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Two fluid devices exhibit simple aspects of nonlinear finite-amplitude instability in laminar fluid
flow. The first shows multiequilibria; two steady flow regimes can be found within a certain range
of the control parameter. The flow exhibits hysteresis as the control parameter is slowly increased
and then decreased through this range of the control parameter. The second shows transition from
steady flow to finite amplitude oscillations within a certain range. The two experiments share similar
dynamics and only use different control parameters. A third experiment is described that exhibits
either multiequilibria or oscillations, depending on which variable is selected to be the control
parameter. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

A large number of nonlinear processes act to determine
the state of the earth’s climate. The possibilities of both large
nonlinear oscillations and multiple equilibrium climates are
suggested not only by data of past climates but also by mod-
els of climate. In the ocean a number of boundary effects
produce the motion of the water, including wind stress, dif-
ferential heating, precipitation, and evaporation. Internal fac-
tors such as radiant heating and tides also contribute. For
over thirty years, it has been known that combinations of
these forcing factors can produce a body with more than one
steady and stable physical state. The first famous ocean
example1 involves the effects of the advection of temperature
and salinity on a simple mixed basin that is connected to a
second basin by two tubes, one over the other. In that prob-
lem, there were two stable fixed points and one unstable
fixed point for some range of the forcing parameters. There
have since been well over a dozen theoretical and modeling
studies of such problems2 usually with more complicated
basins and more states. In addition, multiple equilibrium
states have been predicted for forced convection3 and in ba-
sins forced by surface stress alone.4 These multiequilibrium
problems contain more than one stable~locally! steady solu-
tion to the governing equations for identical boundary con-
ditions. There are also oscillations possible for such prob-
lems. This is based on the behavior of both simple and
complex ocean models in conjunction with some suggestive
natural data.5 In addition, there are a number of nonlinear
oscillations associated with models of earthquakes,6 glacial
surges,7 and volcanism.8 These problems involve transition
from one laminar flow to another. They differ from many of
the common transition phenomena in fluid mechanics such
as turbulence in fluids, as analyzed as finite amplitude stabil-
ity phenomena,9 because no wave numbers, eigenvalues, fre-
quencies, or other internal degrees of freedom differentiate
the two states as is the case for transition to more turbulent
flow.

Such considerations have motivated us to seek physical
examples using simple laboratory devices. Typical behavior
has been found in some laboratory experiments10,11but these
require elaborate facilities and very careful control of the
driving parameters. The behavior is also indicated by some
measurements of natural phenomena,12 but firsthand data are
again not readily available without large facilities. Of course,
some electronic circuits and magnetic phenomena are well
known to have the observed features,13 and the mathematical
concepts of their macroscopic properties are well
developed.14 In spite of this, here we present simple models
utilizing fluid flow so that the parallels with the natural phe-
nomena are visible and obvious. In this way, the devices are
pedagogical for a wide range of students and scientists inter-
ested in natural phenomena. Naturally, these also illuminate
the features of these problems in nonlinear multiple equilib-
ria and oscillations in their own right.

II. MULTIPLE EQUILIBRIA

A simple box model of a wind and thermally driven
ocean3,11 is a fine example of multiple equilibria, in which
more than one steady flow can exist for identical dynamics
and boundary conditions. Consider a bay@Fig. 1~a!# con-
nected to the ocean by a narrow deep passage. Let water in
the ocean be directed toward the opening by a surface current
driven by the wind. In the absence of density differences
between ocean and bay water, the surface water flows into
the bay, becomes mixed by winds and tides, and flows out
below the inflow through the deep part of the passage. Also,
let the bay water be heated. In that case, the warm bay water
would tend to float outward through the gap at the surface
and thus be directed against the wind-driven current. Two
flow states are possible in a certain range of parameters. One
of them is directed in the direction of the wind-driven current
and the other is directed in the opposite direction.

