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Abstract. Saddle points between neighboring deep 
ocean basins are the sites of unidirectional flow from one 

basin to the next, depending on the source of bottom 
water. Flow in these sites appears to be topographically 
controlled so the interface between the bottom water 

and the water above adjusts itself to permit bottom 
water flow from the basin that contains a source of 

bottom water into the next. Examples in the Atlantic 
include flow in the Romanche Fracture Zone, the Vema 
Channel, the Ceara Abyssal Plain, the Anegada-Jung- 
fern passage, and the Discovery Gap, but there are many 
more. Theoretical predictions of volume flux using a 

method that requires only conductivity-temperature- 
depth data archives and detailed knowledge of bathym- 
etry near the saddle point are compared with volume 
flux estimates using current meters and/or geostrophic 
estimates for seven cases. The ratio of prediction to 
volume flux estimate ranges from 1.0 to 2.7. Some ocean 
straits that separate adjacent seas are also found to 
critically control bidirectional flows between basins. 
Theory of the influence of rotation on such critical flows 
is reviewed. Predictions of volume flux in eight cases are 
compared with ocean estimates of volume flux from 
traditional methods. 

1. INTRODUCTION 

For over 100 years, topographic control of fluid flow- 
ing through constrictions has been studied in a number 
of situations involving compressible, free surface, strat- 
ified or rotating fluid. One relatively recently developed 
class of these problems combines stratified and rotating 
constraints on the fluid as it passes over bottom and 
sidewall constrictions. This class has come to be loosely 
termed "rotating hydraulics." Problems are typically 
solved with ocean or atmospheric examples in mind. 

This paper reviews a number of ocean-related aspects 
of this problem. It does not exhaustively cover all the 

ß theoretical studies to date. Rather, the emphasis is on 
intercomparison of theoretical predictions of volume 
flux with oceanographic estimates based on direct mea- 
surements. The intent is to assess the practical useful- 
ness of the theory presented here to knowledge of the 
ocean through quantitative comparison between data 
and calculations. 

We first describe the simplest concept of critical con- 
trol of a nonrotating fluid. Consider a simple frictionless 
fluid flow problem as sketched in Figure 1, where water 
with a surface that is free to deform in a field of gravity 
of depth H and velocity V is flowing along a channel (just 
like water flowing in a river). We take this to be a 
specified upstream state. Now let us find its response as 
it encounters a bump of size b. The fluid must conserve 

mass as it flows over the i•ump. Since we approximate 
water as incompressible for such applications in the 
ocean, the mass flux conservation is equivalent to con- 
stancy of volume flux along the channel in steady state. 
If the surface of the fluid were to remain flat over the 

bump, the fluid would have to speed up to maintain the 
same volume flux. In addition, an inviscid fluid speeding 
up has lower pressure (often called the "Venturi ef- 
fect"). Thus one might expect a free surface to be lower 
over the bump, as is sketched at the top of Figure 1. It is 
well known that this happens as long as the upstream 
flow is below a certain speed. As the bump becomes 
bigger, progressively lower surface height is expected. 

Naturally, bump height cannot be increased indefi- 
nitely. It certainly cannot be great enough to meet the 
lowered surface, since in that case no volume flux could 
pass over the bump. In fact, the bump reaches a certain 
height (called "critical height") which causes a dilemma. 
For bump heights above this value the volume flux, 
which is a product of (finite) velocity and water depth 
(from lowered surface to the top of the bump) cannot 
exist at the upstream value. 

The only resolution is for some upstream condition to 
be changed. Velocity V could be changed, keeping H 
constant, or H could be changed, keeping V constant. In 
either case the product VH is changed. Usually, in a 
physical problem the upstream state will change to the 
value that produces a critical height at the bump. In that 
case the upstream conditions are said to be "critically 
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Figure 1. Sketch of an idealized flow of fluid along a channel 
with upstream velocity V and depth H, and the adjustment to 
a slowly increasing bottom b. The deflection downward of the 
interface is h. 

controlled" by the bump. If the bump were to become 
even slightly shallower, the upstream state would have to 
change yet again. When flow is critically controlled, it 
possesses different interface profiles upstream and 
downstream of the bump as shown at the bottom of 
Figure 1. 

The state shown at the bottom of Figure 1 can occa- 
sionally be found in physical oceanography. Dense water 
accumulates in a basin from either surface cooling (in 
polar latitudes), inflow from an adjacent basin, or sur- 
face evaporation. The water above sill depth then flows 
out through the passage. We infer that as the dense 
water accumulates, the interface of the dense water rises 

until it is above sill depth of the deepest passage that 
drains the dense water to another basin. When the 

outflow rate equals the accumulation rate of dense wa- 
ter, the interface ceases to rise and steady state is 
achieved. Volume flux of such outflows are useful mea- 

surements of interbasin water exchange. Hence they are 
of fundamental interest in physical oceanography and 
ocean climate considerations. 

We review here some theoretical studies of the criti- 

cal control problem for rotating fluids with possible 
ocean applications. All have been conducted over the 
past 25 years. Geometries include not only deep pas- 
sages, which we will call "sills" where one water mass 
flows between basins, but also surface passageways 
(straits) where flows in both directions interchange wa- 
ter masses. A particular case in which there are bound- 
aries with many gaps, so that one strait might support 
flow in one direction, but return flow is elsewhere (as 
elucidated by Nof and Olson [1983] and Nof [1995a, b]), 
will not be reviewed here. Sections 2 and 4 summarize 

theoretical aspects of sill flows and long strait flows, 
respectively. Sections 3 and 5 discuss ocean observations 
of such flows and some comparison with theory. 

2. SILL FLOW CALCULATIONS. 

As in our introduction, we take as our starting point 
inviscid equations of steady fluid motion including frame 
rotation. The rotation vector is aligned with gravity for 
simplicity. The equations of momentum are 

1 
u'. Vu' +ffcx u'- --Vp - #fc (1) 

P 

and' conservation of incompressible volume flux is 

v. u' = o (2) 

where u' is fully three dimensional. The primary justifi- 
cation of using four terms in (1) is simplicity (Occam's 
razor). Put another way, everything is included that is 
needed to discuss the issue, but nothing is added to 
distract us from the issue. 

Restricting flow to two layers separated by an inter- 
face at z = h(x, y), with density of the motionless top 
fluid being p and the bottom fluid being p + Ap, and 
assuming slow variation of flow in the lateral directions, 
(1) and (2) reduce to a "reduced gravity" expression for 
flow in the bottom layer 

gap 
u. Vu + f/c x u = Vh (3) 

P 

where u is two-dimensional in the horizontal plane. 
The first term in (3) represents the transport of mo- 

mentum by the fluid. It corresponds to the force due to 
inertia of the fluid as it is moved from place to place. The 
second term corresponds to the alteration of momentum 
as fluid flows in a rotating system. It is called the "Co- 
riolis force" and acts at right angles to a fluid element 
that moves in a rotating frame. The third term is simple 
pressure whose gradient produces a force on an element 
of fluid. Other forces that could be included in more 

complicated models (and that require additional terms 
in (3)) are acceleration, friction, effects of large vertical 
motion, and eddy Reynolds stress. These are all left out 
of this simplest case. It is easily shown that the terms in 
(3) are the leading terms when changes are sufficiently 
slow (time >> L/P, where L is a lateral length scale; where 
the vertical length scale is sufficiently small (H << L); and 
where viscosity v is sufficiently weak (VL/v >> 1)). 

