from equilibrium ap- 
proaches a constant undersaturation (Figure 2). At any 
point along the ascent path of the melt, reaction tends 
to restore the system to equilibrium, but more under- 
saturated fluid is brought from below to drive the sys- 
tem away from equilibrium. This solution suggests that 
some degree of disequilibrium will exist as long as the re- 

c 

,," •//•AC-1/Da 

, • 

z 

Figure 2. Nondimensional steady state concentration 
as a function of height, drawn as a solid line. After a 
narrow boundary layer (• 1 reaction length), the devia- 
tion of the steady state concentration from the equilib- 
rium value (represented by a dashed line), approaches 
a constant value Ac ~ 1/Ds. 

action length is significantly larger than the continuum 
•,,g•h ,ca, (i.,., •h, g•i, ,c•,). Wh,, f,q < O(d), 
then the system is effectively in local equilibrium. Note 
that we will show that the channeling instability arises 
even under conditions of effectively local equilibrium. 

For simplicity, we shall assume that the nondimen- 
sional height is z • Leq/œ such that any boundary 
layer effects are negligible. Estimates of the reaction 
length that are reasonable for Earth are sensitive to as- 
sumptions about the microscopic distribution of melt 
and solid (see Appendix A). For a range of parameters, 
Table 1 suggests that the equilibration length may range 
from much less than a millimeter to meters. So even if 

our system sise is of the order of a compaction length, 
most parameter ranges indicate that significant bound- 
fry layers are not expected. Thus we can approximate 

I (31) cø(,) • • _ •. 
The zeroth-order steady state compaction rate is calcu- 
lated from (23) to be nearly constant for z • Leq/L 

co(z)- P'f (e -D'z - 1) •, _Pt. (32) 
P, P, 

From (26) the zero-order steady state porosity is ap- 
proximately constant' 

•bø(z)- IPl otDa e-D•Z 1) x•. + •-, 1. (33) 

Finally, from (29) the velocity is also approximately 
constant: 

wø(z) • 1. (34) 
The seroth-order steady state of constant porosity and 
upwelling velocity is sustained by the competition be- 
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Table 1. Characteristic Values Believed to Be Applicable to Earth's Mantle 

Variable Symbol Value Notes 

Solubility gradient • 2 x 10-6m -t 1 
Linear dissolution rate 10 -t• - 10 -6 m s -t 2 
Solid density ps 3 x l0 s kg m -s 
Reaction rate constant R 10 -s - 10 -6 kg m -• s -t 
(Irain edge length d 10 -• - 10 -a m 
Total surface area l0 s - 106 m •/m s 3, using & and cubic grains 
Porosity • 10 -s - 10 -• 4 
Solid/liquid surface area $ (1 - 3) x 10 -t in fraction of total surface area. 
Volume fraction of soluble phase 10 -• - 10 -t i.e., fraction of pyroxene, 5 
Permeability exponent n 2 - 3 3 
Melt fraction F 0.05 - 0.2 fraction of solid mass that has melted 

Solid upwelling rate V0 10 -•ø - 10 -gm s -• 
Background fluid velocity Iv0 10 -g - 10 -6 m s -• see Appendix A 
Equilibration length œeq 10 -? - 10 m see Appendix A 
DamkShler number (L=100m) D• 10 s - 1 using range of œeq given above 
Diffusion coefficient D 10 -l•- 10 -tø m • s -I 8 

Peclet number (L=100m) Pe 106 - 103 using w0,D 
compaction length h 100 - 1000 m ? 

For a detailed discussion, see Appendix A. Notes: 1,Kelemen et aL [1995a]; Kelemen and Dick [1995]. 2, higher dissolution 
rates are from Brearley et al. [1988] and Kuo and Kirkpatrick [1985], and low dissolution rate is from ghang et al. [1989]. 3, 
l/'ona=rgen =n& W=ff[1986]. 4, JoAn•on =n& Dick [1992]; SohoIcy =n& $Aimizu [1993]. S, Ke•emen et =•. [1992]. 6, HoAr,.nr, 
[1980]. 7, Mc•e•e [1984]. 

tween porosity formed by dissolution and destroyed by 
compaction. Since compaction rate is the õradient of 
grain velocity, constant compaction means that grains 
descend with increasing speed as a function of height, 
which exactly balances the net increase in dissolution 
with height. 

The c•-order terms of the steady state can be easily 
obtained from (23)-(26) using the seroth-order solutions 
and boundary conditions of •(0) = •v•(0) = c•(0) = 0, 
but their detail is of no particular interest here, since in 
the stability analysis perturbations to terms of order c• 
are negligibly small compared to perturbations to terms 
of order 0. 

Linear Analysis 

We shall perform a linear stability analysis of (23)- 
(26) assuming that all variables can be expressed as 
their steady state value plus small deviations: 

[•'(x, t), w'(x, t), u'(x, t), c'(x, t), ½'(x, t)] -- 
[$(•), e(•), 0, •(•), e(•)l 
+elS(x, t), •v(x, t), rs(x, t), •.(x, t), •'(x, t)], (35) 

where ß • 1 and the steady state values are defined by 
(27)-(34). 

