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The previously observed spatial evolution of the two-dimensional turbulent flow from
a source on the vertical wall of a shallow layer of rapidly rotating fluid is strikingly
different from the non-rotating three-dimensional counterpart, insofar as the instability
eddies generated in the former case cause the flow to separate completely from the wall
at a finite downstream distance. In seeking an explanation of this, we first compute the
temporal evolution of two-dimensional finite-amplitude waves on an unstable laminar
jet using a finite difference calculation at large Reynolds number. This yields a dipolar
vorticity pattern which propagates normal to the wall, while leaving some of the near-
wall vorticity (negative) of the basic flow behind. The residual far-field eddy therefore
contains a net positive circulation and this property is incorporated in a heuristic point-
vortex model of the spatial evolution of the instability eddies observed in a laboratory
experiment of a flow emerging from a source on a vertical wall in a rotating tank. The
model parameterizes the effect of Ekman bottom friction in decreasing the circulation
of eddies which are periodically emitted from the source flow on the wall. Further
downstream, the point vortices of the model merge and separate abruptly from the
wall ; the statistics suggest that the downstream separation distance scales with the
Ekman spin-up time (inversely proportional to the square root of the Coriolis
parameter f ) and with the mean source velocity. When the latter is small and f is large,
qualitative support is obtained from laboratory experiments.

1. Introduction

An unsolved problem in the dynamics of boundary currents is the parameterization
of the effect of eddies on the mean flow. In the case of a non-rotating high-Reynolds-
number barotropic wall jet emerging from a source on a wall, the three-dimensional
turbulence produces a self-similar mean velocity profile spreading continuously
downstream along the wall at a small angle (Wygnanski, Katz & Horev 1992). A vastly
different behaviour occurs in the rotating version of this problem as the three-
dimensional turbulence is suppressed, and barotropic vorticity conservation in a
shallow fluid layer produces two-dimensional eddies. This was also observed in
laboratory experiments (Stern & Whitehead 1990) in which a wall jet (figure 1a) was
produced by the flux from a capillary nozzle placed at mid-depth along a vertical wall
in a large rotating tank. Although the flow emerging from the capillary nozzle is three-
dimensionally turbulent (with entrainment), the Taylor–Proudman effect of rotation
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(a)

(b)

F 1. Separation of a dyed wall jet issuing from a capillary nozzle in a rotating tank of water.
(a) After Sten & Whitehead (1990). The vertical wall lies along a diameter (213 cm). Depth of fluid
! 20 cm. Flow rate! 5.7 cm# s−!. Time! 5 min. after start of flow. (b) The flow is now along the
circular outer wall of the tank, water depth! 20 cm, rotation period! 15.2 s, discharge!
760 cm# min−!. The instability eddies are visible upstream from the point where the jet separates from
the wall.

appears further downstream, and the eddies that then appear evolve from two-
dimensional instabilities of the barotropic wall jet. The novel and noteworthy effect
here, when compared to the non-rotating case (Wygnanski et al. 1992), is the rapid
deceleration of the dyed nose of the wall current and its apparent stagnation, at which
point the eddies detach from the wall and interact in a two-dimensional turbulent
plume extending normal to the wall. In figure 1(a) the wall flow lies along a diameter
of the rotating tank where the small variation of the free-surface height introduces a
dynamical ‘β-effect ’ ; this was virtually eliminated in a follow-up experiment (figure 1b)
where the flow was directed along the circular outer wall of the tank, whose radius of
curvature is so large compared to the upstream jet width that the wall curvature may
be neglected. We can clearly see the instability waves in the upstream jet evolving into
round eddies separated by (clear) entrained exterior fluid. Further downstream, these
eddies decelerate, merge, separate from the wall and interact with each other in the
two-dimensional turbulent plume. Essentially all of the upstream jet leaves the wall
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before the separation point, as revealed by small white paper pellets strewn into the
current.

In this paper, the various mechanisms involved in the separation process of the two-
dimensional barotropic wall jet are examined by a combination of numerical and
analytical methods as well as laboratory experiments In §2, the eddies appearing in the
barotropic jet upstream of the separation point are discussed in terms of the finite-
amplitude growth of a periodic disturbance in a uniform downstream current. The
qualitative agreement observed between the numerical solutions and some features of
the laboratory experiments is then used in §3.1 in an attempt to explain the abrupt
separation of the jet from the boundary. Accordingly, the results from §2 are
incorporated into a model in which discrete vortices are emitted from a source near a
wall, then interact and decay as they move downstream; eventually, each point vortex
is ejected from the wall into a large plume, and the statistics of this ensemble provides
a basis for the experimental investigation (§3.2) of the separation point. The different
physical effects are then summarized and discussed in the concluding section along with
suggestions for future work.

2. Finite-amplitude instability in the two-dimensional wall jet

In this section, we consider the finite-amplitude shear instabilities in a downstream-
uniform wall jet. Etling, Hansen & Ju! rrens (1993) have investigated this experimentally
and numerically for a jet on an inner circular wall of relatively small radius in a rotating
tank. Their initial wall jet was produced by first increasing the inner-wall angular
velocity (relative to the outer wall) and then decreasing it. The generated current then
develops a normal-mode instability, in which the positive- and negative-vorticity layers
evolve into individual cores which form an azimuthally periodic array of dipolar
(‘mushroom-like’) eddies, each of which contains two vortices with oppositely
circulating streamlines. Because of the divergent radial geometry each dipole tends to
propagate independently and monotonically radially outwards from the wall until it
dissipates by viscosity. A quite different secular evolution occurs for a jet on a straight
wall, in which case adjacent dipoles do not separate but interact with each other.