Figure 2 shows the balance of these three forces 
(Coriolis, inertia, and pressure) that are included in the 
simplest problems of rotating hydraulic control. These 
three forces are easily transformed into three well- 
known relations: The first is the Coriolis force balance 

with a pressure gradient force. This is frequently called a 
geostrophic relation. This balance must be satisfied at 
right angles to the flow direction since Coriolis force acts 
at right angles to velocity. The second relation is con- 
servation of potential vorticity. This is found by taking 
the curl of equation (3) and using continuity. Vorticity • 
is the curl of the velocity vector. Potential vorticity for 
this simple approximation is given in Figure 2, where F 
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is constant. It represents the total vorticity of a fluid 
column [ + f divided by its depth h. Note that the 
vorticity of a fluid at rest in a rotating frame is f. 
Potential vorticity is frequently conserved by flows and is 
often an extremely useful constraint in geophysical fluid 
dynamics [Pedlosky, 1979]. The third relation is Bernoul- 
li's law, which denotes a balance between the change of 
momentum (pu) and pressure. Although momentum is 
constant at each spot when the flow is steady, the value 
of momentum of a fluid parcel can change as it moves 
from place to place, as is expressed by the first term in 
equation (3). Bernoulli's law is found by looking at the 
balance in the direction of flow. The Coriolis force is 

zero in this direction, since it acts at right angles to 
velocity. These three relations are redundant, and the 
cross-stream function derivative of the upstream Ber- 
noulli's function must be equal to the upstream potential 
vorticity. In the first pioneering attempt to calculate 
critical flow along a channel [Stem, 1972] the basic flow 
obeyed this constraint, but alterations caused by bottom 
changes did not. 

I-n the absence of rotation, simple manipulation leads 
to some insight into topographic control. The equations 
reduce to Bernoulli's equation and conservation of mass, 

1l/2 1 V 2 (4) • -g•l = • 

v(H- b - •1) = VH (5) 

where v is velocity of fluid over the bump and xl is 
downward deflection of the free surface over the bump. 
These two equations can be combined by eliminating v 
to produce the following cubic relation between scaled 
surface deflection xl' = xl/H, bottom bump b' = b/H, 
and upstream Froude number F = V/V'2#H. 

(1 - •1' - b') 2 - - 1 + (x I '/F 2) (6) 
F is obviously a measure of the ratio of inertia to 
pressure. However, it is also a measure of velocity mag- 

Inertia Coriolis Pressure 

fl. V • + • x d = -g'Vh 

Bernoulli's Law 

•v 2 + g'h = Constant 

Inertia Conservation of. 
Potential Vorticity 

8x = Constant Coriolis 
h 

Pressure 

Geostrophy 

fv = g, •h 
Ox 

Figure 2. Diagram showing the three forces exerted on a 
fluid element and how dynamic relations are derived from 
these three forces. 
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Figure 3. Values of the right and left hand side (a hyperbola 
and parabola, respectively) of equation (6). The hyperbola 
(dashed line) is drawn for F = 0.1. The rightmost parabola 
(solid curve) corresponds to b' = 0.5. The leftmost parabola 
(solid heavy curve) corresponds to b' = 0.6. 

nitude to wave speed (since waves also balance inertia 
and pressure, but in time-dependent problems). 

An easy way to picture these solutions is to investigate 
the intersection of the left-hand parabola of equation (6) 
with the right-hand hyperbola, keeping q' a freely vary- 
ing parameter with fixed values of b' and F. Two such 
examples are shown in Figure 3, both using a hyperbola 
with F = 0.1. The first, represented by the right parab- 
ola, has b' = 0.5. There are three points of intersection. 
The leftmost point is the physically realized solution. It 
corresponds to the small deviation of qq as drawn in 
Figure 1. This is the physically expected solution, since 
qq' continuously maps to zero as b' approaches zero. The 
middle point is a very much larger value qq'. In such a 
case it can be shown that the velocity divided by wave 
speed based on local fluid depth (a "local" Froude 
number Fl) is greater than 1. Surface gravity waves 
would only radiate in the direction of flow. This state is 
known as a conjugate state. However, it is unstable 
[Pratt, 1984a] when such a flow lies at the top of a bump. 
The right intersection point is not physical, since b' + 
qq' > 1, so the free surface would be below the bottom 
of the bump. 

The left parabola in Figure 3 is shown for b' = 0.6; 
the parabola has simply moved to the left by 0.1 unit of 
qq'. At this value of F, the parabola intersects the hyper- 
bola at only two points. The left point is the critical point 
and is located where the hyperbola and parabola are 
tangent. Both left and middle points for b' = 0.5 have 
moved toward each other and merged at this point. In 
addition, the local Froude number F l = 1 at this point. 
The right point is still impossible. 

For larger values of b' at the same value of F there is 
no intersection except for the right-hand (impossible) 
one. Thus if b' is greater than a given value (depending 
on F), the fluid cannot get over the bump. The physical 
resolution to this dynamic dilemma is that one of the 
upstream conditions must be changed. For example, if 
volume flux is specified, H would need to be bigger. 
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TABLE 1. List of Theories 

Theory 

Stem [1972] 
Whitehead et al. [1974] 
Sambuco and Whitehead [1976] 
Whitehead and Porter [1977] 
Gill [1977] 
Rydberg [1980] 
Shen [1981] 
Pratt [1983] 
Pratt [1984b] 
Boreniis and Lundberg [1986] 
Pratt and Armi [1987] 
Whitehead [1989] 
Dalziel [1988, 1990] 
Pratt and Lundberg [1991] 
Hunkins and Whitehead [1992] 
Killworth [1992] 
Killworth and McDonald [1993] 
Killworth [1994] 
Johnson and Ohlsen [1994] 
Whitehead and Kimura [1994] 
Boreniis and Pratt [1994] 

flow in a channel 

zero potential vorticity, zero current upstream, laboratory confirmation 
very wide channel 
axisymmetric withdrawal 
constant potential vorticity, upstream currents found to be necessary 
local F should equal 1, asserted 
zero potential vorticity, more tests, laboratory confirmation 
adjustment to obstacle, properties of waves 
flow near critical speed, waves during adjustment 
parabolic channel 
nonuniform potential vorticity, complicated upstream states 
comparison of zero and const. potential vorticity, application 
zero potential vorticity exchange and control, two directions 
review of theories 

constant potential vorticity exchange, two directions 
zero potential vorticity and shapes, application 
zero potential vorticity and maximum flux 
zero potential vorticity is maximum 
frictionally modified exchange 
wide exchange flow 
comparisons of zero and constant potential vorticity 

Alternatively, if H is fixed (for instance by a large up- 
stream lake), V may have to change to allow a flow. 
Often, the fluid over the bump adjusts to the critical 
state. In such cases the topography determines what is 
happening upstream. 

This is why such problems are of interest in physical 
oceanography: a small topographic region may deter- 
mine conditions (such as the depth for a particular range 
of water temperature and salinities) for an entire up- 
stream ocean. For such problems involving a rotating 
fluid, flow in the sill region is usually calculated by using 
any two of the three equations shown in Figure 2. If the 
geostrophic and potential vorticity equation are used, for 
example, two constants of integration are introduced. 
However, the use of the third (Bernoulli's) equation 
eliminates one of them, and the last constant is deter- 
mined using a critical condition. This yields a prediction 
for flow at the controlling point. Flows elsewhere could 
then be found using the general equations for Figure 2, 
and of course, upstream conditions such as H can be 
found. We show for illustration here the simple theory of 
zero potential vorticity. Fluid of density p + Ap lies in an 
infinitely deep upstream basin with surface h, above the 
lip of a rectangular exit channel. Above it is motionless 
fluid of density p. The upper fluid has negligible dynam- 
ics except that it reduces the restoring force between 

1 

layers. It is frequently called a 15 layer problem. This 
problem has very simple algebraic solutions that illus- 
trate the flows in the channel [Whitehead et al., 1974]. 

The geostrophic equation and zero potential vorticity 
equation are 

Oh 

#' •xx = f v (7) 

Ou 

Ox = -f (8) 

which integrate to 

h= f2x2 fvox - 2-•- + -- + h0 (9) #' 

= -fx + 

where #' = gAp/p, f is the Coriolis parameter, and h0 
and v0 are two constants of integration. They represent 
water depth and velocity at x = 0. In this example, 
Bernoulli's law exists along each streamline 

v - x/2#' (h, - h) (11) 

which can eliminate one constant of integration by mak- 
ing it a function of the other. Note that Bernoulli po- 
tential is #'hu, since fluid is stagnant in the upstream 
basin. In problems with finite values of upstream depth, 
(i.e., constant upstream potential vorticity [Gill, 1977; 
Pratt and Armi, 1987; Whitehead, 1989]), Bernoulli's law 
still holds along all streamlines, but the Bernoulli poten- 
tial varies from one streamline to another (i.e., is not 
uniform and is not easy to determine). Fortunately, 
there are some cases where it can be determined for one 

or two streamlines [Gill, 1977], and this leads to some 
solutions. 

