Multistate flow devices for geophysical fluid dynamics and climate
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Two fluid devices exhibit simple aspects of nonlinear finite-amplitude instability in laminar fluid
flow. The first shows multiequilibria; two steady flow regimes can be found within a certain range
of the control parameter. The flow exhibits hysteresis as the control parameter is slowly increased
and then decreased through this range of the control parameter. The second shows transition from
steady flow to finite amplitude oscillations within a certain range. The two experiments share similar
dynamics and only use different control parameters. A third experiment is described that exhibits
either multiequilibria or oscillations, depending on which variable is selected to be the control
parameter. ©2001 American Association of Physics Teachers.
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[. INTRODUCTION Such considerations have motivated us to seek physical
examples using simple laboratory devices. Typical behavior

A large number of nonlinear processes act to determin&as been found in some laboratory experimnitsbut these
the state of the earth’s climate. The possibilities of both largéequire elaborate facilities and very careful control of the
nonlinear oscillations and multiple equilibrium climates aredriving parameters. The behavior is also indicated by some
suggested not only by data of past climates but also by modneasurements of natural phenomehbuit firsthand data are
els of climate. In the ocean a number of boundary effectgtgain not readl_ly ayallf?lble without Iarge facilities. Of course,
produce the motion of the water, including wind stress, dif-S0me electronic circuits and magnetic phenomena are well
ferential heating, precipitation, and evaporation. Internal facknown to have the observed featutésnd the mathematical
tors such as radiant heating and tides also contribute. F&ONCepts 4°f their macroscopic properties are well
over thirty years, it has been known that combinations ofdeveloped:* In spite of this, here we present simple models
these forcing factors can produce a body with more than onétilizing fluid flow so that the parallels with the natural phe-
steady and stable physical state. The first famous oced#Pmena are visible and obvious. In this way, the devices are
examplé involves the effects of the advection of temperaturePedagogical for a wide range of students and scientists inter-
and salinity on a simple mixed basin that is connected to &sted in natural phenomena. N{:\turally, these also |IIum|p_ate
second basin by two tubes, one over the other. In that proghe features of these problems in nonlinear multiple equilib-
lem, there were two stable fixed points and one unstabl&@ and oscillations in their own right.
fixed point for some range of the forcing parameters. There
have since been well over a dozen theoretical and modeling pyULTIPLE EQUILIBRIA
studies of such problerhausually with more complicated
basins and more states. In addition, multiple equilibrium A simple box model of a wind and thermally driven
states have been predicted for forced convedtiond in ba- oceari!!is a fine example of multiple equilibria, in which
sins forced by surface stress aldh€hese multiequilibrium more than one steady flow can exist for identical dynamics
problems contain more than one stabeally) steady solu- and boundary conditions. Consider a bdsig. 1(a)] con-
tion to the governing equations for identical boundary con-nected to the ocean by a narrow deep passage. Let water in
ditions. There are also oscillations possible for such probthe ocean be directed toward the opening by a surface current
lems. This is based on the behavior of both simple andiriven by the wind. In the absence of density differences
complex ocean models in conjunction with some suggestiveetween ocean and bay water, the surface water flows into
natural data. In addition, there are a number of nonlinear the bay, becomes mixed by winds and tides, and flows out
oscillations associated with models of earthquakgkcial  below the inflow through the deep part of the passage. Also,
surges, and volcanisnf. These problems involve transition let the bay water be heated. In that case, the warm bay water
from one laminar flow to another. They differ from many of would tend to float outward through the gap at the surface
the common transition phenomena in fluid mechanics suchnd thus be directed against the wind-driven current. Two
as turbulence in fluids, as analyzed as finite amplitude stabiflow states are possible in a certain range of parameters. One
ity phenomend,because no wave numbers, eigenvalues, freef them is directed in the direction of the wind-driven current
qguencies, or other internal degrees of freedom differentiatand the other is directed in the opposite direction.
the two states as is the case for transition to more turbulent The oceanic situation is similar to the case sketched in Fig.
flow. 1(b), where a vertical tube of heiglt is in a large basin of
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Fig. 1. Sketches of situations where heating and an incipient current produce, ) . )
multiple equilibria.(a) The ocean modelRefs. 3 and 1L A chamber rep- F|g._2. Tyvo sets of curves _for the configuration sketched in ng).]]'he_
resenting a bay has temperatdrén contact with a bath with temperature  Straight lines are the solutions for Eq®.4) and (2.5. The hyperbola is
T*. The bay is also subjected to wind stress that drives surface water intg'ven by(2.7).

the surface of the bayth) A simple variation of the model. A current

coming from the left impinges upon a submerged tube that has sidewall

heating like the heating in the bay. The current produces a stagnation pres- _ _ . . .
surep. (c) A sketch of the two flow states inside the tube. In the left flow Where H= (ZtOD Zbomm)' Bernoulli's equation in the outer

state, the hot plume is driven down and out the bottom by the main currenfluid is p(%U2+ gztop) + Prope= p(%UZ—f— gzbonom) + PhottomE-
In the right flow state, the hot plume rises up through the tube and creates-iahiS reduces to
thermally driven flow directed against the main current.