Keeping O(e) terms and discarding terms of 
O(c•e, e3), the perturbation equations take the follow- 
ing form: 

0_• = •, _ D a p_l.• •, (36) 

O• O• Oa (37) 0 = oz +•zz+•zz ' 
0 = -•-t• O• Daa, (38) 8z 

OC (39) - 
od 

a = (40) 

In solving the perturbation equations (36)-(40) we 
shall assume that all variables have the form of 

[•(x, t), •(x, t), $(x, t), •.(x, t), •(x, t)] -- 
[t•(z), a(z), •(z), C'(z), •(z)]e•'e "=, (41) 

where •r is the nondimensional growth rate of the per- 
turbation and i is the nondimensional wavenumber in 

the horisontal direction. Equation (38) can be rewrit- 
ten using (36), (39), and (40) to be a function of •, 0 
only 

(42) 
where 8/8z is designated by the operator symbol •D. 

Equation (37) can also be rewritten using •, •: 

n3)• - a(3)3 - l:•)•, (43) 

eliminating •b from both of these equations, one arrives 
at a final equation for a single variable 
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+ al 2 Da(np!/po - •r)] • - 0. (44) 
Preview of Solutions and a Simple Scaling Ar- 
gument 

There are two kinds of instabilities that we find in 

this system: One is the growth of an absolute instability, 
which is stationary in space and obeys a set of boundary 
conditions. In this case the growth rate •r is purely real 
and so dissolution features will grow pinned in space and 
will not travel. The other kind of instability is growth in 
time of the amplitude of traveling waves (in this case, •r 
is complex), in which we assume a semi-infinite medium 
and investigate the behavior of traveling waves without 
imposing boundary or initial conditions (these can be 
imposed in a future investigation in order to study the 
effects of the finite sise of the medium on the unstable 

wave solutions). 
How do we expect the most unstable wavelength of 

the absolute instability to behave as we change Da, the 
control parameter, and should we expect a dominant 
wavelength to emerge at all? As a perturbation of hor'l- 
sontal wavelength •= grows, unsaturated fluid converges 
laterally toward growing features: when there is no dif- 
fusion (for discussion of diffusion effects, see Appendix 
B) and only reaction is present to counteract the devi- 
ations from equilibrium, we expect that if the time to 
advect laterally across a perturbation (•=/u) is longer 
than time for reaction to wipe out the concentration 
difference (1/Reft) , then the perturbation will not fo- 
cus enough unsaturated fluid to keep itself alive and it 
will be damped. Thi• means that perturbations with 
long horisontal wavelengths compared to Leq will not 
grow effectively. On the other hand, focusing by the 
longest of the fast growing wavelengths will starve the 
shorter ones, and a dominant horisontal wavelength is 
expected to emerge. By this argument, the horisontal 
wavelength of the most unstable mode should increase 
with increasing œeq (decreasing Da number). 

Compaction is expected to damp horisontal wave- 
lengths comparable to a compaction length. We pro- 
pose that if Leq is so large that that the most unsta- 
ble wavelength is of the order of a compaction length, 
then stationary channels could not be maintained in 
the system. However, the results of our study indicate 
that even when stationary channels are inhibited from 
growth, the system still exhibits a "traveling instabil- 
ity •- unstable growth of traveling waves. 

Unstable Stationary Channels 

In this section we investigate the growth of unstable 
dissolution features by investigating the growth rate of 
vertical modes that obey boundary conditions, termed 
•absolute instability. • 

A solution to (44) of the form 

i(,) - + + (4S) 

will exist, provided that 

m3+(Da n )m 2 (12+nDa)m+.2.....,np! --- - , 0, 
(46) 

where m•,2,3, the three roots of the cubic polynomial 
(46), are either all real or one real and two complex 
conjugates. Equation (46) establishes the relationship 
between wavenumbers in the vertical (m•, m•, mz) and 
horizontal (l) directions and their growth rate. In order 
to find the solution of the linear stability problem (that 
is, to find the growth rate •r as a function of the Damk- 
holer number and the rigidity a for any given horizontal 
wavenumber l) we need to specify a set of three bound- 
ary conditions, which actually correspond to the third- 
order differential equation (44). These boundary condi- 
tions will constrain the vertical modes m•, m2 and mz, 
and as a consequence determine •r(l, Da, a) via (46). 

Boundary conditions for equation (44) emerge from 
the following assumptions: (1) There is no dissolution 
and porosity is constant at z - 0, where the incoming 
fluid is in equilibrium with the matrix. This assumption 
leads, via (36), to a rigid boundary condition (½ = 0) 
at z - 0. (2) The z - 0 boundary is impermeable to 
the perturbation, meaning that the flux of fluid normal 
to the boundary remains unperturbed from its steady 
state value. (3) Using an observation from physical and 
computer experiments [Keleme• et al., 1995a] that lat- 
eral fluxes ahead of the perturbation are negligible, we 
require (from (40)) a rigid boundary at z - L as well. 
(Alternatively, one could ch9ose a "free-flux • boundary 
at z = L, which actually acts to amplify the perturba- 
tion by relaxing the restrictive top rigid-boundary con- 
dition, and also complicates the mathematical presen- 
tation somewhat.) The above conditions are equivalent 
to 

od( - 0) - 0, (4?) 1)-0, 
and we seek the conditions under which a nontrivial 

solution of the form (45) exists. 
The boundary conditions (47) tell us that 

e'"• e'"• e'"• A• - 0 . (4S) 
mx m2 mz Az 0 

This has a nontrivial solution if the determinant is equal 
to sero: 