In both the example we show here and the uniform 
potential vorticity case the problem is reduced to deter- 
mining the remaining constant of integration by impos- 
ing a critical condition. The simplest such condition is 
that volume flux is maximized through the sill, but there 
are many others. Gill [1977] shows why maximum flux 
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leads to a suitably defined Froude number equal to one, 
for instance. Maximizing volume flux results in the fol- 
lowing predictions for volume flux for a rectangular 
opening: 

,2 ( Q # hu 2#'hu• 1/2 = 2f L> f2 j (12) 

f2L213/2 Q = (32-)3/2L • an •-•;j otherwise (13) 
where L is width of the channel. 

The first formula (12) is familiar to many oceanogra- 
phers. It could be obtained from a simple geostrophic 
calculation if one assumes first that the fluid height on 
the right-hand side of the sill (looking downstream in the 
northern hemisphere) equals the upstream fluid surface 
height above sill depth ha, and second that the interface 
intersects the bottom on the left-hand side. The critical 

control calculation shows merely that ha produces max- 
imum flux, but it also allows every element of fluid to use 
the available upstream potential energy through Ber- 
noulli's equation. The second formula (13) is familiar to 
hydraulic engineers in the limit off- 0, which was first 
determined in the last century. It can be found from (6) 
for small Froude number. As f is increased from 0, it 
smoothly connects the nonrotating result to equation (12). 

Numerous studies, listed in Table 1, go beyond this 
simple zero potential vorticity theory. If potential vor- 
ticity is not zero, the functions expressing velocity, 
height, and volume flux are more complicated but are 
still readily found by straightforward calculations. Nev- 
ertheless, the connection of Bernoulli potential between 
upstream and the sill is more challenging. In some cases 
only one streamline has an easily determined Bernoulli 
potential from a point upstream to a point on the sill. 
Nevertheless, the maximum flux can be calculated in 
many cases. Gill [1977] simply specified the existence of 
appropriate currents in the upstream basin for constant 
upstream vorticity and graphically determined the vol- 
ume flux as a function of dimensionless parameters. No 
analytic solutions were attained. Whitehead [1989] was 
able to find analytic solutions to volume flux for a spe- 
cific upstream geometry where the upstream current is 
located next to the left-hand wall (looking downstream) 
and the right-hand wall is infinitely far from the left- 
hand wall. Unfortunately, there were no analytic solu- 
tions for the maximum value. Contours of nine values of 

volume flux from the analytic solution are shown in 
Figure 4. This figure differs from a comparable figure of 
Whitehead [1989, Figure 6], in which negative values of 
fluid depth were allowed in the computation, so the 
curves in a region below the volume flux maximum are 
physically unrealizable. This error does not effect the 
computation of critical flow, however. The central find- 
ing of Whitehead [1989] was that volume flux for con- 
stant potential vorticity lies within 22% of the flux for the 
zero potential vorticity solution. This means that the 
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Figure 4. Contours of normalized volume flux 2Qf/#'hu 2 as a 
function of normalized right-hand wall depth and normalized 
channel width. Contour interval is 0.1. In the region with 
horizontal contours, the flow does not wet the left-hand wall. 

apprehension expressed by Boreniis and Lundberg 
[1988], that the zero potential vorticity assumption was 
essentially incorrect, is apparently not borne out for 
issues of volume flux. 

Pratt and Armi [1987] investigated the flow patterns in 
the sill region for more general potential vorticity distri- 
butions and found that gyres and countercurrents are 
possible. Since such cases are characterized by upstream 
currents, Bernoulli potential varies in the upstream ba- 
sin, so that comparison of volume fluxes with the simple 
estimates above is not straightforward. Given these com- 
plications, volume fluxes were not determined in these 
cases, but a variety of issues, such as that the control 
point is at the crest of the sill for a certain class of sill 
geometries, were clarified for more general flows. 

Rydberg [1980] rejected the maximum volume flux 
argument (which is equivalent to the Froude number of 
the longest, fastest wave equal to 1), in favor of having 
the local Froude number be 1 (i.e., v/V'2#'h = 1 at 
every point across the flow). This makes sense because 
Froude numbers greater than an order 1 constant would 
produce Kelvin-Helmholtz instability in the 1• layer 
problems, which would lead in turn to mixing (Kelvin- 
Helmholtz instability is the shear instability that grows 
when Richardson number g'h/u 2 < l•). Unfortunately, 
there is not yet confirmation of this idea from physical 
observations. The resolution of this interesting conflict 
between local and long-wavelength control remains un- 
resolved by either additional theoretical work or direct 
observation in the laboratory or the ocean. 

A simple problem can be solved which uses some 
information about downstream fluid depth ha plus chan- 
nel width w [Whitehead, 1986]. Take equations (9) and 
(10) without reduced gravity (set #' = #), so we con- 
sider a homogenous fluid flowing in a channel. Next set 
h = h0 at x = 0 to find v0 on the right-hand wall using 
equation (11). Finally, set h = ha at x = -w. This 
assumes that the fastest current is set by the downstream 
depth. This results in average velocity across the channel 
being 

b- (2gAh)l/2 1 - 5fw for (2#Ah)•/2/fw > 1 (14) 
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TABLE 2. Flux Estimates Through Deep Ocean Sills 

Sill Flux, Sv References 

Denmark Strait 2.9 
Charlie-Gibbs Fracture Zone 2.4 

Discovery Gap 0.21 
Bornholm Strait 0.02 

Iceland-Faeroe Passage 1.0' 
Faeroe Bank Channel 1.5-1.9 

Anegada-Jungfern Passage 0.056 
Strait of Sicily? 0.6-0.8 

0.65 
1.23 

1.21 

Verna Gap 2.1-2.3 
Ceara Abyssal Plain 0.8-2 

>4 

, 2.0 

Romanche Fracture Zone 1.3 
Chain Fracture Zone 0.1 
Vema Channel 4 

6 

Samoan Passage 1.0, 5.6, 4.8 
6 

Dickson et al. [1990]; Dickson and Brown [1994] 
Saunders [ 1994] 
Saunders [1987] 
Petren and Walin [1976] 
Dickson et al. [1990] 
Borenils and Lundberg [1988]; Saunders [1990] 
Stalcup et al. [1975] 
Morel [1971] 
Molcard [1972] 
Garzoli and Maillard [1976] 
Bethoux [1979] (using Whitehead et al. [1974]) 
McCartney et al. [1991] (using geostrophy) 
Whitehead and Worthington [1982] 
McCartney and Curry [1993], Luyten et al. [1993] (from geostrophy) 
Hall et al. [1997] 
Polzin et al. [1996] 
Polzin et al. [1996] 
Hogg et al. [1982] 
Speer and Zenk [ 1993] 
Johnson et al. [1994] (geostrophic estimates) 
Rudnick [1997] 

Other sills include the following: Windward Passage, Amirante Passage, Filchner Depression, southern Weddell Sea, Indonesian-Philippine 
Basin, Shag Rocks Passage, South Sandwich Island Arc Gap, Ecuador Trench, Panama Basin, and Ninetyeast Ridge. 