Calculations of the nonlinear inviscid instability of a piecewise-uniform-vorticity
wall jet were made by Bidlot & Stern (1994), but they were limited to a relatively short
time interval because of the uncertainties on how to perform the contour dynamical
surgery with the required accuracy. In §2.1, finite-difference calculations are therefore
performed to examine the behaviour over longer time. It is shown that, in the fully
developed instability, the positive and negative vortices eventually change partners
(nearest neighbours), thereby reversing the outward movement from the wall, and
producing a counter-gradient momentum flux. A point-vortex model is then presented
in §2.2 to explain some of the properties of the fully developed timewise instability.
Since the question of the role of subharmonic instabilities is also of interest, some
results for this case are presented in §2.3. Finally, we remind the reader that in a
two-dimensional rotating barotropic flow, the Coriolis force is parametrically irrelevant
as its curl vanishes. The following results therefore apply to both rotating and non-
rotating cases.

2.1. E!olution of the wall jet using finite-difference numerical simulations

Figure 2 (after Bidlot & Stern 1994) shows the evolution of the most unstable normal
mode (of wavelength λ! 4.87) on an undisturbed laminar jet with a triangular profile
symmetric about y! 1 and with maximum velocity of unity. Two curvilinear material
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F 2. The nonlinear inviscid evolution of an unstable piecewise-uniform-vorticity wall jet with
unit maximum undisturbed velocity at y!w! 1. The displacements of the vorticity interfaces were
computed by contour dynamics from t! 5 to t! 30 (after Bidlot & Stern 1994). Note the negative
(darker) vorticity left behind (t! 30) on the wall as the dipole propagates away.

interfaces bound the outer layer of uniform positive (counterclockwise) vorticity, and
the y! 0 wall bounds the darker shaded negative (vorticity) layer. The initial linear
growth phase (t! 5) is followed by the displacement towards the wall of irrotational
fluid (unshaded) and by the formation (at t! 30) of fully developed dipolar vortices.
Note that as these propagate away from the wall, some of the negative vorticity is left
behind, resulting in a dipole which possesses a net positive circulation. If the outward
propagating tendency were to continue beyond t! 30, the result would resemble the
monotonic outward displacement (with eventual decay) observed by Etling et al.
(1993). Such a tendency, however, is highly unlikely in our case because the unbalanced
(net excess positive vorticity) dipole would tend to rotate in a large-diameter circle, so
that negative vorticity would eventually appear at larger distances from the wall than
positive vorticity, and this negative vorticity implies an unrealistic reversed mean
horizontal velocity. We shall show in the following numerical experiments that such a
monotonic outward propagation does not occur in the periodic rectilinear geometry
because the distance between two successive dipole pairs remains constant. In the
circular geometry of Etling et al. (1993) the azimuthal distance between radially
propagating dipole pairs increases, so that they do not interact strongly.

The finite-difference code of Bleck & Boudra (1986) was used to obtain two-
dimensional solutions of the Navier–Stokes equations at high Reynolds number for the
same undisturbed flow (t! 0 in figure 2) and the same perturbation wavelength λ, but
for longer times. Either a no-slip boundary condition (as realized experimentally) or a
free-slip condition was imposed on the wall. (One reason for including the latter
condition is that it provides some connection and comparison with the inviscid
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Experiment A Boundary condition Integration time T

E0 0 Free-slip 100
E1 5"10−$ Free-slip 200
E2 1"10−# Free-slip 100
E3 5"10−$ No-slip 100

T 1. Parameters of the numerical experiment. Free-slip ("u!"y! 0; !! 0) at the wall.
No-slip: (u! 0; !! 0) at the wall.

calculation of Bidlot & Stern (1994) ; also the free-slip boundary condition is
commonly used in oceanographic modelling studies (Haidvogel, McWilliams & Gent
1992).) In addition to the rigid wall at y! 0, the numerics require another rigid
boundary at some distant y. Calculations for two different Reynolds numbers (1!A)
were made in a cyclic square domain containing 200"201 grid points separated by the
non-dimensional distance d! 0.0487. The non-dimensionalization is based on an
undisturbed jet with a maximum velocity u! 1 at y! 1, decreasing linearly to
u! 0 at y! 0 and at y! 2. The time step is 0.02; table 1 lists the total integration time,
the non-dimensional viscosity (A), and the viscous boundary condition for the different
runs.

In addition, passive tracers are also used to diagnose the evolution of the initially
piecewise-uniform vorticity distribution. The initial tracer concentration is 1000 in the
negative-vorticity band, 500 in the positive-vorticity band and 0 at y! 2. The
numerical advection was performed with the Flux Corrected Transport (FCT)
algorithm (Boris & Book 1973; Zalesak 1979) which combines the smoothness
properties of the positive-definite upstream differencing scheme with the accuracy of
space-centred schemes, and controls the tendency to generate negative tracer
concentration when solving the tracer equation. A small diffusion coefficient (5"10−%)
is applied to the Fickian tracer equation.

Although all experiments are started with a small disturbance of wavelength equal
to the value for maximum growth on an initial piecewise-uniform mean vorticity flow,
the imposed initial perturbation was not the inviscid normal mode used in Bidlot &
Stern (1994), but consisted of a small transverse velocity !