To find the growth rate as a function of horisontal 
wavenumber from (46) and (49), we first analytically 
calculate the three roots ml,2,3(•r, l, Da, a) of the cubic 
polynomial (46). Substituting these roots into (49), we 
then obtain an implicit equation for •r(l, Da, a). Choos- 
ing a value for the parameters Da and a, we finally ob- 
tain •r(l) by seeking the roots of the implicit equation 
(49), using a bisection numerical method. Numerical 
solutions indicate that ml, m2, mz have the form of 1 
• •oot •nd 2 compi,x conju•t• •o that •(•) of (4S) 
can be written as 
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d(z) - B•e""' + B•e p' cosqz + Bse p' sinqz. (50) 

Before presenting the results of the linear stability 
analysis, we would like to briefly discuss the physics of 
the problem revealed by writing (46) as a dispersion 
relation in which •r = •r(m, •): 

o' = --• - . (51) 
. _ _ l,)(., + 

The growth rate •r is composed of two completely sepa- 
rate parts, one that includes a dependence on the rigid- 
ity of the matrix, c•, but does not depend on the chem- 
ical reaction, and the second that depends only on the 
rate of chemical reactions, the Do number, but does not 
depend on the rigidity; •r can be expressed as a sum of 
these parts 

= + (52) 

where the compaction contribution to the growth rate 

1 
= _ 

. - 
and the chemical reaction contribution to the growth 
rate is 

- - •" (54) (,,,= _ + 
As the matrix rigidity is increased (c• -• co), then • -• 
•rDa. This limit strips away compaction effects on the 
instability. In the limit of Da --, 0, •r --, •rc and only 
compaction effects are left. 

Rigid medium limit. As mentioned previously, in 
the limit of a rigid medium (1/c• --, 0), compaction ef- 
fects are not present, illuminating the physics of the dis- 
solution instability. In Figure 3 we present the growth 
rate •r as a function of the horizontal wavenumber • 

for Do = 10 in a rigid medium (1/c• = 0). For com- 
parison, the growth rate in a compacting medium with 
c• = 1 is also shown. The choice of Do = 10 is given 
as an exarnple, to demonstrate the qualitative behav- 
ior of the solution. For a rigid medium any value of 
Da produces the same kind of behavior with positive 
growth rate peaking at a certain wavelength. Results 
for a compacting medium will be discussed in the next 
section. 

It should be noted that actually •r attains several val- 
ues for each value of •: these correspond to different 
growth rates of different vertical modes with a wave- 
length I, = 2•r/q where q is defined in (50). The first 
mode has approximately half a wavelength (q close to 
•r) in the vertical dimension of the box and is the fastest 
growing mode. The second mode has close to one wave- 
length fitted in the vertical dimension and grows more 
slowly. The third mode grows even more slowly, etc. 
Hence only the first mode, the fastest growing one, is 
plotted on Figure 3. The growth rate in Figure 3 is 
seen to peak for horizontal wavenumber imax, and so 
Is = 2•r/imax is the most unstable wavelength in the 
system. 

Calculations similar to Figure 3 have been made for 
different Do numbers. Figure 4a shows the most un- 

2.0 

! max 

+ compacting ..../•-•...,. 

0.5 

1 .o lO.O 

Figure 3. Nondimensional growth rate •r versus nondi- 
mensional horizontal wavenumber •, for D= - 10 in 
a rigid medium (1/c• - 0), and in a compacting 
medium with a - 1; Imax indicates the fastest growing 
wavenumber. Comparing the growth of unstable chan- 
nels in a compacting and a rigid medium, one notes that 
the most unstable wavelength is hardly altered and its 
growth rate is only slightly lowered due to the stabi- 
lizing effect of compaction. Compaction does, however, 
damp the long-wavelength perturbations. This effect 
leads to a critical D= for existence of the instability in 
a compacting medium. 

stable wavelengths, •=, as a function of Ds, for the 
rigid medium case. As Da increases, •, is shown to de- 
crease and to approach a power law dependence on 
For Da •, 1, and spanning 4 orders of magnitude, the 
nondimensional dominant horizontal wavelength scales 
as • ~ V/1/D=. In dimensional units this means that 

,x. ,,, V/L ß Z, eq. (55) 
The increase in dominant horizontal wavelengths of 
channels with increasing equilibration length (decreas- 
ing D•) is as predicted by the 'preview of solutions." 
The fact that the lateral extent of channels depends 
also on the vertical dimension of the box is more sur- 

prising. We postulate that the vertical length scale/; 
is imposed on the perturbations by the fact that chan- 
nels always span the box vertically. Since the vertical 
mode is coupled to the horizontal modes in (46), the 
horizontal modes are forced to feel the system size too. 
The aspect ratio (I,/Is) of the channels decreases as 
Da is increased. Since in dimensional parameters (when 
Da •, 1) 1, ~/; and I= ~ V/L, Leq, then the aspect 
ratio is 

)•./I. ,., V/Leq/L- v/l/Ds, (56) 
as seen in Figure 4b, and the channels become more 
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Figure 4. (a) The fastest growing horizontal wave- 
length, ,X, = 2•r/lmax, derived from plots similar to 
Figure 3 with different Da numbers in a rigid medium. 
For Da • 1, and spanning 4 orders of magnitude, 
,X= • ix 1IDa. (b) Aspect ratio of channels, 
as a function of Da in a rigid medium. Perturbations 
become more finger like as Da number is increased. (c) 
Growth rate of imax as a function of Da in a rigid 
medium. The system becomes increasingly unstable 
with increase in Da and reaches a constant limit for 

Da --• oo. This limit is set by the derivative of perme- 
ability with respect to porosity. 

finger-like as the equilibration length decreases or as 
the system size increases. 