*Assigned from indirect considerations; no direct measurements are available. 
?Values and references are from Grancini and Michelato [1987], who did not estimate eastward flow directly but say the current meter data 

support these hydrographic results. 

if Vo is positive where z•h = hu - ha. If Vo is negative, 
there could be a reverse flow in the channel, which 
would be inconsistent with an upstream source, so we set 
velocity equal to zero everywhere to the right of the 
point where v = 0. This point is found by setting (10) 
equal to zero. In that case, 

• = (#z•h)/fw for (2#Ah)•/2/fw < 1 (15) 

This was first found by Garrett and Toulany [1982], 
who coined the name "geostrophic control." However, 
the word "control" is used in a different sense than our 

usage (see Figure 1) since information about both the 
geometry of the passage and the downstream height 
above sill depth hd is required to solve their problem 
rather than just geometric information alone. The term 
"geostrophically determined" seems more accurate to 
describe equation (15) and "inertially determined" to 
describe (14). Their concept was extended in various 
studies [Garrett, 1983; Garrett and Majaess, 1984; Tou- 
lany and Garrett, 1984]. In contrast, the first term on the 
right-hand side of (14) is the classical hydraulic relation 
for the velocity of flow through a channel. The second, 
negative term arises from lateral shear due to frame 
rotation. The important point is that the magnitude of 
the current as a function of the sea level difference is 

given by (14), which looks like a modified Bernoulli's 
law, for (2•/Ah) •/2 > fw and by (15), which looks like a 
geostrophic balance and the Garrett and Toulany for- 
mula in the converse limit. Note that the former limit is 

valid for large Ah rather than small Ah. If f is fixed in a 

"run" down problem, the "geostrophic control" comes in 
more strongly with time. This was also observed exper- 
imentally by Whitehead et al. [1974]. Note also that when 
(2•7Ah) 1/2 = fw, the two results are the same. 

The studies by both Pratt and Armi [1987] and by 
Rydberg [1980], as well as additional studies by Boreniis 
and Lundberg [1986] and Gill [1977], focused strongly 
upon the implications of the definition of control by the 
geometry of the outlet passage. This is a rich area of 
study, since the nature of control from upstream basins 
with more general vorticity conditions through openings 
of more general shape is quite complicated. It is easy to 
visualize, for example, that fluid along a streamline 
might not possess enough energy to get through an 
opening while fluid in a streamline nearby could. In that 
case, upstream blocking might occur that would be con- 
nected not with critical control of the entire current, but 

with current separation. Such a process has the same 
branch structure used in the aforementioned studies but 

is distinct from control of the entire current. Another set 

of physical questions concern the various definitions of 
critical control. Indeed, Borenas and Lundberg conclude 
that there is a range of parameters such that parabolic 
passageways cannot exert control (in the sense they use 
the term). Yet it is difficult to imagine that the sketch in 
Figure 1 breaks down because the channel happens to 
have a parabolic bottom. Other studies (Table 1) have 
dealt with a variety of other issues. This review will 
concentrate on volume flux issues; some of the other 
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Figure 5. Locations of a number of sills (unidirectional arrows) and straits (bidirectional arrows). (a) 
Atlantic Ocean with peripheral seas. (b) Pacific Ocean. (c) Indian Ocean. Light grey shading indicates depths 
of <4000 m; black indicates depths of >5000 m. 

issues are covered by Pratt and Lundberg [1991] and 
Boreni•s and Pratt [1994]. 

Most quantitative comparisons indicate that neither 
the potential vorticity distribution nor the shape of the 
sill produces very large changes (greater than tens of 
percent) in the volume flux, but they unquestionably 
produce changes of a fraction of order 1. Recently, 
Killworth [1994] has shown that the zero potential vor- 
ticity flow in a rectangular channel has the greatest 
volume flux of all possible potential vorticity distribu- 
tions. This is valid for all bottom shapes and makes the 
calculation of maximum fluxes easier than before. Ear- 

lier, Killworth and McDonald [1993] had found a maxi- 
mum bound on any flow with nonnegative potential 
vorticity and showed it to be roughly the same as the 
zero potential vorticity relation. 

3. OCEANIC OBSERVATIONS OF SILL FLOWS 

We define sill as the deepest saddle point between 
neighboring deep basins. Numerous measurements or 
estimates of velocity in the vicinity of sills have been 
made, many of which are listed in Table 2. Table 2 is not 
an exhaustive list, but it contains a collection of studies 

with data that either give volume flux measurements or 
contain measurements from which such estimates can be 

obtained. The location of a number of these are shown 

in the three maps in Figure 5. The magnitude of volume 
flux varies from about 10 -2 Sv to well over 1, depending 
upon the size of the basin. Most exhibit clear cross- 
channel tilt, a sign of influence of Earth rotation. In- 
deed, geostrophic estimates have been made of the 
speeds of many currents in such regions. 

Four of the examples listed in Table 2 will be com- 
pared with an estimate from the idealized theory from 
section 2. To make this comparison, a methodology to 
estimate volume flux [Whitehead, 1989] will be used. The 
method requires only four numbers, the value of Ap/p, 
upstream height over the sill, channel width L, and the 
local Coriolis parameter. With these four parameters, 
volume flux can be predicted using either equation (12) 
or (13), which we repeat here for convenience: 

Q g'hu 2 (2g'hu) = 2j c L> jc2 
1/2 

f2 L 2] Q = (•)3/2 L x/•7[hu •-•/j 
3/2 

otherwise 
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Figure 5. (continued) 
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To explain the method of obtaining the data required 
to produce a prediction from theory that can be com- 
pared with data, we use a sketch of the relevant features 
needed to estimate volume flux through a sill (Figure 6). 
The top section of this figure (plan view) shows a sche- 
matic top bathymetric view of a sill region, with deepest 
bathymetry darkest and shallower regions progressively 
lighter. A prominent topological feature of a sill region 
is the saddle point (S), which separates two uncon- 
nected deep basins (black). There are innumerable such 
saddle points in real bathymetry. Note, however, that 
this point also separates two shallower ridges (lightly 
stippled). If these extend around and surround the up- 
stream basin above that saddle point depth, then that sill 
is the deepest connection for the dense deep water at sill 
depth between the two basins. Experience has shown 
that flow of deep water between the two basins will most 
likely be found in the vicinity of that saddle point. There 
is one depth whose contours (thick black lines) intersect 
at S. The depth of S is to be called the "sill depth," and 
in many cases it is even a "controlling" sill depth in the 
following sense. An elevation (side) view along a path 
leading from one deep basin to the other typically re- 
veals relatively flat density surfaces above a fixed depth 
but a distinct departure from flatness in one of the two 
basins below a certain depth. Let us assume that deep, 
dense water has a source in one basin and is flowing over 
the sill into the other basin, which it partially fills but in 
which it also gets diluted with overlying water through 
turbulent mixing. We thus label two stations located on 
either side of S as U for upstream and D for down- 
stream. This difference from flatness begins at the level 
where the two density versus depth curves taken at U 
and D split apart, or bifurcate, as shown on the right. We 
call this depth the "bifurcation depth." The upstream 
region (U) contains denser fluid below the bifurcation 
depth than downstream (D) since U contains undiluted 
deep water below sill depth and D contains deep water 
mixed with less dense overlying water. 

To estimate Ap/p, we will select at least two density 
profiles from conductivity-temperature-depth (CTD) or 
bottle data, one upstream and one downstream of the sill 
that correspond to U and D in our sketch. The profiles 
must extend to the depth of the sill. The greatest density 
difference between upstream and downstream at or 
above sill depth will be used for the value of Ap. The sill 
depth is found from bathymetric charts. The bifurcation 
depth is subtracted from the sill depth to determine hu. 
The width of the opening at the bifurcation depth will be 
used to determine L, and this width is determined 
through the use of bathymetric charts. Then either (12) 
or (13) will be used to calculate volume flux. 