&
!αy cos (2πx!4.87) with

α! 0.025 for y" 2 and α! 0.05 for y! 2. For A! 0, this perturbation (not shown)
evolved into an approximate normal mode after the short time interval of t! 5, as was
verified in run E0 (table 1) by measuring the downstream phase shift between vorticity
isopleths at different y-levels. Although the wave amplitude at this time was much
larger than initially, there is not much harmonic (nonlinear) distortion, and the
downstream phase shift (not shown) is in very good agreement with the linear modes
of Bidlot & Stern (1994). Furthermore, dipolar vortices similar to the ones in figure 2
were observed to form later, although they were accompanied by considerable
numerical noise (since A! 0). The noise level is reduced in the more relevant viscous
runs E1, E2 and E3 (table 1). Although the diffusion of the initial vorticity
discontinuities for these cases precludes quantitative comparisons of phase shift with
the theory of Bidlot & Stern (1994), estimates made at t! 10 were consistent with those
obtained for A! 0. In the remainder of this section, vorticity (figures 3, 5 and 7) and
tracer distribution (figures 4, 6 and 8) are displayed and discussed at several
characteristic times.

We first concentrate on the free-slip experiments E1 and E2 and then compare their
evolution with the experimentally realizable no-slip counterpart E3. In both E1 and E2,
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F 3(a–f ). For caption see facing page.

the unstable waves evolve at t! 30 (figures 3a, 4a, 5a, 6a) into fully developed
vorticity dipoles similar to the inviscid model (figure 2) at these times. The inclination
of the dipole axis (like the tilt of the phase lines in the normal mode) is such as to
transport momentum to larger y (cf. the mean profiles and the later discussion). As
time increases, the slope of the dipole axis in E1 (cf. figures 3b, c, 4b, c) changes and
the separation between the centroids of neighbouring positive and negative members
increases ; likewise for the larger-viscosity run E2 (figures 5b, c, 6b, c). Thus the phase
locking (of the linear growth stage) between the vortices in each dipole is broken in the
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F 3. Vorticity fields for run E1 (free-slip boundary conditions, A! 5"10−$) at different
representative times of the numerical integration. The contour interval is 0.1. The undisturbed
triangular jet and the fundamental wavelength (λ! 4.87) are the same as in figure 2. Note that the
negative vortices move downstream faster than the positive ones.

latter stage of dipole development, and the negative members move downstream more
rapidly. Eventually, there is a change of ‘partners ’ (nearest neighbour) and a reversal
of the slope of the axis of the new dipoles as seen in figures 3(d, e), 4(d, e) for E1 and
figures 5(d, e), 6(d, e) for E2. It is visually apparent from figure 5(d ) that the
magnitude of the integrated negative vorticity in the dipole is less than the integrated
positive vorticity, and this important property is discussed below in detail. The slope
reversal of the dipole axis is also accompanied by a reversal of the outward movement
of the eddies (cf. figures 3d, e, f for E1 and 5d, e for E2). Another important effect is
the entrainment of the irrotational fluid (initially at y! 2) inside the new mean shear
flow (cf. figure 5d ) ; this is clearly seen in the tracer concentration plots (figure 6d, e)
where a band of concentrated fluid at the outer edge of the shear layer seals off an area
of essentially zero-concentration fluid from the overlying zero-concentration area. (A
similar kind of entrainment process was also proposed by Stern (1991) in a contour
dynamics calculation of the interaction between a monopolar vortex and the edge of
a variable-vorticity shear flow.) With increasing time (figures 3e, 4e, 5e, 6e) the dipoles
retreat toward the wall until they encounter it, and in the case of the more-viscous run
E2 the dipoles (figures 5 f, 6 f ) become elongated in the new boundary layer, whereas
the dipoles in E1 keep their identity longer until a second exchange of partners occurs
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(a) t = 30 (b) t = 50

(c) t = 80 (d ) t = 90

(e) t =120 ( f ) t =150

F 4(a–f ). For caption see facing page.
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(g) t =160 (h) t =170

(i) t = 200

F 4. Tracer concentration fields for run E1 (free-slip boundary conditions, A! 5"10−$) at
different representative times of the numerical integration. The contour interval is 50 and the colour
code is given in the text. The diffusivity is an order of magnitude smaller than the viscosity.

(figures 3 f, g, h, i and 4 f, g, h, i), although not as far from the wall as in the previous
exchange (figure 3d ). A quite similar vorticity evolution occurs for the no-slip case E3
(figures 7, 8), and the completion of the entrainment process is again indicated by a
band of concentrated fluid (figure 8 f ) at the outer edge of the shear layer.

Figure 9, for run E3 at t! 70, emphasizes the important kinematical difference
between the monopolar velocity (or streamline) field in the unstable jet and the dipolar
vorticity field. The predominant velocity structure consists of a periodic array of large
eddies with an inner core of positive vorticity surrounded by an outer rim of negative
vorticity, but with both regions circulating counterclockwise. Much smaller regions
with closed clockwise streamlines lie between and below the big eddies. The dominant
structures which are clearly visible in the dye pattern of the eddies in the laboratory
experiment (figure 1b) correspond to the large eddies. This is this structure of combined
positive!negative vorticity which will be modelled later on (§3.1) as a single eddy. An
additional property of interest is the timewise evolution of the mean velocity field
(figure 10), which shows that during the ‘ instability phase’ (t" 50) there is an outward
eddy diffusion of momentum, but in the subsequent ‘entrainment phase’ there is
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F 5. As figure 3 but for run E2 (free-slip boundary conditions, A! 1"10−#).

countergradient momentum flux which increases the maximum mean velocity as the
eddy energy decreases. Also note that while u" (0)! 0 for the no-slip case, u" (0)! 0 is
positive at t! 50) for free slip.