The growth rate • of the fastest growing horizontal 
wavenumber lmax as a function of Da is plotted in Fi•- 

ure 4c, where one can see that as Da --. oo, the growth 
rate approaches a constant value, • -+np!/p,, which 
can be predicted from (54). This limit is determined 
by 0t/Od oc n, the derivative of the permeability with 
respect to porosity. If the permeability decreased with 
increasing porosity, then the instability would not occur 
and the growth rate would approach a negative constant 
value. In other words, the maximum change in porosity 
is only related to the rate at which flux changes with 
porosity. 

The increase of • with Da seems counterintuitive at 

first, since as Da is increased the system is closer to 
equilibrium (equation (31) and Figure 2). The explana- 
tion stems from the fact that as Da • oo, any pertur- 
bation in flux is immediately compensated by chemical 
reaction bringing the liquid close to local chemical equi- 
librium. In the meantime, the porosity has been lowered 
fuxther by the strong dissolution, so additional fluid 
flows into the perturbed region. This in turn will result 
in immediate strong dissolution lowering the porosity 
even further. On the other hand, a low Da number 
will tend to weaken the growth of channels because the 
fluid has time to redistribute the concentration by lat. 
eral advection and thus smooth away gradients before 
substantial dissolution occurs. 

Compactlng medium. Numerical solutions for a 
compacting medium with a of order 1 indicate that 
there exists a critical value for Ds. For 

Da > Dacrit- l/a, (57) 

dissolution channels will grow. Once condition (57) is 
violated, there are no solutions which obey the bound- 
ary conditions (47) and dissolution channels do not 
form. 

Condition (57) can be rewritten using the definitions 
of Da,• and/; (equations (19), (22), and (14)): 

D. a - ca• > 1. (58) 
In other words, this term is proportional to the ratio 
of the compaction length to the reaction length. If 
the compaction length is much larõer than the reac- 
tion length, permanent channels can grow. Otherwise, 
compaction will become important and will act as a sta- 
bilizing mechanism, trying to squeeze the channels shut 
and forcing propagation of the instability as waves, as 
can be seen in the %nstable dissolution waves" section. 

Figure 3 shows the growth rate for Da - 10, a - 1, 
so that Da c• = 10, not so high above the critical value 
and in the lower range of values of Da x a predicted 
for the mantle, as can be seen in Table 1. Growth rates 
in a compacting medium are shown in comparison with 
results for D• = 10 and a rigid medium, 1/a = 0. 
Figure 3 shows that the maximum wavelength in the 
compacting medium is not changed from a completely 
rigid medium and the growth rate is only slightly lower 
than in the rigid case. Compaction is shown to damp 
the long wavelengths, as expected. 
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Eigenfunctlons. Here we calculate the eigenfunc- 
tions (full z dependent solutions) of all perturbed fields 
in the problem (•, •, •, •, a) and plot them as contour 
plots, takin• a snapshot in time. This demonstrates our 
claim that the instability is characterized by channel 
like features and helps one to visualize the spatial dis- 
tribution of melt and porosity. 

We use (50), the three independent boundary condi- 
tions (4?), and (36)-(41) to analytically find the eiõen- 
functions and thus the full solutions for the perturba- 
tion variables: 

(59) 

(60) 

In order to plot the behavior of the perturbation vari- 
ables as a function of z and z, we use the values of 
ml, p, q, alii] o' calculated numerically for the most un- 
stable wavelength, as described in the previous section. 
In the surface plots illustrated in Fiõure 5 we used pa- 
rameter values of Da = 100, c• = 1. 

Figure 5a is a plot of the perturbation in compaction 
(•(z, z, to), which is equivalent to the perturbation pres- 
sure. Narrow channels spanninõ the vertical dimension 
of the box can be seen. The constant pressure boundary 
conditions force the pressure field to achieve a maximum 
at cbout three quarters of the way to the top of the box 
and not at the top boundary. Porosity •(z,z, to) is 
plotted in Fiõure 5b and can be seen to have increaa- 
in• amplitude with increasinõ heiõht and to achieve a 
maximum amplitude at the top of the box. Disequilib- 
rium undersaturation, -&'(z, z, to), and vertical velocity 
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Figure 5. Eigenfunctions for a compacting medium, Da = 10, a = 1 (a) Perturbation pressure 
as a function of z and z. Dark shading indicates negative values; light shadings indicate positive 
values. Owing to the boundary conditions, pressure perturbations are forced to zero at the top 
of the box, thus attaining a maximum amplitude at z • 3/4. (b) Porosity, vertical velocity, and 
concentration, which look very similar, are plotted as a function of z and z. These variables have 
increasing amplitude as a function of z and attain a maximum at z = 1. 
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have surface plots very similar in shape to the plot of 
porosity. 

Within linear approximations, when the system is un- 
stable, the longer the melt ascends, the more robust the 
instability becomes, spanning any given box sise. This 
is understandable, since the more disequilibrated the 
ascending fluid, the stronger the driving force for insta- 
bility. 