Such a method was used [Whitehead, 1989] to predict 
a volume flux using either equation (12) or (13) at four 
oceanic sills: the Denmark Strait, the ridge between 
Iceland and the Faeroe Islands, the Ceara Abyssal Plain, 
and the Vema Channel. These topographic control pre- 
dictions were compared to flow estimates using current 

I) 
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Figure 6. Map view sketch of a typical saddle point region 
(top). The darkest regions are deepest, and progressively 
lighter regions are shallower. One isobath connects between 
the two basins and the connection point defines a saddle point. 
A vertical section from one basin to the other (bottom, left) 
typically has asymmetry of density contours below a fixed depth 
but none above sill depth. We denote the basin with denser 
water as "upstream" (U) and the other "downstream" (D). On 
the bottom right the bifurcation depth between U and D, the 
sill depth definition, and consequent value of Ap is shown. 

meter data for flow through three of the four passages. 
The second has only very indirect estimates of volume 
flux. It was erroneously compared to geostrophic esti- 
mates by Steele et al. [1962] downstream of the Iceland- 
Faeroe ridge which should include overflows from the 
Faeroe-Scotland ridge as well as the Iceland-Faeroe 
overflow. Therefore this second estimate will not be 

repeated. 
The predictions of volume flux were all greater than 

the direct measurements, with ratios ranging from 1.6 to 
4.1. While the smallest value of disagreement (60%) is 
understandable in view of the many assumptions con- 
tained in the comparison, the largest value (310%) is 
disturbingly large and may imply that the predictions are 
based on the wrong dynamics. We must keep in mind 
that both predictions and measurements have inherent 
errors from lack of resolution, and the source of dis- 
agreement was not clear at that time. Since 1989 it has 
been found that a substantial portion lies in errors of 
volume flux from the ocean measurements because 

more accurate measurements have been made. The new 

values and the ratio of prediction to measurements are 
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TABLE 3. Data and Predictions for Eight Sills 

ap/p, h• f, L, 
Sill X ] O 4 m 10 4 S - • km 

R, Q, Qot,•, Ratio 
km Sv Sv Q/Qot, s Reference 

Denmark Strait 3 580 1.3 350 

Ceara Abyssal Plain 0.5 430 0.1 700 
Vema Channel 1 1540 0.7 446 

Discovery Gap 0.1 600 0.87 80 
Samoa Passage 0.3 1050 0.23 240 
Vema Gap 0.5 1000 0.28 9 
Faeroe Bank Channel 5 400 1.3 20 
Romanche Fracture Zone 0.47 380 0.02 20 

14 3.8 2.9 1.3 Dickson et al. [1990] 
65 4.6 2.0 2.3 Hall et al. [1997] 
25 16.3 6 2.7 Speer and Zenk [1993] 
4 0.21 0.21 1 Saunders [1987] 

34 7.0 6 1.2 Rudnick [1997] 
35 3.3 2.1 1.6 McCartney et al. [1991] 
15 3.0 1.9 1.6 Saunders [1990] 

369 2.2 1 2.2 Polzin et al. [1996] 

shown in Table 3. The Iceland-Faeroe ridge flux esti- 
mates are excluded because no good estimates exist of 
the flux owing to errors explained above. The ratios are 
reduced to the range 1.3-2.7 by the better measure- 
ments, so disagreement ranges from 30 to 170%. This 
more agreeable range implies that the topographic con- 
trol formulas are useful predictions of volume flux 
through deep ocean passageways. More important is the 
indication that the topographic control is the correct 
dynamics. As stated earlier, the zero potential vorticity 
calculations are known to predict larger flux than all 
others. Undoubtedly frictional and turbulent mixing ef- 
fects also make a true flux smaller than predicted. In 
addition, the rectangular bottom geometry predicts 
higher flux than any other geometry. The magnitude of 
each of these effects has yet to be quantified for sill 
flows, although Johnson and Ohlsen [1994] make some 
estimates for exchange flows. Since the mid-1980s, mea- 
surements of volume flux have been made at a number 

of additional passageways, and these can also be com- 
pared with topographic control predictions. Thus here 
we extend this test of the topographic control method of 
predicting volume flux to five more cases, which are 
discussed in turn. 

The first is Discovery Gap, a sill at a depth of approx- 
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Figure 7a. Map showing the 4000-m, 4500-m, and 4700-m 
contours in the vicinity of Discovery Gap. 

imately 4600 m that blocks Antarctic Bottom Water in 
its northward migration in the eastern North Atlantic. 
This sill connects the Madiera Abyssal Plain west of 
North Africa with the Iberian Abyssal Plain west of 
Portugal and Spain. Saunders [1987] used a variety of 
measurements to estimate volume flux through Discov- 
ery Gap, including yearlong measurements from six 
moorings and ten current meters, float-tracking data, 
and density profiles. A persistent current from southwest 
to northeast was found, both upstream (from the south- 
west) and over the gap. A detailed estimate of flux 
through various cross sectional areas over the gap pro- 
duced an estimate of 0.21 _+ 0.04 Sv of water colder than 

2.05øC potential temperature. 
Information for our prediction is contained in the 

bathymetry shown in Figure 7a and a bifurcation dia- 
gram of density distribution with depth at U and D is 
shown in Figure 7b. To obtain the latter, data for U had 
to be carefully selected since there was variation along 
the section shown by Saunders [1987, Figure 3]. Up- 
stream conditions were complicated by an unmistakable 

3500 
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4500 

ß 04590 1.04593 

I • • I •' 104 

600rn 

4 - 
I I 
Ap=10 -s 

Figure 7b. Bifurcation diagram showing density (corrected 
to 4000 m) versus depth upstream and downstream of Discov- 
ery Gap. 
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Figure 8a. Map showing the 4000-m, 4500-m, and 
5000-m bottom contours near the Samoan Passage. 
Locations of the four Geochemical Ocean Sections 

Study (GEOSECS) stations are also shown 

cross stream tilt that signified a current of unknown 
origin. The final choice of data for U were selected from 
the station that represents the most reasonable upstream 
condition likely to affect the sill flow. From Figure 7b, 
the bifurcation depth was taken to be 4000 m. The 
reported shallowest sill depth was close to 4600 m, so 
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Figure 8b. Density (corrected to 4000 m) versus depth for 
the four GEOSECS stations upstream and downstream of the 
Samoan Passage. 

h, = 600 m and Zip was taken to be 10 -s g cm -3. Using 
f = 0.87 x 10 -4 s -1, which corresponds to the entrance 
sill at 36ø54'N, this produces a Rossby radius R = 4 km, 
whereas the gap width is about 80 km for the 4000-m 
contour. Therefore the rapidly rotating formula equa- 
tion (12) is used. It predicts volume flux of 0.2 Sv, which 
is extremely close to the measured value of 0.21 Sv. 
However, this very close agreement is clearly accidental, 
since there is an unusual amount of room for adjustment 
of this value. For example, the upstream density distri- 
bution varied from spot to spot. Second, the bathymetry 
is quite complicated. In fact, extreme values would pre- 
dict volume flux down to half the value or up to 3 times 
bigger than the value. 

The second flow is found through the deep Samoan 
Passage, the deepest saddle point-type passageway for 
the flow of Antarctic Bottom Water from the South to 

North Pacific. It consists (Figure 8a) of a channel with 
very complicated sidewalls that extends from about 11øS 
to about 9øS. Although flux estimates have been made in 
the past [Reid and Lonsdale, 1974] a recent current 
meter array produced a comprehensive long term data 
set [Rudnick, 1997] for a more complete estimate of 6 Sv. 
Our data (Figure 8b) are taken from Geochemical 
Ocean Sections Study (GEOSECS) Pacific stations 251 
and 252 (upstream) and 253 and 257 (downstream). This 
gives a bifurcation depth of 3950 m. The bathymetric 
map, traced from the GEBCO map, shows a width of 
240 km at this depth. Rudnick shows a sill depth in 
excess of 4800 m; assigning a maximum value of 5000 m, 
we find h, = 1050 m and Zip/p = 3 x 10 -s. The Rossby 
radius computed from these numbers and using the 
Coriolis parameter for 9øS of f = 0.23 x 10 -4 s -1 is 
R = 34 km, so the rapid rotating limit should be used. 
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Figure 9a. Map showing the 3500-m, 4000-m, and 4500-m 
contours near the Vema Gap. 

This gives Q = 7.0 Sv, which is very close to the estimate 
of 6 Sv based on current meter data. 