One major difference between free-slip and no-slip runs can be seen at t! 50 for E3
(figure 7a, just prior to the time when the vortices retreat to the wall) when compared
to equivalent times for E1 and E2 (figures 3, 5) : the thin layer of negative vorticity
present near the wall in the no-slip case E3 is absent in the free-slip case (figures 3b, c,
5b). In both cases Stokes theorem requires the total spatially averaged vorticity to be
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(a) t = 30 (b) t = 40

(c) t = 50 (d ) t = 60

(e) t = 70 ( f ) t =100

F 6. As figure 4 but for run E2 (free-slip boundary conditions, A! 1"10−#).
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F 7. As figure 3 but for run E3 (no-slip boundary conditions, A! 5"10−$). This is the most
important run. Note that the integrated negative vorticity in each dipole (far from the wall) is less
than the integrated positive vorticity.

proportional to the average wall velocity u" (0) and therefore this vorticity must vanish
when the no-slip boundary condition applies. Therefore an excess of positive vorticity
in the dipoles (figure 7c) is needed to compensate for the negative vorticity present in
the thin layer near y! 0. The same excess of positive vorticity is required for the
dipoles in the free-slip cases because (figure 10a, b) u" (0)! 0 and because the mean
vorticity is zero on the wall. We emphasize this property of the eddy (excess positive
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(a) t = 50 (b) t = 60

(c) t = 70 (d ) t = 80

(e) t = 90 ( f ) t =100

F 8. As figure 4 but for run E3 (no-slip boundary conditions, A! 5"10−$). This clearly shows
that irrotational fluid initially outside (y! 2) the jet becomes irreversibly entrained inside.
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F 9. The total velocity vectors are plotted for E3 at t! 70 where the eddies are furthest from
the wall. Note the monopolar character of this field, as compared with the concomitant dipolar
vorticity field.
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vorticity) at the end of the instability phase as it will be used in the subsequent
consideration of the downstream evolution of a wall jet (e.g. figure 1b).

2.2. A point-!ortex model of the dipoles’ e!olution

In order to emphasize the dynamical importance of the aforementioned vorticity
imbalance, the evolution of the periodic array of dipolar eddies (cf. t! 30 in figure 3)
with distributed vorticity is represented by a simple model consisting of a periodic
array of co-linear point vortices of strength Γ

!
!Γ! 0 and separation λ, beneath

which is another co-linear array of strength Γ
"
!$εΓ and separation λ, where 0" ε

" 1. This inequality incorporates the main effect of the wall, namely that part (1$ε)
of the negative vorticity which is left behind on the wall after the instability wave
develops into the dipole. This effect may be attributed to the vanishing normal
component of the velocity at the wall (in the inviscid case, figure 2), and!or to the
vanishing of the tangential velocity at a non-slip wall (in the viscous numerical
problem). In the present inviscid point-vortex model (figure 11), with the wall
completely removed, our purpose is to see to what extent this simplification is able to
explain the behaviour (e.g. exchange of partners) in §2.1. It is recognized that if the
lower set of vortices is too near a wall, an entirely different and dynamically irrelevant
behaviour would be obtained.

Let Z
!
(t) denote the complex vector position of any designated positive vortex in the

periodic array, and Z
"
(t), the position of its nearest neighbour in the negative array at

t! 0. The velocity field produced by each array at any field point is well known (Lamb
1945), and from this we get the following equations of motion for the two
representative vortices :

dZ
!

dt
!

iΓε

2λ
cot

π(Z
!
$Z

"
)

λ
, (1)

dZ
"

dt
!

iΓ

2λ
cot

π(Z
!
$Z

"
)

λ
, (2)

where the bar denotes the complex conjugate. From this it follows that Z
!
!ε$Z

"
is

independent of time, and also

dr

dt
!

iΓ(1$ε)

2λ
cot

πr"
λ

, (3)

where r!Z
!
$Z

"
! r

x
#ir

y
(4)

is the separation between the vortices in question. Equation (3) implies that the motion
of the weaker vortex ($εΓ) relative to the stronger one is the same as that of a passive
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tracer particle placed at a distance r from a vortex of strength (1$ε)Γ (located at the
origin (0, 0)) in a single periodic array along the real axis. The Lagrangian path of such
a particle is merely the streamline ψ of the velocity components of (1) and (2) as given
in Lamb (1945), namely

ψ! cosh
2πr

y

λ
$cos

2πr
x

λ
. (5)

All streamlines with #ψ#! 2, give single-valued r
y

with r
y
(t)# 0, for all

$$" r
x
"$ ; otherwise (#ψ#" 2) the streamline (and the parcel path) is a closed

curve (‘cat’s eye’) encircling the designated positive vortex Z
!
at all times. In the former

case (#ψ#! 2), a negative vortex Z
"
is sufficiently far from the positive vortex Z

!
that

it is not captured, but is carried continuously downstream on a sinuous path which
always lies below the time-dependent path of the positive vortices. Any designated
negative eddy will continually change partners (i.e. its nearest positive neighbour), and
the transverse velocity of each array will oscillate in time, depending on whether the
negative vortex is leading or lagging its present partner. This conclusion holds for all
ε. From (1)–(4), it also follows that

d

dt !Z!
$

εr

1$ε"! 0 (6)

and therefore the horizontal (x) components of displacements are related by

x
!
(t)$

ε

1$ε
r
x
(t)! constant. (7)

It is easy to see that the inequality ψ! 2 is satisfied for E1 (figure 3b) since 2πr
y
!λ