Unstable Dissolution Waves 

In this section we present a different solution to the 
set of perturbation equations (36)-(40), which ia inde- 
pendent of the channel solution and may coexist with 
it. We study aimpie linear propagating waves in an in- 
finite medium. These are related to compaction waves 
but present a previously unatudied facet of the RII in- 
stability, unstable traveling dissolution waves. 

When mass transfer between the solid and the liquid 
is sero (Ds = 0), equations (36)-(40) are close to the 
ones arrived by Spiegelma• [1993a] in his linear analy- 
sis of compaction driven waves, apart from another time 
derivative which survived in his divergence equation be- 
cause of the different time scales and therefore different 
linearization involved. In the limit of Da -• 0 we arrive 

at an equation for traveling waves: 

= 0. (a4) 
Assuming wave solutions of the form 

• = Ae;(•'+""-;*), (65) 

the dispersion relation is 

• -- m2 + 1:•, (66) 
indicating the existence of traveling waves, with a phase 
velocity cp 

ff fb co8 • 

, (a7) 
where the wave vector is defined by K 2 = 12 + m • and 
/• is the angle between the wave vector and the vertical, 
as seen in Figure 6a. The phase velocity in the z di- 
rection, Cps = cp/cos/•, is greater than zero, thus linear 
compaction waves always travel with an upward com- 
ponent. (It is interesting to note that (64) is identical 
to the equation for planetary Rosaby waves that dom- 
inate the ocean and atmosphere. Rossby waves have 
westward traveling phases.) 

These results from the sero Do limit are close to the 

results from Spiegelma• [1993a], in which traveling dis- 
persive waves arise from compaction. The waves form 
due to the increase of melt flux as a function of porosity, 
and its ability to deform the matrix. Viscous resistance 
to volume change causes waves to disperse. 

We now turn to study the full problem of nonzero Do 
and seek wave-like solutions to the set of perturbation 
equ&tion, (36)-(40), 

where m and • are real and • is to be determined from 

the dispersion relation. A single equation similar to (46) 
is found, which in turn can be written as a dispersion 
relation that restricts the growth rate to be 

O' • 

+ + . •o(• + •) 

This growth rate has • imagin•y p•t, •x, •d a re• 
positive p•, •, indicating that if porosity waves were 
formed M the presence of di•olution, their amplitude 
would increde with time to form "unstable travelMg 
di•lution wav• •, or "channelIcons •. 

The ph•e velocity of the waves, cv, is 

•x ( 1 sin 20Da• ) cp = K =ncøs0 + ;' aK 2 K 2cos 20+Ds 2 ' 

where the wave vector ia defined by K 2 = 12 + m 2 and/• 
ia the angle between the wave vector and the vertical. In 
the presence of dissolution, the amplitude of the waves 
grows in time due to the positive real part of the growth 
rate, 

n sin • t•Da • • 
- " (70) • K 2 cos 2 • + Da •' 

Here tr• i• seen to be always positive, providing a 
mechanism for nucleation and growth of "magmons •, 
which previously required an initial step perturbation 
in porosity in order to nucleate. For Da = 0, • = 0, 
indicating that compaction w&ves in the absence of dis- 
solution are marginally stable and travel with a constant 
amplitude. 

The presence of dissolution (Ds > O) brings about 
interesting behavior of both the phase velocity of the 
waves and the rate at which their amplitude grows. Fig- 
ure 6b illustrates cp and •e as calculated from (69) and 
(70). The top panel shows cp and • as a function 
of orientation of the wave front 9 for constant K, Ds, 
and a. The phase velocity of planar waves is maxi- 
mal when they have a diagonal orientation but drops to 
zero for waves that are oriented vertically (9 -, •r/2). 
On the other hand, these vertical 'stationary channels" 
are the ones that grow the fastest, as is seen from •(9), 
and are actually the collapse of the traveling wave so- 
lution to the stationary channel solution obtained in 
the previous section. The bottom panel of Figure 6B 
shows cp and •e as a function of Da for constant K, 9, 
and a. The maximum in phase velocity corresponds to 
K cos • = Ds, while maximal growth rate occurs for 
Da -, co, similar to the maximal growth rate for the 
stationary channels. Compaction-dissolution waves are 
dispersive, as expected for waves which grise partly from 
compaction [Spiegelma•., 1993a], and the long wave- 
lengths both travel and grow the fastest. Like the lin- 
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Figure 6. (a) Schematic drawing of a planar 'wave, with wave vector K a - I a + m a, oriented 
at angle • to the vertical. The phase velocity is the velocity at which the phases propagate. (b) 
(top) Growth rate •r•e and phase velocity cp of compaction-dissolution waves as a function of the 
planar wave orientation •. Calculations were made using K - 10, D• - 10, and a - 1. Phase 
velocity is maximum when the wave is at some angle to the vertical and is zero for vertical stripes. 
Although thes• stripes do not propagate, they grow the most rapidly, as seen from •(•). The 
stationary vertical stripes are the collapse of the plane wave solution to the unstable channels 
solution. (bottom) The •e and cp as a function of Ds. Calculations were made using K = 10, 
8 = •r/4 and • - 1. The maximum in phase velocity is for waves with K cos 8 - D•. At this 
point a rapid transition from nearly zero growth rate to maximum growth rate can be observed. 

ear compaction waves of (64), these waves always have 
an upward phase velocity. Waves propagate with a fi- 
nite phase velocity even in the absence of compaction. 
They appear to travel diagonally because vertical wave- 
lengths that are shorter than the system size (m > 0 or 
0 < •r/2) imply that at some point in space, upwelling 
fluids in high-porosity regions encounter an obstacle of 
low porosity, forcing the fluid to chew its way up with 
a diagonal component of velocity. 