The oceanic situation is similar to the case sketched in Fig.
1~b!, where a vertical tube of heightH is in a large basin of
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flowing water~which is a model of the ocean! with tempera-
ture Tb . The tube has an inlet at the top facing the direction
of uniform flow of speedU. This flow provides positive,
constant stagnation pressure (5 1

2rU2, wherer is the density
of the water in the basin!. A second opening at the bottom
allows outflow. The tube wall is in contact with a hot bath at
temperatureT* 1Tb . This resembles the problem of chim-
ney ventilation on a windy day. Cold air can blow down the
chimney, but if warm air ascends the chimney, a draft is
produced which perpetuates the ascending flow. The dynam-
ics of this configuration will be analyzed using simple ap-
proximations to the dynamics. Let us assume that heat con-
ducts through the wall and brings water in the tube to
temperatureT1Tb . A dynamic equation is obtained using
Bernoulli’s equation~essentially conservation of energy15!.
Because this applies to steady frictionless flow Bernoulli’s
equation is also found to hold along streamlines in the mo-
mentum equation.16 The equation holds in a number of re-
gions that will be connected together. First, the equation
holds in a region between upstream and the top inlet to the
tube in the form

r~ 1
2U

21gztop!1ptopE5r~ 1
2w

21gztop!1ptopI . ~2.1!

Vertical velocity inside the tubew is positive upward,z is the
vertical location,p is pressure, andg is acceleration due to
gravity. The subscript top refers to the elevation of the
streamline at the middle of the top inlet; bottom refers to the
elevation at the bottom inlet; and the designation E or I refers
to external or internal to the tube. We assume that the fluid
temperature jumps up inside the tube to the valueT1Tb.
Bernoulli’s equation along a vertical streamline inside the
tube is 1

2r(12aT)w21r(12aT)ztop1ptopI5
1
2r(1

2aT)w21r(12aT)zbottom1pbottomI, wherea is coefficient
of thermal expansion. This reduces to

pbottomI2ptopI5r~12aT!gH, ~2.2!

where H5(ztop2zbottom). Bernoulli’s equation in the outer

fluid is r( 1
2U

21gztop)1ptopE5r( 1
2U

21gzbottom)1pbottomE.
This reduces to

pbottomE2ptopE5rgH. ~2.3!

Setting pbottomI5pbottomE and using~2.1!–~2.3! gives the
following equation for vertical velocity within the tube:

w5sgn~2gaTH2U2!AuU222gaTHu. ~2.4!

This can be considered a modified version of Torricelli’s
theorem for a fluid in a field of gravity with internal changes
in density. The substitution of density variation in the gravi-
tational force term and nowhere else is often used in geo-
physical fluid dynamics. It is frequently used in the differen-
tial equations of momentum. The Boussinesq approximation
defines the broad range of conditions under which this ap-
proximation is valid. The volume flux out of the tube of
radiusR is

Q5pR2w. ~2.5!

The relation betweenQ2 andT from ~2.4! and~2.5! is shown
as the two straight lines in Fig. 2.

The heat balance in the container is simple relaxation-
advection

]T

]t
5

1

t
@T* 2T#2

uQuT
V

, ~2.6!

where volume in the vertical portion of the tube isV
5pR2H andt is the time constant for a change of tempera-
ture of water in the tube. The time constant might arise from
diffusion of heat through the walls and into the interior of the
fluid. For steady state

T5
T*

11
uQut

V

, ~2.7!

which defines the hyperbola shown in Fig. 2. The two
straight lines intersect the hyperbola in three places. The bot-
tom and top intersection points are stable solutions. The
middle is unstable1 and the system evolves to either one of
the two stable states. In addition to ocean or geophysical
situations, ventilation in such settings as smokestacks, fur-

Fig. 1. Sketches of situations where heating and an incipient current produce
multiple equilibria.~a! The ocean model~Refs. 3 and 11!. A chamber rep-
resenting a bay has temperatureT in contact with a bath with temperature
T* . The bay is also subjected to wind stress that drives surface water into
the surface of the bay.~b! A simple variation of the model. A current
coming from the left impinges upon a submerged tube that has sidewall
heating like the heating in the bay. The current produces a stagnation pres-
surep. ~c! A sketch of the two flow states inside the tube. In the left flow
state, the hot plume is driven down and out the bottom by the main current.
In the right flow state, the hot plume rises up through the tube and creates a
thermally driven flow directed against the main current.

Fig. 2. Two sets of curves for the configuration sketched in Fig. 1~b!. The
straight lines are the solutions for Eqs.~2.4! and ~2.5!. The hyperbola is
given by ~2.7!.
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naces, ships, fires, rooms, mines, and skyscrapers in suitable
winds or with some blowers might have two such flow states,
one driven mostly by temperature and the other driven by the
winds or blowers. One of the states might be undesirable or
dangerous.