The third example is the Vema Gap (Figures 9a and 
9b). This gap lies at about lløN in the Mid-Atlantic 
Ridge. Historically, the source of the Antarctic Bottom 
Water in the tropical Eastern Atlantic was considered to 
be a flow through the Romanche Fracture Zone that lies 
almost exactly on the equator. However, the work of 
Vangriesheim [1980] and Eittreim et al. [1983] indicated 
that the flow through the Vema Fracture Zone was a 
major contributor to the water in the eastern North 
Atlantic. Recently, McCartney et al. [1991] estimated a 
flux of 2.1-2.3 Sv through the Vema Gap using geostro- 
phic calculations. The data for this example are shown in 
Figure 8b. From it we take h u - 1000 m, Ap/p = 0.5 X 
10 -4, which, along with f = 2.8 x 10 -s s -1 (for 11øN) 
and # = 9.8 m s -2, predicts a Rossby radius of 35 km. 
This is wider than the passage width L = 9 km, so 
equation (13) is used to predict volume flux. With the 
numbers given above, this comes out to be 3.3 Sv. This is 
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Figure 9b. Density (corrected to 4000 m) versus depth for 
selected stations upstream and downstream of Vema Gap. 

Figure 10a. Map showing the 500-m, 800-m, and 1000-m 
contours near the Iceland-Faeroe passage dense surface water. 
Obviously, a large number of stations have dense water above 
the selected bifurcation depth. Such dense shallow water does 
not reach the strait. 

about 50% over the observed geostrophic estimate 
(which was estimated downstream of the sill, where 
turbulence and presumably strong entrainment of ambi- 
ent water have been seen elsewhere [Polzin et al., 1996]). 
Corrections to the hydraulic estimate could be made by 
accounting for the tapering of the walls of the gap, for 
the influence of continuous stratification, and possibly 
for friction [Pratt, 1986]. 

The fourth example is the Fae}oe Bank Channel 
(Figure 10a). Dense water from the Norwegian Sea flows 
southward between the Faeroe and Shetland Islands. It 

then veers toward the west and flows along the Faeroe 
Bank Channel, which extends between the Faeroe Is- 
lands and the Faeroe Banks. This channel has a saddle 

point depth of about 900 m at about 61øN. The bifurca- 
tion diagram Figure 10b is made using 2880 stations 
from the National Oceanographic Data Center (NODC) 
data atlas. Stations with the deepest bifurcation have a 
bifurcation depth of 500 m. Nearby station pairs tl•at are 
closer to the shelf have significantly shallower bifurca- 
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Figure 10b. Density versus depth for 2880 stations upstream 
and downstream of the Iceland-Faeroe passage. Obviously a 
large number of stations have dense water above the selected 
bifurcation depth. Such dense water does not reach the strait. 
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tion depth due to fresh water over the shelf. The sill 
depth is reported to be 900 m, which gives AO/O = 5 X 
10 -4. Usingf = 1.3 x 10 -4 S -1 we obtain R = 15 km. 
Using L = 20 km, the rapid rotation limit is used. The 
prediction of volume flux using equation (12) is 3 Sv, 
whereas Saunders [1990] reports 1.9 Sv. Boreniis and 
Lundberg [1988] used a parabolic bottom and selected 
the 3øC isotherm and got good agreement with Saun- 
ders' measurement. Johnson and Ohlsen [1992] show 
velocity and density evidence of a strong, frictionally 
driven secondary circulation. This could also be respon- 
sible for a lower observed transport than theory. 

The last estimate is for flux of Antarctic Bottom 

Water through the Romanche Fracture Zone, in which 
two sills and a narrows produce a complicated control 
geometry at the western end. The prediction of flux 
using hydraulic control was done by Mercier and Bryden 
[1994] using the traditional maximized flow formula 
(equation (13) withœ - 0) to produce an estimate of 2.4 
Sv. Their method is identical to that used here except 
that they estimated density difference by subtracting the 
density of the water with average temperature (and 
salinity) of the transition layer, which they defined as the 
layer above sill depth, from the density of water with 
temperature that defines the top of that layer. The 
average temperature of the transition layer was put to 
0 = 1.55øC and the top of the layer was set to 0 = 2.0øC, 
with a density difference between the two waters of 
4.7 x 10 -s g cm -3. Our method produces somewhat 
different values. Figure 11 is a bifurcation diagram pro- 
duced directly from their potential temperature section 
[Mercier and Bryden, 1994, Figure 1] along the axis of the 
Romanche Fracture Zone. Upstream was taken as the 
most western point and downstream the most eastern 
point. The sill depth of 4350 was given by them; it results 
in a temperature difference of 0.7øC in contrast to their 
value of 0.45, so we take a proportionate density differ- 
ence of 7.3 x 10 -s g cm -3. The depth of the top of the 
layer is more difficult to assign. Our bifurcation diagram 
has a kink just below the depth of bifurcation, which 
indicates two choices for the depth of the top of the 
water layer. In one case the two temperatures come 
together at 3750 m; in the other the upstream properties 
linearly extrapolate to the downstream properties at a 
much greater depth of 3970 m. In both cases the Rossby 
radius of deformation is absurdly huge, 463 and 369 km 
compared with the 20-km estimated width of the pas- 
sage, so that rotation is unimportant. Thus we take the 
weakly rotating formula equation (13), but use the deep 
value to get hu = 380 m, with a consequent estimate of 
2.2 Sv. This flux estimate is close to the value found by 
Mercier and Bryden, although they selected a smaller 
value of density difference and a larger top depth (mid- 
way between our two values). A measurement of 1 Sv 
based on one set of current profiles is reported by Polzin 
et al. [1995]. There is no information about probable 
time variations in the strength of the current at present. 

All the values of the assorted parameters are shown in 

Table 3. Three data sets are updated from Whitehead 
[1989], and five are new ones discussed here. The ob- 
served flux is also plotted against predicted flux in Figure 
12. Logarithmic scales are used to compare data over a 
range of almost 2 orders of magnitude. A linear com- 
parison would be useless. It is clear that the predictions 
are of the same order as the measured values but gen- 
erally are greater. Indeed, the ratio of predicted to 
observed flux has the reasonable range of 1.0 to 2.70. 
However, the method still must be used with caution if 
additional currents are present; otherwise, the predic- 
tion has unrealistically great values of ha, and flux is 
greatly overpredicted. The present prediction has con- 
siderable uncertainty from shortcomings of available 
data. The four parameters f, ha, AO/O, and L are used to 
predict flux, and uncertainty in each contributes uncer- 
tainty to the flux prediction. The value of ha seems to be 
the most important in producing uncertainty in flux. This 
arises for three reasons. First, bifurcation depth is typi- 
cally determined from only a few CTD casts, so that 
scatter from currents, eddies, and even distance from the 
sill region produces variation of up to 100 m or more 
from what is expected to be a true long-term value. 
Second, sill depth is uncertain in most bathymetric data 
sets by up to 100 m. Third, ha is raised to a power greater 
than 1. 

4. STRAIT FLOW CALCULATIONS: LOCK 

EXCHANGE THEORY 

The previous sections discussed the case where the 
sill lies at some depth in a large ocean within which are 
small deep basins whose boundaries are defined by sub- 
surface ridges. Such ridges usually arise from mid-ocean 
ridges, hotspots, or other anomalous features, but there 
are also shallower sills in basins bordered by continental 
material. If a saddle point lies in a passage whose side- 
walls (lightly stippled in Figure 6) extend to the surface 
of the ocean, and if those surface ridges surround the 
upstream basin above sea level, the flow in the passage is 
usually found to be an exchange flow that has currents 
with roughly the same flux of water in both directions. 

The saddle point is usually proximal to straits. The 
bidirectional flow we will call lock-exchange flow. The 
flow itself arises because the basins contain water of 

different surface densities from temperature and salinity 
difference. 