Discussion 

The results of this work show the potential for an 
existence of a channeling instability in Earth's upper 
mantle. The instability stems from combined chemi- 

cal and hydrodynamical effects. Melt decompresses as 
it ascends through the mantle, increasing its ability to 
dissolve the surrounding matrix. A small perturbation 
in porosity allows a larger volume of unsaturated fluid 
to flow, thus increasing dissolution and further increas- 
ing porosity in a positive feedback mechanism. 

We consider a model system incorporating porous 
flow, dissolution, and matrix compaction effects and 
find a steady state formed by the competition between 
dissolution and compaction. Linear stability analysis 
is then performed, predicting that long, narrow chan- 
nels may spontaneously form. The emerging hori-.on- 
tal wavelength 1, is shown to depend on the chem- 
ical equilibration length Leq and the vertical extent 
of the system L. For chemical equilibration lengths 
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that are smaller than the size of the system (Ds :> 1), 
•. -- 2.534v/Leqœ. For a system of the size of the 
melting region, /, •. 75 kin, channels will range from 
10 cm wide, when œeq ~ 10 -? m, to nearly a kilo- 
meter wide if Leq ~ 10 m. Our linear prediction of 
channel width is in agreement with (1) postulated vein 
sizes needed to successfully segregate the melt in or- 
der to see observed chemical signatures [Spiegelman and 
Kenl•on, 1992], and (2) the size of dunire dissolution fea- 
tures found in field observations [Boudier and Nicolas, 
1977; Dic• 1977; Quick, 1981; Nicolas, 1989; Kelemen 
et a2., 1992]. This further strengthens our belief that 
the channeling instability plays a crucial role in focus- 
ing of melt and determining the geochemical composi- 
tion of upwelling liquids and residual mantle peridotires. 
Channels formed by the reactive infiltration instability 
may provide the means for extracting melt out of the 
viscously deformable upper mantle. 

If the chemical equilibmtion length is too long, com- 
parable to the compaction length, formation of the in- 
stability is inhibited by compaction. A coexisting so- 
lution predicts unstable growth of elongated traveling 
porosity and concentration waves that exist under all 
conditions. The exact criterion for st•tion•ry channels 
to grow is c•h/Leq • 1. We test whether this condition 
is met in Earth's mantle, using & range of numbers ex- 
plained in Appendix A and tabulated in Table 1. Equi- 
libration lengths range from •1 mm to 10 m, and we 
use B -- 2 x 10 -a m-l; ca h/Leq ranges from O(1) to 
O(10 a) when the compaction length is taken as 1000 m 
and from 0(10 -•) to 0(104) when a compaction length 
is taken as 100 m. Parameter values that are believed 
to be characteristic of Earth's mantle are thus mostly 
in the regime that allows for rapid growth of stationary 
channels. 

The effect of diffusion (Appendix B) is also investi- 
gated. When diffusion is strong enough, it will cause an 
increase in channel spacing and a decrease in channel 
growth rate. However, this will not inhibit the channels 
from growing. 

The forming channels are elongated and span the ver- 
tical box size. Their amplitude increases with height, 
thus showing increasing chemical disequilibration as liq- 
uid ascends in the melting column. When Da is high, 
chemical disequilibration is small, but dissolution of 
channel is most efficient. Hence soluble phases m•y 
become reduced in volume or completely exhausted. 
When channels thus become stripped of soluble phases 
(i.e., stripped of pyroxene but not of olivine), melt flow- 
ing through them will be effectively isolated from equili- 
bration with these phases. Since the channels span the 
system vertically, they can bring to the surface melt 
that has not equilibrated with its surroundings since it 
began its ascent at the bottom of the melting column. 
This may explain why MORB is out of chemical equi- 
librium with upper mantle peridotires [Johnson et al., 
1990] and includes chemical signatures from the bot- 
tom of the melting column [Klein and œangmuir, 1987; 
$alters •nd Hart, 1989]. 

Channels formed as a result of this instability should 
be identifiable in the geologic record. Their contact 

relationships should be indicative of replacement of host 
peridotire as a result of selective dissolution of more 
soluble phases (i.e., pyroxene). Additionally, minerals 
in dissolution channels should be close to equilibrium 
with MORB and therefore will have very different minor 
and trace element compositions from the same minerals 
in surrounding peridotire. In fact, these characteristics 
are observed in dunire bodies within the residual mantle 

peridotire section of the Oman ophiolite [Kelemen et al., 
1995b]. 

However, we emphasize that the results of the present 
study may not be directly applicable to the mantle. In 
particular, the morphology of dissolution channels aris- 
ing from this instability, developing over finite length 
scales and timescales, cannot be predicted from linear 
stability analysis. Additionally, the multicomponent 
melt migration process in the earth with the inclusion 
of advective heat transport and background melting ef- 
fects is more complicated than the problem studied here 
and is a topic for ongoing studies. 

In addition to the formation of stationary dissolu- 
tion channels, another coexisting linear solution indi- 
cates the existence of traveling compaction-dissolution 
waves, whose amplitude increases with time. These un- 
stable waves, pockets of undersaturated melt in a high 
porosity region, will transport increasingly undersatu- 
rated melts to the surface even when the matrix is too 

weak to support stationary channels. They may also aid 
in explaining the production and growth of "magmonsf 
compaction waves previously thought to be generated 
by an initial step in porosity. 