A demonstration device for multiple equilibria. A simple
laboratory water device which shows this kind of multiple
equilibrium is schematically sketched in Fig. 3~a!. In this
device, air is used instead of temperature to produce a buoy-
ancy force. A funnel is fitted into a piece of transparent tub-
ing that has a variable clamp midway along the tube. The
funnel and tube must be firmly mounted with the funnel
lying above the tube and with their central axis vertical. The
funnel and tube must be placed in a location with a source of
constant water flux and adequate water drainage such as a
sink, or outdoors. Water should be steadily directed into the
funnel at a rate great enough to overflow the funnel when the
clamp is fully opened. Water will also descend through the
tube. Assuming the greatest drag, and hence the greatest
pressure drop, is across the pinch, pressure difference across
the pinch comes from a positive pressure due to hydrostatic
head from the water lying above the pinch~in the tube and
funnel! minus a pressure below the pinch that is less than
atmospheric from the siphon action of water in the tube be-
low the pinch. If the clamp is wide open, the tube becomes
completely filled with flowing water. If the clamp is partially
closed, below a critical flow rate air travels up from the
bottom of the tube to the pinch so that the siphon effect in
the lower tube is lost. Driving pressure across the pinch is
thereby reduced. This is fully visible in the transparent tub-
ing. In the air-bound state, flow is considerably slower than
when the bottom tube is filled with water. We will show
below that the governing equations can have behavior simi-
lar to that sketched in Fig. 2.

Our device uses a 0.0125-m-diam, 0.28-m-long vertical,
flexible, transparent, Tygon tube. The top of the tube is con-
nected to the bottom of a vertical cylinder that has a 0.02-m-
diam overflow tube in its sidewall. The cylinder substitutes
for the funnel and serves as a reservoir whose water surface
is kept at a constant level 0.1 m higher than the top of the

Tygon tube. The adjustable pinch valve is placed 0.08 m
below the floor of the cylinder so thath150.18 m andh2

50.2 m@these are defined in Fig. 3~a!#. A submersible pump
is located in a catch basin below the tube and overflow tube.
We have a portable classroom demonstration device@Fig.
3~b!# to show the desired processes. It consists of a pump and
reservoir in a rectangular plastic container attached by quick
release holders to a cylinder that holds the upper tube, the
flexible tube, and the pinch valve. The overflow tube and the
tube from the pump can be separated from the pump and
reservoir so that the two parts can be taken apart and fit into
a suitcase for travel. On our device, the overflow diameter
has proven to be slightly too small to handle the overflow. If
the flow rate through the tube is almost zero we have to
slightly decrease the rate of the pump with a pinch valve~not
shown! on the pump tube to avoid overflowing the top tube.
The device has been taken on numerous trips and used in
lectures to illustrate the multiple states that such climate-like
devices can have.

Measurements of flow rate as a function of the number of
valve turns reveal the features of interest as shown in Fig.
3~c!. The top data were obtained as the valve was started
fully open and then was gradually closed. At a value of about
0.2 turns from fully closed, the flow dropped to a lower level
that corresponded to the lower tube suddenly becoming filled
with air. The bottom data were obtained as the valve was
opened between successive measurements. At a value of 3.5
turns, the flow at the base of the tube reached a value suffi-
cient to drive air out of the bottom tube. The rate thereupon
rose to a higher value which corresponded to the lower tube
becoming flooded with water. Since the changes in valve
setting were made very slowly, and the device was allowed
to come to a steady state between each change, this device
produces more than hysteresis~response lagging the change!.
It possesses two values of flow rate within a given range of
valve settings as the valve is changed from fully open to
fully closed and back to fully open. This also demonstrates
the other typical features of multiple-equilibrium flows. The
transition between the air-bound lower tube and the water-

Fig. 3. ~a! A pinched tube holding water coming from an overflowing funnel demonstrates multiple states within a parameter range. One state has the
air–water interface separate below the pinch~dark hatched region!. In the second, water fills the tube to the bottom~this includes both dark and light hatched
regions!. ~b! Photograph of the portable classroom demonstration apparatus.~c! Measurements of flow rate in an experiment where the valve was turned
slowly and the flow then came to a new steady equilibrium. The arrows show the direction of adjustment.
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filled lower tube is found at a very different valve opening as
the valve is opened than as the valve is closed. In addition,
the flow rate jumps from one value to another at transition.