In formulating this kind of problem, one could picture 
a gate that, once removed, allows the setup of a semi- 
steady exchange of flow and counterflow between the 
basins. Predictions for the strength of such flow in the 
absence of the effects of fluid rotation are well known. 

Formulas are found in numerous textbooks of hydraulics 
[e.g., Yih, 1980]. However, the effects of Earth rotation 
may be felt in such problems in the ocean. This problem 
with rotation included was analyzed for zero potential 
vorticity by Whitehead et al. [1974]. In that formulation a 
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Figure 11. Potential temperature versus depth upstream and 
downstream of the Romanche Fracture Zone. 

somewhat questionable energy-conserving formula ap- 
pl!cable to flow in a channel with a level bottom was used 
in conjunction with zero potential varticity, which re- 
quires very deep upstream regions. Although laboratory 
data agreed with the theoretical prediction, a more com- 
plete theory would be useful. Dalziel [1988, 1990] ex- 
tended the formalism introduced by Gill [1977] from one 
layer flow to two layers with opposing flows. A number 
of improvements were obtained for openings less than 
one Rossby radius in width. An improvement for wide 
channels was later made by Hunkins and Whitehead 
[1992] as reviewed here. The model (Figure 13) con- 
sisted of two basins separated by a channel of depth H. 
Basin 1 has water of density p•, and basin 2 has water of 
greater density. We solve inviscid, nondiffusive, two- 
layer flow. 

One geometrical constraint for the flow in the chan- 
nel is conservation of depth, 
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Figure 12. Predicted values of volume flux compared with 
observed values as listed in Table 3. The predictions for the 
Vema Gap and the Romanche Fracture Zone (solid symbols) 
are the only ones using the weakly rotating hydraulics equation 
(12); the rest use (13). The line has slope of unity. 

hi(x) + h2(x)= H (16) 

where h i and h 2 are vertical thickness of each layer of 
water in the strait, shown in Figure 13, with subscript 1 
denoting the top layer. We have assumed that deflection 
of the sea surface is negligible. A second equation is 
conservation of potential varticity for each layer 

0701 fh l 
+f: Ox H 

702 fh 2 
+f:o (18) Ox H 

and a third is thermal wind between the two layers. 

Oh2 
f(v2- v•) - #' Ox (19) 

where #' is reduced gravity from density difference 
between the two fluids as used in the preceding sections. 
One can derive differential equations for h •, h2, Vl, and 
v2 as follows: 

Take the x derivative of (19) and use (17) and (18) to 
get 

Ox 2 •; h2 - , (20) 
It is convenient to define x as being zero in the middle 

of the channel. The solution of h 2 is 

S x x 

h2 -- •- + B cash fi + A sinh R (21) 

and from (16), the solution of h i is 
, 

S x x 

h• = •-- B cash fi- A sinh R (22) 

where R - V'#'H/2f 2 and A and B are constants of 
integration. To solve for velocity, use (17) and integrate: 

Top view 

Side view 

I Removed gate 

Figure 13. Sketch of a lock- 
exchange flow through a long, 
straight channel. 
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fx fRB x fRA x 
v•= 2 H sinhR H cashfi+C (23) 

or use (18) and integrate: 

fx fRB x fRA x 
v2 = - •- + -•- sinh • + • cash • + D (24) 

Here C and D are also constants of integration. 
These constants are found as follows: First, equation 

(19) dictates that C - D. Second, it is easy to show that 
the antisymmetric profile gives maximum flux, all others 
things being fixed. Assume that the height profile is 
antisymmetric about the horizontal centerline of the 
tank, so that B = 0. Given antisymmetry of the profile, 
the assumption of equal and opposite volume flux 
through the strait requires that Vl = -v2 at x = 0. This 
requires that C = 0, so only the constant A remains to 
be determined. 

Gill [1977] showed that the constant potential vartic- 
ity current has a Bernoulli function that is easily deter- 
mined except for a constant. Since there is no dissipation 
in the current, the constant is conserved along stream- 
lines. Therefore the antisymmetric solution for the cur- 
rent extends throughout the entire region from behind 
one nose through the passage to behind the other nose. 

To solve for the final constant, the time-dependent 
energy equation was used. It has the form 

p O(v 
+ a'(wap): 0 (25) 20t 

where only the deviation of density Ap from a constant 
value p has been retained and w is vertical velocity. The 
angle brackets denote a volume integral over the entire 
current, including the noses. 

We do not know the detailed flow in the nose region, 
but we picture a situation like that in Figure 13, so the 
nose is fully developed (see Stern [1980], Stern et al. 
[1982], and Griffiths and Hopfinger [1983] for studies of 
the noses of rotating bores). Hence it will be self-similar 
between a time t and a time t + St. The similarity 
assumption requires that the volume of the moving nose 
region be unchanging, in which case we can set nose 
speed c i = Qi/Ai, where Qi is the magnitude of the 
volume flux of the ith current behind the nose and A i is 
the cross-sectional area of the current. 

Thus the increase in internal kinetic energy in time 
equals c i times the cross section areal average of kinetic 
energy across the current. These are summed for the two 
on the left and the two on the right to give 

-- = - v22h2 dx + v•2h i dx P Ot 2 • +•22 J-x/2 
(26) 

Likewise, the increase in potential energy is equal to 
c i times the area of the current times the vertical dis- 
placement of the center of gravity of each column of 

width dx. The product of these is integrated across the 
currents and summed for the two noses to give 

Q2 fx/2 h22 = gAp•dx g(wap) •2 •_•/2 

• gAph• • + h2 dx 
J-X/2 

(27) 

Equations (26) and (27) are set equal, and since Q1 - 
Q2, h l = H - h2, and A1 = A2, they simplify to 

2•k3 +•-• • i -cash + 4 sinh 

x( h R I + -•-j (28) 
where 

X H 

A sinh 2-• = 2 (29) 

These two equations are satisfied for the values 

X/2R - 2.5940 A/H- 0.07514 (30) 

Since A was the last remaining unknown, volume flux 
can now be determined from the integral 

X/2 Q• - Q2 = h•v• dx 
d-X/2 

k k k ) g'H 2 =fAR •cash •- 2 sinh • -0.156 f 
(31) 

Whitehead et al. [1974] used the flat bottom energetics 
shown above with the admittedly incorrect zero potential 
varticity velocity profile to predict Q• = g'H2/6f which 
is 7% higher. This is consistent with the notion that the 
zero potential varticity flux is an upper bound. Unfortu- 
nately this has not yet been shown to be true for the 
lock-exchange case as Killworth has shown for a sill. This 
volume flux prediction has been checked by a laboratory 
experiment by Hunkins and Whitehead [1992]. Both the 
slope and the constant in front agree with the data to 
better than 10%. 

5. OCEANIC ESTIMATES OF EXCHANGE FLOWS 

Lock-exchange calculations similar to (31) have now 
been used in numerous ocean applications; some exam- 
ples are the Strait of Gibraltar, Spencer Gulf, Chesa- 
peake Bay, Delaware Bay, and Funka Bay (Uchiura 
Wan). Table 4 contains a list of such straits for which at 
least partial information of flux through the opening is 
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TABLE 4. Flux and Density Difference Estimates for Some Oceanic Strait Flows 
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FW Flux, H, f, L, R, Ap/p Q, (Ap/p)/obs 
Strait m 3 s -• rn s -• x 10 4 km km X 10 4 Sv X 10 4 Reference 

Strait of Gibraltar 300 1.0 12 20 2 0.8 3 Whitehead et al. [1974], 
Bryden and Stommel [1984] 

Spencer Gulf -200 40 0.8 50 3.2 6.8 0.02 9 Bye and Whitehead [1975] 
Chesapeake Bay 2237 10 0.9 19 4 50 0.01 65 Whitehead [1989] 
Funka Bay (Uchiura Wan) ..-* 80 1.0 21 3.9 ...* 0.03 7 Miyake et al. [1988] 
Fram Strait 10 4 200 1.4 >200 5.0 7 0.3 7 Hunkins and Whitehead [1992] 
Baltic entrance 14,000 18 1.2 100 6.2 60 0.03 70 this study 

Other strait flows include the following: Delaware Bay, Bab el Mandab, Suez Canal, Strait of Juan de Fuca, Strait of Tiran, Skagerrak, 
Adriatic shelf break, Bass Strait, Strait of Belle Isle, Gulf of Mexico, Tsugaru Strait, and Bosporus. 