Appendix A: Discussion of Parameter 
Values for the Mantle 

Table 1 illustrates the derivation of a range of 
DamkShler numbers which may be applicable to porous 
flow of melt in the mantle. The results are tabulated in 

two ways, in terms of an %quilibration length, • and in 
terms of DamkShler number for a fixed system length 
scale of 100 m. In our •tudy, the equilibration length, 
Leq = qbpl•O/Reff, is the length over which fluid wi!l 
advect before equilibrating with its surroundings. 

Critical input parameters in determining equilibra- 
tion lengths for the mantle are the crystal dissolution 
rate and the melt flow velocity. We present a broad 
range of possible values, because the estimation of ef- 
fective dissolution rates, porosity and fluid velocity are 
so uncertain. Several studies have measured dissolu- 

tion of mantle minerals in basaltic melts at upper man- 
tle pressures and temperatures [Kuo and Kirkpatrick, 
1985; Brearle•l et al., 1986; Zkang eta/., 1989]. All of 
these indicate that measured dissolution rates are diffu- 

sion controlled, and thus depend on the diffusivity of the 
dissolving species and the width of a chemical boundary 
layer around the dissolving crystal. The first two studies 
emphasized results for relatively 'well-stirred • melts, 
with narrow chemical boundary layers, while Zhang et 
al. attempted to minimize convection and mixing in 
liquids surrounding dissolving crystals, maximizing the 
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Figure A1. When high-porosity channels form, the solid-liquid surface area per unit volume is 
reduced and the characteristic equilibration length of the system will increase. This means that 
the wavelength of the channels will increase as well (from equation (55)). If we also consider the 
increase in melt velocity with height, we get an additional increase in Le Thus we can tentatively q- 
propose the following picture: narrow channels that form deep in the melting column will act 
as the background porous structure for a higher level and, due to the increase in horizontal 
wavelength with equilibration length, will coalesce to form an interconnected network of high 
porosity tubes similar to the upside down "fractal tree • proposed by Har• [1993]. 

width of the chemical boundary layer. It is difficult to 
know which of these apply to the microscopic geome- 
try of melt flow in the mantle, below the continuum or 
Darcy scale, in which some intergranular pores could 
be effectively stagnant, while others may cazry rapidly 
moving liquids. For this reason, we use linear dissolu- 
tion rates derived from these studies ranging from 10 -s 
to 10 -ta m/s. We convert volume to weight units using 
an approximate density of 3000 kg m -s to obtain the 
reaction rate constant, R. 

To obtain effective dissolution rates (kg s -• m-3), 
we calculated effective surface areas over which dissolu- 

tion could occur in mantle peridotires, per unit volume. 
This calculation requires estimation of the grain size, 
grain shape, proportion of solid/liquid surface area to 
total surface area, and proportion of soluble phases in 
the peridotire. Pyroxene is much more soluble than 
olivine in ascending liquids [e.g., Kelemen• 1990; Kele- 
mer• eg al., 1995a], so for the purposes of this calculs. 
tion we assumed that the proportion of soluble phases 
was the proportion of pyroxene in mantle peridotire. 
We have used the work of VonBarge• a•d Wa• [1986] 
to estimate solid-liquid surface areas for basalt-mantle 
systems as a function of porosity. In calculating the 
solid surface area per unit volume, we have assumed 
cube-shaped grains with linear dimensions from 0.01 to 
0.5 cm. 

Keleme• • •1. [1995a] calculated peridotire solubil- 
ities in typical melts along likely adiabatic P-T grs. 
dients beneath mido-ocean ridges, using a thermody- 
namic model for partially molten silicate systems. Thus 
this calculation incorporates the effect of the heat of 
fusion in limiting solid solubility. Results of these cal- 
culations were used to estimate an approximate value 

for the solubility gradient, given in Table 1. This calcu- 
lation did not include the possible effects of advective 
heat transport by rising melt in high permeability chan- 
nels. Potentially, if melt flux becomes large enough, 
this could result in local heating of channels to tem- 
peratures higher than the adiabat for partially melting 
mantle peridotire. If this occurred, it would increase 
the local solubility of solid phases to values higher than 
those in Table 1, and act to further enhance growth of 
channels. 

Steady state melt flow velocities were calculated us- 
ing the reasoning of Spiegelm•a [1993c], in which the 
Darcy flux, qbw0 = FV0 (where F is integrated mass 
fraction of melting and l• is solid upwelling rate) for 
ascending mantle beneath a spreading ridge. Another 
simplification c•n be made if & is constant [e.g., JoAn. 
so• •ad Dick, 1992; $obole• •ad $1•imizu, 1993]. In this 
formulation, if • is much smaller than/', flow veloci- 
ties are much greater than if the porosity is of the same 
order as the melt fraction. A range of values is used 
in Table 1 to investigate the maximum and minimum 
equilibration lengths likely in the mantle. Equilibration 
lengths calculated in this way range from Angstroms to 
meters. 