The pressure difference across the valve during the
flooded state can be thought of as being comparable to the
constant wind pressure term in the above thermally driven
problem. With the pinch valve fully open, water flows
steadily down through the entire tube. We assume the for-
mula for the velocity is like that in~2.4! with T50. It stays
steady since the pressure change across the valve stays con-
stant. However, the area in~2.5! changes as the valve closes,
so the flow rate~volume flux! goes down with area. As the
flow rate is decreased by closing the valve, the air at the
bottom outlet to the tube suddenly can force its way upward
through the tube by buoyancy as the Froude number based
on radius at the bottom of the tube falls below a critical
value. The presence of air in the bottom tube can be thought
of as temperature. The dynamics can be expressed by Eq.
~2.4!, but instead of Eq.~2.7! there is a step function relation
between ‘‘temperature’’~air content! and the flow. Above a
critical flow rate the tube is filled with water and ‘‘tempera-
ture’’ ~air content! is zero. At the critical flow rate, the air at
the bottom of the tube creates a bubble whose rise speed
equals the descent speed of the water. For lower flow rates,
air rises up the lower part of the tube to the valve. Conse-
quently, ‘‘temperature’’~air content! jumps from zero to a
fixed positive value for flow rates below this value. The dia-
gram comparable to Fig. 2 is shown in Fig. 4, but the curves
are inverted so that the pressure drop across the valve is
plotted as a positive function of flow rate. Below the critical
flow rate, the pressure, shown as a bold horizontal line, has a
low constant value proportional to the pressure difference
caused by the vertical distance from the top of the funnel to
a spot immediately below the pinch where the air is encoun-
tered by the water. Above this critical rate, the aggregate
pressure is also a horizontal bold line with a larger value
proportional to the distance from top of the spillway to the
bottom of the tube. The two are connected by a vertical
curve.
The straight sloping lines describe the relationship between
volume flux squared and pressure across the pinch for three
different pinch valve settings. They are found using Eqs.
~2.4! and~2.5! setting 1

2U
25rg(h11h2) andrgaTH50 or

2rgh2 . One such solution is the light, solid, straight line
shown in Fig. 4 that intersects the bold curve at three points.
Two of the intersections are labeled ‘‘2’’ and ‘‘4.’’ We note
first that if p1 were larger in relation top11p2 as shown by
the horizontally dashed bold line, intersection would only be
at point 2. This could be produced, for example, by locating
the value at lower elevation with everything else the same,

But instead of changing some geometric parameter, let us
imagine that the valve has cross section of radiusR that can
be changed at will. We will imagine thatR initially is set to
a large value so the flow line is the dashed straight sloping
line in Fig. 4. The rapidly flowing water fills the tube so that
the flow is driven by pressurep5p11p2 and the solution is
the intersection near point 1. As we decreaseR the straight
line gets progressively steeper so solutions move along the
upper curve toward the left, in the direction of the top arrow.
As the dynamics curve enters the intermediate stage where
one unstable and two stable values of intersection exist, the
solution continues to move along the top curve, and reaches
point 2. At the value where the top curve no longer intersects
the dynamic curve for decreasingR, the air rises up the tube

so that ‘‘temperature’’ jumps up and the pressure changes to
p5p1 . At this point, flow rate decreases, and only the lower
intersection points are found as shown by point 3, which is
the intersection of the heavy curve with the straight, light,
long-and-short dashed line. This state continues asR goes to
zero. Now let us imagine what happens as the valve is
opened. For smallR, volume flux through the tube is small
compared to the flux at which the air bubble rose, so the
water does not have sufficient flow rate to expunge the air
from the lower part of the tube and ‘‘temperature’’ is high.
Only the lower intersection point 3 exists. As radiusR in-
creases, the intermediate ‘‘three-intersection’’ stage is en-
countered, but the solution remains on a lower trajectory
such as shown by point 4 since volume flux is below the
critical value. At some value ofR, the flow following the
lower branch reaches the transition flow rateQT . Above this
rate, intersection with the bottom curve terminates as air is
driven from the lower part of the tube. As this happens, the
flow rate jumps upward, reinforcing the elimination of air
from the bottom portion of the tube. In the above analogy,
‘‘temperature’’ will plunge to zero as water is driven from
the lower part of the tube. Upon the loss of air in the bottom
part of the tube, flow rate will jump to a new higher value
close to point 1. This high rate continues for all subsequent
increases ofR.