$ 1.71 [or cosh (2πr
y
!λ)! 2.85] and 2πr

x
!λ$ 2.35 [or cos (2πr

x
!λ)!$0.70]. The

same is true for E2 and E3 (figures 5b and 7b, respectively). To compare the results of
(7) for the simple model with the numerical calculations (§2.1), the boundary of the
positive (negative) eddy was taken to be at the 0.1 ($0.1) vorticity contour of E2
(figure 5). The numerically computed ratio Γ

"
!Γ

!
of the integrated vorticities within

these boundaries then gave an approximate value of ε at each time, and the centroids
of these two areas provide the respective position vectors Z

!
,Z

"
; r

x
!x

"
$x

!
is then

plotted (figure 12) for run E2 as a function of x
!
. Also listed are the corresponding

values of ε, which have an average ε# ! 0.7. Nominal values of ε! 1 occurred at the
beginning and at the end of the run, but these correspond to dynamical stages not
relevant near the time where dipole interaction leads to the exchange of partners, and
consequently these points (ε! 1) are not included. The remaining central points (with
ε" 1) have been bounded (figure 12) by two straight lines with essentially the same
slope, and by using this in (7) we can predict an ε of 0.8. Since this is consistent with
the average ε$ ! 0.7 obtained from the numerical simulation (§2.1) the applicability of
(7) is verified. The model (figure 11) is also able to qualitatively explain the variation
in the ordinate of the centroid of the E2 vortices as given by the plot of y

!
(x

!
) in figure

12. The important conclusion which will be used in §3 is that near the end of the
instability phase the behaviour of the eddies in §2.1 can be explained by assuming each
one contains a net positive vorticity (ε" 1).

2.3. The role of subharmonic instabilities

In contrast to the separation of the jet in figure 1(b), the long-term evolution in the
foregoing spatial instability is such that the current remains bound to the wall. The
question then arises as to whether this will change when additional disturbances of
larger horizontal scale are introduced. In the case of non-rotating free jets and shear
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independent value of ε, to test the ability of the point vortex model (figure 11) to explain the E2 run.
(b) The y

!
variation. See text.

layers, the superposition of a subharmonic wavelength on the most unstable mode
induces pairing of adjacent vortices, which results in a downstream increase of the
width of the current (Saffman 1995). A similar qualitative behaviour is expected in our
two-dimensional wall jet, and one may ask whether this effect will be indicative of the
kind of separation observed in figure 1(b). The numerical simulation of §2.1 with no-
slip boundary conditions and with A! 5"10−$ was therefore repeated by adding an
initial disturbance with twice the x-wavelength and with the same amplitude as used
in §2.1. In addition, the width of the computational domain was doubled in the
y-direction in anticipation of an increase in the transverse spread of the current. The
evolution of the vorticity plots at times prior to t! 30 (figure 13a) is similar to that
which occurs in the absence of the subharmonic, except for a modulation produced by
the longer wavelength, such that alternate dipoles appear further from the wall. While
these dipoles continue their outward propagation, the inner dipoles reverse the slope
of their axis (t! 65; figure 13b) and move back toward the wall ; there is also an
accumulation of negative vorticity on the wall as in the run without subharmonics
(§2.1). Note that these inner dipoles are smaller than the outer ones, in which the
positive vortex is especially large. The negative vortex in the outer dipole is in the
process of being strained due to the opposing circulation of the adjacent positive
vortices and this effect is clearly shown at t! 90 (figure 13c) where half of the outer
negative vortex has been stripped away from its outer positive partner by the inner
positive vortex. This removal of the outer negative vorticity, in addition to the changed
inclination of the outer dipole axis, is indicative of the fact that the maximum outward
extent of the current has been reached. In fact, the major coupling of the outer positive
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F 13. Vorticity fields for the subharmonic run (no-slip boundary conditions, A! 5"10−$) at
different representative times of the numerical integration. The contour interval is 0.1. The
fundamental wavelength (λ! 4.87) is the same as in figure 2.

vortex is not with the outer negative vortex, but with the nearest negative vortex on its
opposite side; the interaction of these is such as to move the outer positive vortex back
to the wall as appears at t! 100. As already mentioned, this is the signature of a
counter-gradient momentum flux. As late as t! 140 (figure 13d ), there is little
indication of any further outward eddy diffusion. Although this complex process is
clearly worthy of further investigation, relevant to the downstream increase in jet
width, there is no indication that the subharmonic pairing process acting alone can
produce a complete separation from the wall (figure 1b), and other processes must be
considered.

3. The spatial evolution of a jet emerging from a source on the wall

The lack of periodicity in the spatial evolution of the wall jet poses a more
complicated and difficult problem that the temporal evolution one discussed in §2.
Some insight can be gained, however, by considering the full instability eddies as an
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F 14. A heuristic model to explain the separation in figure 2. Point vortices (strength Γ
&
) emerge

from a ‘nozzle ’ (the dashed-box at x" 0). Z
I
(t) denotes the position of the Ith vortex after it emerges

from the nozzle. See §3.1.

initial condition and by modelling them (§3.1) as point vortices periodically emitted
from a source region on the wall. An emitted volume flux is also prescribed from this
region which, combined with all the vortex interactions, carries the eddies downstream.
From the major conclusion of §2 (see also discussion of figure 9 in §2.1), we assume
that each of these periodically emitted vortices has a small net positive circulation, but
no explicit dipolar vorticity structure. The statistical properties of the ensemble of
slowly decaying vortices will provide the basis for the experimental investigation of the
separation point in §3.2.