The attempt to quantify effective reactive surface 
area brings about an interesting hypothesis about the 
finite size behavior of these channels: When high poros- 
ity channels form, the solid-liquid surface area per unit 
volume is reduced and the characteristic equilibration 
length of the system will increase. Hence the horizon- 
tal wavelength of the channels will grow (from equation 
(55)). Increasing melt velocity with height results in an 
additional increase in Leq. A tentative sketch of finite 
size behavior is given in Pigure A1. 
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Appendix B- Finite Diffusion 

Diffusion in a porous medium is a result of hydro- 
dynamic dispersion and molecular diffusion. Disper- 
sion, in most cases, is associated with larger diffusion 
coefficients than molecular diffusion. Both have the ef- 

fect of of causing an initial sharp concentration gradient 
to spread out with time. This appendix addresses the 
question of whether a finite diffusion rate will smooth 
out gradients in the concentration field to a point where 
the channeling instability will not be able to grow. 

Predictions 

It is probable that perturbations smaller than a dif- 
fusion length will be smoothed out. When diffusion is 
weak, and a diffusion length is smaller than the mo•t 
unstable wavelength determined by reaction (as calcu- 
lated for the no diffusion case above), diffusion will only 
act as a short-wave cutoff. When diffusion is strong, 
and a diffusion length is longer than the most unstable 
wavelength determined by reaction alone, it will allow 
for unstable growth but modify the dominant horizontal 
wavelength, forcing it to become longer than a diffusion 
length. This is because, as seen in Figure 3, all wave- 
lengths are unstable in the presence of reaction alone 
(in the rigid case) and when short waves are damped, 
long wavelengths can become the fastest growing in the 
system. It follows that for strong diffusion, the growth 
rate will be lowered compared to the case with no di•.; 
fusion. 

Simplified Calculations 

We present here a somewhat simplified linear analysis 
for the finite diffusion case. We allow for diffusion only 
in the horizontal direction, since allowing for vertical 
diffusion adds higher order derivatives in the vertical di- 
rection, complicating the vertical structure of the equa- 
tions beyond the point necessary to obtain well-behaved 
solutions to the stability problem. This approximation 
is probably justflied, since the vertical melt velocity is 
believed to be much larger than diffusion rates. How- 
ever, one should note that available experimental dif- 
fusivities in silicate melts, quoted in Table 1, do not 
include effects of dispersion. 

Solving the perturbation equations (36)-(40) with a 
finite value for 1/Pe, (46) will have the form 

__ nDa)m mS + (Ds + l:t/Pe - • )m a - (l :t + 

+l:•Da rip! -l'(Da + l:•/Pe) = 0. (B1) 

The growth rate is again decomposed into compaction 
and reaction parts 

= + (B2) 

where the compaction contribution to the growth rate 
is 

1 nrn 
= -- (Ba) 

-- - + W + 
is the diffusion-reaction contribution to the growth rate. 
In the limit of I • oo, •v• • 0, as expected since diffu- 
sion will tend to damp the growth of short wavelength 
perturbations. 

We use boundary conditions (47) to solve (B1) follow- 
ing the same numerical procedure outlined in the "un- 
stable stationary channels" section. Figure B1 demon- 
strafes the effect of adding diffusion to the no-diffusion 
solution obtained for the rigid medium. Generally, dif- 
fusion acts to reduce the growth rate of the instability 
and to shift the most unstable wavelength to become 
longer than in the no diffusion case, as predicted. 

Figure B2 shows the most unstable wavelength and 
its growth rate for a constant Da = 10 and a varying 
Pe number. The qualitative behavior is as predicted: 
for weak diffusion (Pe >> Ds, which corresponds to the 
condition when equation (17) can be considered diffu- 
sionless) the most unstable wavelength and its growth 
rate remain nearly the same as the case with no diffu- 
sion. For Pe ,• Da the dominant wavelength •, in- 
creases with increasing diffusion length (decreasing Pe) 
•, • (1/Pc)X/'i, and the growth rate is reduced but 
remains positive. 

2.0 

1.5 

1.0 

0.5 

0.0 

-!-Pe=10 
ß Pe=100 

-- no diffusion 

l max 

.o lO.O 

Figure B1. Growth rate a as function of horizontal 
wavenumber I for a rigid matrix with Da = 10 for vari- 
ous diffusion coefficients. Solid line is the growth rate in 
the case of no diffusion, replotted from Figure 3. Solid 
circles are the linear stability analysis results for a rigid 
system with weak diffusion, Pe - 100. Strong diffu- 
sion with Pe - 10 is shown in crosses. The hori-.ontal 

wavelength (= 2•r//max) of forming channels becomes 
larger in the presence of diffusion and the growth rate 
is somewhat lowered, but the nature and the robustness 
of the instability are not changed. These results are in 
agreement with scaling arguments in Appendix B. 
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Figure B2. The fastest growing horizontal wavelength, 
•= = 2•r/lrnax, derived from plots similar to Figure B1 
with different Pe numbers, for a rigid medium with a 
constant Da -- 10, plotted by solid circles. In the case 
of strong diffusion, when Pe < Da, •4 oc 1/Pe. On the 
same plot we show the growth rate •r by open squares, 
to be unaffected by diffusion when Pe is large but to be 
reduced when diffusion becomes important. Channels 
will grow (e > 0) for all diffusion rates. 

Thus we conclude that when diffusion is strong or 
when the Pe number is of the same order of magnitude 
as the Da number, the addition of diffusion can alter 
channel spacing and lower the growth rate but cannot 
inhibit the instability from growing. When diffusion is 
weak (Pe •'• Da), it can be neglected altogether. 
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