This kind of behavior is commonly found in chimneys that
are poorly placed so that in the winter cold air is directed
down the chimney by exterior winds. The unfortunate occu-
pants find that a small fire results in the smoke being driven
into the dwelling rather than up the flue when the chimney is
cold. Only a large fire can overcome the downdraft suffi-
ciently to force heat up the chimney walls and create an
updraft. Fortunately, once heated the chimney can continue
to serve with only a small fire.

III. A NONLINEAR OSCILLATOR

A small modification of the above device produces quite
different behavior as sketched in Fig. 5. Assume now that a
long, tall vertical cylinder replaces the funnel at the top,
which had been overflowing. We bend the tube below the
constriction upward and then downward again so there is a
crest. This maximum in the tube height is at an elevationh1

Fig. 4. A diagram comparable to Fig. 2 for the funnel experiment. The
heavy solid curves give pressure produced by the static height of water in
the cylinder and tube. Pressurep1 is hydrostatic pressure due to water of
depthh1 ~Fig. 3! and p2 is hydrostatic pressure due to water of depthh2 .
The heavy horizontal dashed line would replace the horizontalp1 line for a
valve located at lower elevations so thatp1 is greater. Consequently,p2 is
less by the same amount so the sum of pressures is the same. The light lines
give laws for flow rate across the valve for three different settings. The
value is increasingly open for smaller slopes. The symbolQT stands for the
volume flux at transition.
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above the bottom of the cylinder. The bottom of the tube is
located at a distanceh2 below the bottom of the cylinder.
Water is fed into the cylinder at a constant rateQ0 , where-
upon it flows out of the bottom through the tube. Imagine
what happens for very slow flow, and in the absence of fric-
tion and with surface tension neglected. Water accumulates
in the cylinder until the elevation of water in the cylinder
exceeds the crest of the bend in the tube. The water in the
tube then flows over the crest and becomes controlled at the
topographic maximum~like flow over the weir of a dam!.
The free surface of the water lying above the tube crest ad-
justs itself so that the critically controlled flow matches the
input. For increasing values of input the elevation of water in
the cylinder and the elevation of the free surface in the tube
increase. The contact point between air, water, and the top of
the tube moves toward the crest of the top of the tube. At
some specific value of input flow rate, depending mostly on
the size of the tube, but also in reality on some aspects of
tube shape and other physical properties such as surface ten-
sion and wettability of the tube material, the free surface
contacts the crest of the top of the tube. Close to this stage,
the steady flow develops instability and the behavior changes
to that of a Tantalus cup,17 which is a device in which a
siphon is within a container with sides higher than the top of
the siphon. The contact point at the top of the tube moves
downstream, which causes pressure to drop at the crest of the
tube so that pressure difference between the crest and the
cylinder increases and flow rate in the tube increases. This
drives the contact point further downstream within the tube,
hence flow further accelerates. Quickly thereafter, the con-
tact point is driven to the bottom of the tube, flow greatly

increases, and the cylinder is emptied of water. At this stage,
air enters the tube from upstream, the flow slows down or
ceases, and the tube can no longer remove as much water as
is being pumped in. Water level in the tube then builds up
from zero again until the level reaches the crest. The cycle
then repeats itself again and again.

We have conducted studies of flows in such a device with
R50.032 m, h150.118 m, h250.64 m, r 50.0064 m, and
volume flux Q0 set at values ranging up to 1024 m3 s21.
Figure 5 shows measurements of surface height, taken from
pressure data, for a number of different values of input flow
rate. Each curve is offset upward by 0.15 m. The numbers on
the right correspond to the imposed volume flux. The time is
divided by the time scalet5pR2h1 /Q0 . The bottom curve
shows that for smaller volume flux the flow is steady. We
saw visually that the flow becomes critically controlled at the
crest of the tube. Water spilled out the rest of the way as
sketched by the dark striped region in Fig. 5~a!. For the next
three volume fluxes upward, the flow oscillated. The oscilla-
tion sequence was as follows: After a height minimum, the
cylinder would begin to fill and the water surface in the tube
rose until the flow at the crest became critical. But then the
free surface of the water intersected the top inner surface of
the tube so that the air/water contact point moved down the
tube. This drove air from the tube and produced a siphon that
evacuated the cylinder and started the cycle again. We can
estimate the critical volume flux,Q0c , by assuming that the
crest has a square cross section with sides of lengthr. We
use the standard hydraulic formula for flow over a weir18 of
Q5(2/3)3/2ghu