3.1. A discrete-!ortex interaction model

The temporal evolution (§2) of periodic disturbances in the laminar wall jet contains
important effects which are observed in the spatial evolution experiment (figure 1b),
such as the fully developed eddies which propagate downstream. (Compare the tracer
pattern in figure 8a, and the associated counterclockwise velocity structure (figure 9),
with the dye pattern in figure 1b.) We may also assert (on the basis of §2.2) that each
eddy in figure 9 has a small net positive circulation equal to the difference between the
positive vorticity in the core and the negative vorticity which tends to be wound around
the circumference of the eddy. However, the later stage of the periodic model (§2) in
which the dipole members retreat toward the wall and exchange partners is not
observed in figure 1(b), and the periodic model is also incapable of explaining the
distance from the source region at which the eddies abruptly separate from the wall and
gather in a large turbulent plume. A heuristic explanation of this will now be sought
using a simple model which includes the following effects : (a) the mutual interaction
between the wall eddies due to their aforementioned net positive circulation, (b) the
advection of the eddies by the divergent mean flow emerging from the source region
and (c) the downstream decrease of circulation in each eddy due to Ekman bottom
friction. Any explicit effect of the distributed negative vorticity around the rim of each
eddy will be neglected, as well as the lateral viscosity. Note that the Ekman boundary
layer effect depends on the Coriolis parameter, and this is the only place where it
appears parametrically in the two-dimensional theory.

The mathematical model illustrated in figure 14 consists of positive point vortices of
strength Γ

&
periodically emitted at (x! 0, y! y

&
) from a source region (‘nozzle ’) at

x" 0, and of a wall at y! 0. Inside this (dashed-box) region there are ‘controlled’
point vortices which produce the external flow mentioned in (b), as well as supplying
the ‘active ’ vortices at (x! 0) at equal time intervals. Suppose that at t! 0, there is only
a semi-infinite array of controlled vortices inside the box (x% 0) with constant strength
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Γ
&
, constant separation D, constant distance from the wall y

&
, and moving with

constant speed U
&

parallel to the wall. Suppose these values are controlled (by
unspecified external forces) to have the same values at all subsequent times. When the
leading Γ

&
vortex reaches the exit (x! 0) of the source region, it is no longer

constrained but is free to move under the influence of the external (x! 0) flow field
induced by all the vortices inside the source region, as well as by the field produced by
all the free vortices previously emitted. Furthermore, suppose that the circulation Γ(t)
of each of the free vortices decreases at a rate s−!, where s can be thought of as the
Ekman ‘spin-up’ time. This parameterization is related to the theory of quasi-
geostrophic eddies, in which case bottom friction causes relative vorticity to decay
exponentially in a spin-up time which is inversely proportional to the square root of the
Coriolis parameter.

If at time t, there are N such emitted vortices, with Z
I
(t)!x

I
#iy

I
denoting the

complex coordinate (i! ($1)!/") of the I"N member (and Z
I
the complex conjugate),

then

dZ
I

dt
!

i

2π !
N

J=!
J#I

Γ
J
(Z

I
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J
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J
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J
)−!
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&
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N
" t" t
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, (8)

Z
&
(t)!$D#(t$t

N
)U

&
#iy

&
, (9)

Γ
J
(t)!Γ

&
exp ($(t$t

J
)!s), (10)

where t
J

is the time of emission of the Jth vortex, and Z
&
(t) is the position of the leading

vortex inside the box. The first term on the right-hand side of (8) is the velocity induced
on I by all the other free vortices, the second term is the velocity induced by the images
of all the free vortices, and the last term is due to the flux emerging from the source
region as parameterized by the irrotational velocity produced by the semi-infinite array
of controlled vortices.

The value of U
&

which we decided to use for the internal propagation of the
controlled vortices in the source region was half of the uniform free velocity of a doubly
infinite array of uniformly spaced vortices above a wall, and according to Lamb (1945)
this is

U
&
!

1

2 !Γ&

2D

1#e−$πy&/D

1$e−$πy&/D
" . (11)

For the results presented below, the equations were non-dimensionalized by taking
y
&
! 1 (as the length unit) and Γ

&
! 4; calculations were made only for D! 2, so that

the corresponding value of U
&
! 0.50187 determines the velocity scale. The initial

condition was Z
!
(0)! i, Z

&
(0)!$2#i ; and a new vortex is emitted every D!U

&
$ 4

time units. For the final results given below, a second-order Runge–Kutta time step of
1!25 was used for s! s

!
! 25. The calculation extends over a time interval such that

100 vortices were emitted; for the less-viscous case in which s! s
"
! 35, 150 vortices

were emitted. In each case the average centroid position

%x&#i%y&!
1

N !
N

I=!

Z
I

(12)
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Γ

&
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&
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!
.

was computed as well as the circulation-weighted displacement

!
N

I=!

Γ
I
x
I
#i !

N

I=!

Γ
I
y
I
! !

N

I=!

Γ
I
Z

I
. (13)

Note that the continuum limit of (13) is !!dxdy ζ(x, y, t) (x#iy). This first moment of
the vorticity, (13), is dynamically more significant than the average centroid position
(12), which gives undue weight to the large number of dissipated vortices at large times.