*This information was not used for this study. 

given. Here we use these formulas for the connecting 
passage between the Baltic and the North Sea. 

In the Baltic, Petten and Walin [1976] measured the 
flow of salty bottom water into the Baltic through the 
Bornholm Strait during the period of June 1973 to 
December 1974. They used geostrophic calculations and 
gel current meters to estimate that the bottom salty 
water volume flux was somewhere between 11,500 and 
17,200 m 3 s-l, depending upon the limiting salinity used, 
which ranged from 8.25 to 9.575%0, and upon the 
method of averaging. The volume flux estimate was used 
along with salt conservation considerations of the out- 
flow of surface water with salinity of 8%0 to estimate 
how much river inflow would be needed for a salt flux of 

zero. They calculated a fresh water discharge of 9400 to 
12,000 m 3 s-1 which is reasonably close to the measured 
mean fresh water supply to the Baltic, which averaged 
14,000 m 3 s -1 for the period 1951-1970. Their reason for 
measuring the flux of deep water through the Bornholm 
Strait was that such flows are steadier than the flows in 

the entrance regions. For instance, the Baltic has a 
narrow, shallow (-18 m) entrance region, and currents 
in the region are variable because of variations in surface 
level. Such variations make measurements difficult un- 

less taken for very long periods of time. We can, how- 
ever, use a lock-exchange estimate using the consider- 
ations stated by Bye and Whitehead [1975] to predict the 
salinity difference between the deep and shallow water 
in the Baltic. This will assume that salinity difference is 
controlled by exchange flow in the Baltic entrance, in 
response to the mean fresh water supply of 14,000 m 3 
s -1. In this the balances of volume flux Q and salt flux 
are 

Qi + Qr + Qo = 0 (32) 

SiQ•- SoQo (33) 

where subscripts i, o, and r stand for "into the Baltic," 
"out of the Baltic," and "from river inflow," respectively. 
In this we assume that Qr and S i are fixed by climato- 
logical factors and specified, whereas the other quanti- 
ties can vary. Equations (32) and (33) can be combined 
to give 

QoAS - SiQ r (34) 

where AS - Si - S o. A dynamic condition relating the 
volume flux to the density difference between inflowing 
and outflowing water in a shallow sill region is 

#ApH 2 #[3ASH 2 
Qø= 6pf = 6f (35) 

where [3 = 0.7 x 10-3(%o) -• is the coefficient of density 
change due to change in salinity, H is depth of the sill, 
and f - 1.2 x 10 -4 s-1 is the Coriolis parameter for 
55øN. This formula applies to steady flow in a flat chan- 
nel of both length and width greater than Rossby radius 
(to be calculated post facto), and it is assumed that both 
Qo • Qi and So = Si. Equations (34) and (35) are 
combined to eliminate Qo, and a salinity difference is 
predicted to be 

(6fXiQr• 1/2 AS = #•H21 (36) 
Using# = 9.8 ms -1, H = 18 m, Si = 18%o, Qr = 
14,000 m 3 s -1, and the values given above for f, and [3, 
the formula predicts salinity difference between outflow 
and inflow to be 9%0. 

We next calculate volume flux from (37) as 27,800 m 3 
s -1, which is close to the value of the outflows estimated 
by Petten and Walin [1976]. Since Q• is roughly the same 
magnitude as Qo, the assumption that Qo • Q• is 
relatively poor. The present result is relatively insensitive 
to the value of salinity. If the salinity of the inflowing 
water with 8%0 was used, for example, we would predict 
a salinity difference about two thirds as large as the 
present prediction. In that case, the volume flux, which is 
linearly proportional to salinity difference, would also be 
two thirds of the present value. Finally, the Rossby 
radius of deformation can be calculated from the for- 

mula 

R = (#[3ASH•/2 o • j (37) 
and it is 6.2 km using the values given above. 

The same technique has been used for a number of 
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other basins. These are listed in Table 4. The density 
difference is predicted along with a volume flux. The 
observed density difference is also presented; the value 
was obtained using data in the cited studies. The ratio of 
predicted to observed density difference ranges from 
0.66 to 1. The fact that the ratio is less than 1 is consis- 

tent with the expectation that the idealized frictionless 
two-layer flow will predict a flux greater than the true 
value. The test is deliberately crude, but it is applied to 
a number of examples over a wide range of parameters, 
so that the suitability of the calculations can be assessed 
for future, more thorough studies. 

6. CLOSING REMARKS 

By employing the very simplest inertial theory and by 
deliberately using easily obtainable archival data, we 
indicate that to a crude first approximation, the simple 
control-flow formulas produce sensible estimates of in- 
terbasin flux. Our comparisons depend on having ocean 
estimates of flux through the opening. Fortunately, since 
flow through such constrictions is often concentrated, 
superior oceanographic estimates of flux, velocity, and 
time dependence can be made in such regions. This has 
attracted a sizable number of oceanographers to make 
measurements in such regions. Consequently, the num- 
ber of comparisons has steadily risen from the three or 
four in the mid-1970s to over 20 now. Thus the range of 
parameters over which tests like these have been made is 
steadily increasing. 

Along with the improvement in the ocean data, nu- 
merous theoretical advances have been made. Most of 

them concern assorted effects from variable potential 
vorticity. These effects include altered upstream flow pat- 
terns and control behavior. No significant effects upon 
volume flux have been reported by the variation of poten- 
tial vorticity unless such variation produces very large up- 
stream currents. A few studies have been made of the role 

of friction and time dependence. Two areas that need work 
but in which little or none has been done to date, are 
numerical modeling and effects of continuous stratifica- 
tion. Although this review focused on quiescent upstream 
conditions, wind setup can produce important effects to 
surface layers [Nof and Olson, 1983; Nof, 1995b]. 

The present predictions have considerable uncer- 
tainty resulting from shortcomings of the available data. 
As was mentioned before, the four parameters f, ha, 
Ap/p, and L are used to predict flux, but uncertainty in 
each contributes uncertainty to the flux prediction. The 
value of ha is produced from information of bifurcation 
depth, which is typically determined from a number of 
CTD casts, so that scatter from currents, eddies, and 
even distance from the sill region produces variation up 
to 100 m or more from what is expected to be a true 
long-term value. Second, sill depth is uncertain. Third, 
the result is sensitive to h a raised to a power greater than 
1. The resulting uncertainties in flux prediction are pres- 
ently as large as the uncertainty of the direct estimate of 

flux from extensive current meter data sets. Finally, 
frictional effects should move the critical point to a region 
downstream of the sill, but how to determine the location 
of the critical point in detail is not yet understood. 

In spite of these limitations to both prediction and 
measurements, results indicate that the control dynam- 
ics may play a role in the flow through the passageway 
(as is advocated here), since the parameters span a wide 
range of values. Thus additional precision can be 
achieved by including more realism such as continuous 
stratification, more realistic bathymetry, and friction. 
None have been completely included in either unidirec- 
tional or bidirectional controlled rotating flow problems 
yet, so understanding of this promising dynamics re- 
mains in its infancy despite more than 20 years of work. 

In the ocean, we know almost nothing about the local 
aspects of such flows. What is the nature of a real 
upstream flow? How much does local topography influ- 
ence the currents? Is there significant dynamic influence 
by nearby currents? Is friction enhanced by the concen- 
trated currents, and if so, where? Is vertical mixing 
influenced near the control region, as it is downstream of 
the control point [Polzin et al., 1996]? Is vertical mixing 
enhanced in certain regions, such as on the left-hand 
side, where currents are greatest? Is side or bottom 
friction enhanced there? I hope 'that the answers to some 
of these questions will be found by future studies. 
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