3/2r and set the fluid height at the crest 2/3hu

5r . Thus Q0c5Agr5/2510.431026 m3 s21. This value is
below the value of transition to oscillations seen in this ex-
periment by about 50%. Since we only crudely approximated
the geometric details, ignored surface tension effects, and
simplified a number of other aspects of the real experiment,
the experimental transition to oscillations could not be ex-
pected to happen exactly at the predicted value. Therefore,
the agreement between the magnitude ofQ0c and the value
of the experimental number for transition crudely supports
this mechanism. For flows just above the critical value of
volume flux, the oscillation amplitude is large. The actual
instant when the emptying starts varies for each cycle and the
flow is obviously not exactly periodic in the experiment.
Theoretically, since there are only two time derivatives and
the coefficients are constant, the equations would produce
flows that approach either fixed points or periodic oscilla-
tions that correspond to limit cycles.14

For moderately greater values of volume flux, the oscilla-
tions become more regular. In dimensional time the cycle
period decreases. This decrease is not very apparent using
scaled time in Fig. 5~b!, so the scaling parameter seems to
roughly fit, but in real laboratory time the change in period
with increasing pumping rate is obvious. The oscillations are
saw-tooth alternations between filling and evacuation events.
Above this is a range between the top two curves where a
mixture of air and water enters the tube at irregular times and
no cyclic flow is seen. But finally at flow rates great enough
to support a steady siphon, the flow is steady again. The top
curve shows such a steady flow being approached. For height
starting from zero, the steady final value is overshot in order
to prime the siphon, and then steady state is approached as a
decaying curve. The assumption that the flow in the large
tube is governed by Bernoulli’s law, so that the criterion for

Fig. 5. ~a! A device for producing oscillations with a critical flow and a
siphon.~b! Height of water in the cylinderh(t8) for different values of input
volume flux ~the units are 1026 m3 s21).
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transition to steady flow is12u
2.gh2 , produces an unrealis-

tically great value ofQ054.531024 m3 s21. Thus in our
apparatus, we suspect that there is viscous drag along the
tube walls.

Finally, experiments were done for assorted other values
and signs ofh1 andh2 . For negative values ofh2 a range of
multiple equilibria was found without oscillations similar to
the experiments of Sec. II.

IV. THE ROLE OF THE CONTROL PARAMETER

Both problems have very similar features that can be un-
derstood by investigating the relation between the control
parameter~independent variable! and the dependent variable
for both the funnel and the siphon experiments. We will then
show a ‘‘unified diagram’’ that has features of both of the
above relations and describe an experiment that obeys this
diagram. Thus, this final experiment possesses both the mul-
tiple equilibrium character of the funnel experiments and the
oscillations of the siphon experiments, depending on which
parameter we select to be the control parameter, or indepen-
dent variable.

In the funnel experiment@Fig. 3~a!#, we imagine that in-
stead of a pinch valve there is a very small tube whose radius
R ~indicated as the ordinate! varies as the control parameter,
and that~2.5! governs there. Thus we sketch in Fig. 6 that
volume flux ~the dependent variable given along the ab-
scissa! goes as the square of radiusR for fixed pressure drop
rgh1 . A step increase in flux is found at a critical fluxQ1

where pressure changes abruptly torh(h11h2). For this
greater flux, a second curve also has volume flux propor-
tional to the square ofR. But this second curve is offset to
the right because the bottom tube is filled with water and
hence produces a siphon effect at those flow rates. Figure
6~a! shows the relations between flux andR2 and this figure
is similar to Fig. 3~c!, but the axes are switched. The square
of the pinch radiusR is the control parameter, or independent
variable, plotted along the abscissa in Fig. 6~a!. Flow rateQ
is the dependent variable, plotted as the ordinate in Fig. 6~a!.
As the control parameter is slowly changed, flow rate can
take two values in a certain range.