The computed centroid coordinates from (12) for s! s
!
! 25 are plotted in figure 15

at intervals of 40 time units, and are connected by straight lines. An approximate (or
slowly varying) asymptote at abscissa x'(s

!
)' 23 appears where %y& starts to increase

rapidly. A scatterplot (not shown) of all 100 point vortices at this time (t! 438.4)
revealed a line of ‘young’ vortices propagating rapidly along the wall to a distance
from the nozzle approximately equal to this x'(s

!
), at which point they move rapidly

away from the wall and enter a broad elliptical region containing rather uniformly
distributed vortices with a maximum x! 43 and a maximum y! 19. Since many of the
latter are very ‘old’ (Γ(t

I
))( 0 they merely constitute passive tracers whose individual

positions are subject to significant numerical errors despite the small time step (1!25).
The average displacement computed is however believed to be accurate to better than
10%. Of greater accuracy and dynamical significance are the circulation moments (13)
plotted as a function of %x& in figure 15, where asymptotic values of (13) are clearly
indicated at large time t. Qualitatively similar results for s! s

"
! 35 are indicated in

figure 16. An extrapolation of the %y& curve suggests an approximate asymptote,
corresponding to that in figure 15, of x'(s

"
)' 35, and the ratio for the two runs is

x'(s
"
)

x'(s
!
)
'

35

25
.

The somewhat fortuitous agreement of this with s
"
!s

!
suggests that the point vortices
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propagating along the wall will erupt into a plume at a downstream distance x' which
scales with the spin-up time multiplied by a scale velocity U

&
, i.e.

x'(s)$ sU
&
, (14)

provided y
&
and Γ

&
are held constant. Figures 15 and 16 also show that for equal values

of %x& (e.g. 23) the value of %y& for s! 35 is much less than the value for s! 25. In
the latter case, the transverse displacement induced by (young) upstream vortices on
(old) downstream ones is larger than for the s! 35 case. Although it is not surprising
that the asymptotic !Γ

I
x
I
! 590 for s

"
! 35 is larger than the !Γ

I
x
I
! 295 for

s
!
! 25, the ratio of the moments (590!295) is much larger than s

"
!s

!
, which suggests

that these moments depend on the number N' of vortices having significant strength
at a given time. This N' depends not only on the emission frequency (U

&
!D),

but also on their decay times, i.e. N'$ sU
&
!D. Thus !Γ

I
x
I

not only scales with
Γ

&
(sU'), for reasons previously given, but also with some unknown function of

N'! sU
&
!D which apparently increases rapidly with its argument. Since y

&
! 1 is the

same for both runs, the larger value of !Γy for s
"
! 35 can also be attributed to the

larger value of s
"
.

Although we should not attempt any direct connection between figure 1(b) and this
mathematical model, the result suggests a mechanism, testable as indicated in the
following laboratory experiments, whereby young instability eddies catch up with older
ones and gradually push them away from the wall.

3.2. Laboratory experiments

In a rapidly rotating fluid, the decay of eddies, or the ‘spin-up time’, is proportional
to H!(νf )!/" where H is the depth of the layer, f is the Coriolis parameter, and ν is the
molecular viscosity. Equation (14) suggests that an appropriately defined separation
distance x

s
of the wall jet should scale with the product of this spin-up time and a

typical jet velocity, such as Q!LH, where Q is the volume discharge, and L is the
transverse width of the current. This asymptotic scale distance may be rewritten as
x
s
! d

s
(H!L), where

d
s
!Q!(H(νf )!/"). (15)
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(a) (b)

F 17. The present experiment for f! 1.2 s−!, Q! 12.0 cm# s−! at two times ((a) t! 2 min 29 s
and (b) 6 min 25 s), showing the fully developed instability eddies, their downstream propagation, the
separation point x

s
(the furthest downstream distance on the wall where dye appears), and the merger

of eddies in a large plume extending normal to the wall.

Since an appropriate and unique experimental L is difficult to define or measure, we
decided to look for a correlation between (15) and x

s
, this being simply taken as the

downstream position x
s
(t) of the leading edge of the dyed fluid on the circular wall.

The experimental set-up was similar to that used by Stern & Whitehead (1990), and
the reader is referred to that paper for measurements of the mean velocity in the
barotropic portion of the jet. The tank (figure 1b) diameter was 213 cm, the free surface
height was 20 cm, and the jet was produced by the flow from three horizontal nozzles,
which were 4.76 cm long and 0.14 cm in diameter. These were mounted above each
other 5.0 cm apart, and directed parallel to the wall in the same sense as the rotation.
Thermal uniformity (better than 0.1 %C) of the tank and source waters was assured
before starting, and the top of the tank was covered by a frame-mounted cellophane
wrapper, through which continuous video pictures could be taken by a distant
overhead camera. The density change in the wall current induced by the neutral dye is
O(10−%) and makes a negligible baroclinic contribution to the current’s strength. The
three thin jets issued from the nozzles emerged 10 cm downstream, and at 20–30 cm
downstream, the two-dimensional Taylor-column effect could be seen in the form of
the instability waves and eddies. The nozzle orientation (as well as H ) was kept
constant in all of the following runs, each of which was begun by turning on the source
pump after the tank rotation rate had been constant for at least eight spin-up times.