For comparison, in the nonlinear oscillator volume fluxQ0
into the top of the tube is the control parameter. It is related
to volume flux and height by volume conservation

A
dh

dt
5Q02Q ~4.1!

for h.0. The volume flux in the tube obeysQ
5pgR2Ag(h1h2) if the siphon is primed, andQ
5(2/3)3/2ghu

3/2R if the siphon is unprimed. This is plotted
along the abscissa in Fig. 6~b!, where in this case heighth is
the dependent variable given along the ordinate instead ofR.
The relations are thus somewhat similar to those in the fun-
nel experiment although the equations are different in detail.
More importantly, the behavior of the flow governed by the
curves shown in Fig. 6~b! is similar to that of the curves in
Fig. 6~a!. If Q0.Q2 , a steady flow is found. In contrast, if
Q1,Q0,Q2 , the flow out follows one of the two curves in
Fig. 6~b!. If the siphon is primed, then according to the curve
on the rightQ.Q0 and Eq.~4.1! states that heighth decays.
Height reaches zero, then air is pulled into the tube and the
flow out follows the curve on the left. Then Eq.~4.1! says
that heighth increases until the siphon is primed and the

behavior jumps to the curve on the right again. At this time
the flow out exceedsQ0 and the cycle repeats itself. And
finally, if Q0,Q1 a steady flow is also found.

We also found that if negative values ofh2 were made
impossible by elevating the bottom of the tube above the
bottom of the cylinder in Fig. 5, steady multiple equilibria
were found. This feature can be understood as an overlap of
the two curves due to the fact thatQ2,Q1 .

An experiment that possesses a smooth curve and thus
demonstrates both of the features, namely multiple equilibria
and oscillations,6,8 is also readily produced in the laboratory,
but present models have response times of over an hour so
that devices cannot quickly reveal the desired features. Its
S-shaped curve relatingh andQ is sketched schematically in
Fig. 6~c!. A diagram of the device8 that produced it is
sketched in Fig. 7. Corn syrup was fed into the top of a

Fig. 6. Diagrams expressing the behavior of the two types of experiments.
~a! Sketch of the solution to a simplified set of equations expressing the
funnel experiment. The control parameter isR2. If R,R1 , only the left-
hand line is possible and so this gives the value of volume fluxQ. If R1

,R,R2 either line is possible. IfR.R2 , only the right-hand line is pos-
sible. AsR is changed the solution can move along either line except if the
line ends. In these cases, the arrows show transitions from one curve to the
other. The vertical arrows show the direction of the change inR. The hori-
zontal arrows show the direction of the consequential jump.~b! Sketch of
solutions to a simplified set of equations to the siphon experiment. The
control parameter is the steady forcing of volume fluxQ0 . If Q0,Q1 , only
the left-hand curve gives the steady stable solutionQ5Q0 . If Q1,Q0