A non-rotating ( f! 0) run indicated qualitative consistency of the mean velocity
with that of the classical wall jet, and twenty runs were taken with various
combinations of f! 0.4, 0.6, 0.8, 1.8, 1.2 s−!, and Q! 3.2, 3.7, 4.8, 6.3, 8.1,
16.3 cm# s−!. All of these produced dye patterns qualitatively similar to the earlier one
(figure 1b) in which barotropic instability waves were seen to evolve into a series of
round cyclonic eddies separated by entrained (clear) fluid. Each eddy propagated
downstream with diminishing speed, eventually to be displaced normal to the wall,
where it merged with an older eddy inside the large plume (figure 17). By sprinkling
small paper pellets in the upstream wall jet, we could see that shortly before reaching
the separation point virtually all of the current was deflected away from the wall with
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a velocity comparable with the typical upstream value. The separation point x
s
, on the

other hand, drifted downstream at a much slower rate and in some cases came to a
virtual halt. This occurs for all Q in the runs (figure 18a) with the highest rotation rate
of f! 1.2 s−!. An asymptotically constant x

s
(t) also occurs for f! 0.8 s−! (figure 18b)

at the lower flow rates (Q% 8.1 cm# s−!) ; and for f! 0.6 s−! (figure 18c) at Q%
6.3 cm# s−! ; and for f! 0.4 s−! at only the lowest flow rate of Q! 3.7 cm# s−!. A steady
asymptotic value for x

s
was not reached for the other runs (those at large Q and at

smaller f ) in which the measurement was stopped because of the large displacements
and because it seemed as if the separation point was going to continue to drift around
the circumference. The experiments can also be characterized by the Rossby number
Ro!Q!fHL". A typical estimate of the width L of the jet at the onset of the shear
instability is of the order of 5 cm (see for example figure 1b) which produces a range
in Rossby number from 0.006 to 0.08. It is found that a steady asymptotic value of x

s
was reached for all runs with Ro" 0.03.

There was a clear and distinct structural difference in the plume between those runs
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nose of the dye pattern in the non-rotating case.

in which the separation point stopped and those in which it moved. Visual observations
were conducted in three ways: watching the original experiment, viewing the tape in
real time, and viewing the tape in fast forward. If the separation point stopped, some
clockwise eddies coming off the wall paired with counterclockwise eddies offshore, and
the large plume of dye moved offshore in a direction roughly normal to the wall. One
could see both counterclockwise and clockwise circulation patterns offshore, and
regions of assorted sizes would pair up into counterclockwise and clockwise pairs that
had a net offshore movement.

In contrast, if the separation point continued to drift slowly along the wall, fewer
clockwise eddies were visible as partners to the counterclockwise eddies that moved
offshore. The entire plume tended to be more circular and formed a gyre with an
overall counterclockwise circulation. Those clockwise eddies seen offshore were
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4. Conclusions

The first part of this paper (§2) concerns the long-time evolution of a normal-mode
disturbance in a two-dimensional wall jet at large Reynolds number. It is shown that
the well-known dipolar eddy appearing at the end of the linear growth phase does not
continue propagating away from the wall because the integrated positive vorticity in
the dipole exceeds the negative vorticity, and because the interaction of all the elements
in the periodic (rectilinear) array causes the negative-vorticity patches to propagate
downstream faster than the positive ones. The resulting change in nearest neighbour
causes an entire eddy to reverse its outward displacement and to move back towards
the wall. This phase was successfully explained in §2.2 by a simple model consisting of
two arrays of point vortices with unequal strength, and located relatively far from the
wall. At later times the more detailed numerical calculations (§2.1) also reveal a
counter-gradient momentum flux involving an increase of mean field energy, a decrease
in eddy kinetic energy, and a completion of the entrainment process (figure 8) in which
irrotational fluid is irreversibly incorporated inside the new mean vorticity field formed
by the instability.

The second part of this paper is concerned with the mechanism producing the
separation from the wall of the two-dimensional jet emerging from a source region; this
involves the somewhat different problem of spatial evolution. Nevertheless, the
foregoing temporal instability process is relevant up to the time of maximum
displacement of the dipolar eddy from the wall (figure 9). In this figure we note that
each of the periodic eddies consists of a counterclockwise-circulating velocity field,
with the clockwise vorticity located on the outer rim. Since the point-vortex model
(§2.2) is able to explain the dynamics of this phase, we used such a model to elucidate
aspects of the separation mechanism observed in figure 1(b). The mathematical model
defined in §3.1 consists of monopolar point vortices representing the net positive
circulation of the eddy (figure 9) with no explicit negative vorticity. These vortices are
periodically emitted from a nozzle along with an irrotational mass flux. A crucial
additional ingredient is that the strength of each emitted vortex decreases at a rate
inversely proportional to the spin-up time, the latter being related to the effect of
Ekman friction on a real eddy. The numerically computed statistics of a large number
of emitted vortices suggest that the average distance from the source at which the
vortices separate from the wall is proportional to sU

&
, equation (14).

The last part of this paper tests this idea by means of a laboratory experiment in
which the spin-up time is varied by changing the Coriolis parameter f, for various
volume flux rates (Q) emerging from nozzles placed on the nearly straight vertical wall
of a tank. It was found (figure 19) that for appropriately large f and small Q, the
downstream position x

s
of the wall separation point (as determined from the leading

edge of the dye (figure 17)) increases with the scale distance d
s
(15), which is the decay

time H(2f )−!/" times the velocity Q!H ". This supports the conclusion that bottom
friction is important for the spectacular separation (figure 17) of the two-dimensional
wall current.

It should be mentioned that f could be parametrically important for the two-
dimensional flow in another sense, besides the Ekman layer. The dynamically
significant width L of the wall jet which evolves ($ 20 cm) downstream from the
nozzles depends (in a complex way) on f as well as on the three-dimensional
turbulence; it would be worthwhile to eliminate this effect by using smoother inlet
conditions. We plan to include the effect of the Ekman layer in numerical calculations
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of the spacewise evolution of a jet flowing from a source into a region of open
boundary conditions.
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