,Q2 no steady stable flow exists and oscillations are found. IfQ0.Q2 the
right-hand curve gives the steady solutionQ5Q0 . ~c! Sketch of solutions to
a simplified set of equations for an experiment with a continuous curve. Ifh
is the control parameter, the solutions exhibit multiple equilibrium features
like the funnel experiment. IfQ0 is the control parameter the solutions
exhibit the oscillatory features of the siphon experiment. A device that pro-
duces such a curve is shown in Fig. 7.
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vertical cylinder. This fluid has the property that the viscos-
ity increases greatly as temperature is decreased, so the vis-
cosity is about one order of magnitude greater when the
syrup is about 15 °C colder. We used a gravity feed for the
sourceQ0 that consisted of a cylinder with a radius of about
0.1 m and with about 10-l capacity with a small tube 0.04 m
in radius and 0.1 m long in the bottom. The cylinder that
received this flow was 1 m high and 0.05 m diameter. At the
bottom of this cylinder was an outflow that was fed out
through a small copper tube 0.02 m in radius and 0.145 m
long with about half its length immersed in antifreeze at
roughly 211 °C. In this way, sufficiently slow flow in the
copper tube caused the syrup to be very cold and thus very
viscous. In contrast, fast flow allowed the syrup to transit the
cooled regions quickly so that the syrup remained warm and
it became only slightly more viscous. This device exhibited
oscillations when fed by a steady flow of syrup into the top
of the cylinder. In this demonstration device, oscillation pe-
riods were hours, and thus too long for classroom use unless
students were free to leave it running and record the flows on
time lapse video. Figure 7~b! shows a second configuration
that produces multiple equilibria instead of oscillations. In
this case the level of the syrup above the end of the copper
tube is held constant in each run by a spillway. But the
elevations of the spillway were varied from run to run. This
is achieved in the laboratory by simply having a large hold-
ing tank for the syrup. In practice, the holding tank elevation
above the bottom of the copper tube was the control param-
eter. It was simpler to vary the elevation of the copper tube
and the sleeve around it with chilled antifreeze and keep the
large holding tank fixed. Thus a wide flexible tube connected
the holding tank and the chilled copper tube. As the elevation
difference between the holding tank surface and the chilled
tube outlet is slowly increased up from zero and then down
again, flow follows the trajectory shown by the arrows inh,Q
phase space in Fig. 6~c!. This single apparatus thus exhibits
all the features of the two preceding devices. However, it is
very slow to cycle and typical cycle periods are over an hour.
Thus unless this is automated, it does not allow convenient
classroom study over an afternoon.

Naturally, to produce oscillations two time derivatives are
needed. A typical set of complete oscillating model equa-
tions have the form8

]T

]t
1Q

]T

]z
52T, T51 on z50,

m~T!Q52
]p

]z
, p50 at z51, p5P at z50, ~4.2!

e
]P

]t
5Q02Q.

These equations are dimensionless. The depth of the cooled
tube is the depth scale and the velocity scale is the depth
scale divided by the thermal diffusion time scale. The first
equation is conservation of heat with conduction between the
fluid and the tube walls. This produces a relaxation time that
generates the right-hand term of the top equation. The sec-
ond equation is simple viscous flow. A likely equation for
viscosity ism i(T)5eb(12T), which is an Arrhenius-type law
with the denominator expanded as a Taylor series. The third
represents pressure change from accumulation of material in
a compressible reservoir. These particular equations are
taken from a model that includes volatile effects on viscosity
of magma during a volcanic eruption. The parameterT rep-

Fig. 8. Results of a laboratory experiment with a fluid that has a
temperature-dependent viscosity.~a! Oscillations of height of the interface
in the reservoir with time.~b! Phase plane of height and volume flux through
the cooled tube as a function of time.

Fig. 7. ~a! The apparatus with an input volume fluxQ0 of corn syrup as the
control parameter. The corn syrup flows out through a chilled tube and a
steady relation between pressure and flow rate obeys a curve as sketched in
Fig. 6~c!. For some parameters the height and flow rate oscillate with time.
~b! The apparatus with an overflow that produces fluid heighth as the
control parameter. The flow~dependent variable! exhibits multiple equilibria
like the funnel experiment.
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resents volatile content rather than temperature. Pressure of a
compressible magma chamber isP. The right-hand term of
the first equation arises from the time it takes volatile mate-
rial to nucleate in bubbles. The equations are integrated in
the vertical using a simple technique and then they were
integrated in time numerically. As in our earlier examples of
oscillating systems,Q0 is the control parameter and oscilla-
tions are found for a fixed range ofQ0 .8 If the control pa-
rameter were to be pressure of the magma chamber instead
of Q0 , the above equations produce multiple equilibrium
flows. In one case, a large flux of high volatile content low-
viscosity magma would erupt; in the other a small flux of
high-viscosity depleted magma would seep out.

Typical oscillations of elevation with time for a laboratory
experiment like that sketched in Fig. 7~a! are shown in Fig.
8~a!. The inferred phase plane of height–volume flux is
shown in Fig. 8~b!.

As mentioned in Sec. I, a large variety of physical systems
have the behavior of these simple models.18 Natural phenom-
ena sometimes exhibit some of the features of these experi-
ments such as abrupt transitions from one state to another or
abrupt transitions to oscillations. In our case, the only differ-
ence between the steady and oscillating examples is the con-
trol parameter used in the physical system. We hope these
simple demonstrations will lead to a clearer understanding of
yet more important systems in the future.
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