Pbottome™ Ptope™ PY H. (2.3
Setting Ppottom= Phottome @Nd Using(2.1)—(2.3) gives the
flowing water(which is a model of the oceamith tempera- following equation for vertical velocity within the tube:

tureT,. The tube has an inlet at the top facing the direction  \=gsgn2gaTH- U?)\|U?-2gaTH|. (2.4
of uniform flow of speedU. This flow provides positive, , ) . ) N
This can be considered a modified version of Torricelli's

constant stagnation pressure ¥pU?, wherep is the density > - . e
of the water in the basjn A second opening at the bottom f[heorem for a fluid in a field of gravity with internal changes

allows outflow. The tube wall is in contact with a hot bath at'? density. The substitution of density variation in the gravi-
temperatureT* + T, . This resembles the problem of chim- tational force term and nowhere else is often used in geo-

ney ventilation on a windy day. Cold air can blow down the physical fluid dynamics. It is frequently used in the differen-

chimney, but if warm air ascends the chimney, a draft iStlal equations of momentum. The Boussinesq approximation

produced which perpetuates the ascending flow. The dynanficines tt.he proadl_(rjan_ic_]ﬁ of clondm?lns un?eer\t/rr]ncr: ttr)ns e}p—
ics of this configuration will be analyzed using simple ap_prgxlms lon 1S valid. The volume Tux out of the tube o
proximations to the dynamics. Let us assume that heat corf2dluUsR 1S

ducts through the wall and brings water in the tube to Q= wR?w. (2.5

tempera_t’ureTJer. A dynal_mc equation is obtained using The relation betwee®? and T from (2.4) and(2.5) is shown
Bernoulli's equation(essentially conservation of enefgy ; . -
as the two straight lines in Fig. 2.

Because this applies to steady frictionless flow Bernoulli's The heat balance in the container is simole relaxation-
equation is also found to hold along streamlines in the mo- P

mentum equatiof® The equation holds in a number of re- advection
gions that will be connected together. First, the equation T 1 |QIT
holds in a region between upstream and the top inlet to the = Z[T* = T]———, (2.9

tube in the form
where volume in the vertical portion of the tube 6
p(3U%+9Zip) + Prope= p(3W*+ 9 Ziop) + Propi - (21)  =mR?H and~is the time constant for a change of tempera-
ture of water in the tube. The time constant might arise from

Vert'ical veloqity inside the tuberis pqsitive upwa_rdz isthe  jiffusion of heat through the walls and into the interior of the
vertical location,p is pressure, and is acceleration due to f,id. For steady state

gravity. The subscript top refers to the elevation of the

streamline at the middle of the top inlet; bottom refers to the T 5
elevation at the bottom inlet; and the designation E or | refers - Q|+’ 2.7
to external or internal to the tube. We assume that the fluid 1+ v

temperature jumps up inside the tube to the valueT,,. _ _ o
Bernoulli's equation along a vertical streamline inside thewhich defines the hyperbola shown in Fig. 2. The two

tube is Ip(1—aT)W?+p(1—aT) Ziopt Propi= (1 straight lines ir]tersect t'he hyp.erbola in three places_. The bot-

—aT)W2+ p(1— aT) Zuotom™ Protom» Wherea is coefficient  tom and top intersection points are stable solutions. The
of thermal expansion. This reduces to middle is unstabfeand the system evolves to either one of

the two stable states. In addition to ocean or geophysical

Pbottomi— Propi= P(1—aT)gH, (2.2 situations, ventilation in such settings as smokestacks, fur-
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Fig. 3. (8 A pinched tube holding water coming from an overflowing funnel demonstrates multiple states within a parameter range. One state has the
air—water interface separate below the pidark hatched regionin the second, water fills the tube to the bottéthis includes both dark and light hatched
regions. (b) Photograph of the portable classroom demonstration appafajugleasurements of flow rate in an experiment where the valve was turned
slowly and the flow then came to a new steady equilibrium. The arrows show the direction of adjustment.

naces, ships, fires, rooms, mines, and skyscrapers in suitablggon tube. The adjustable pinch valve is placed 0.08 m
winds or with some blowers might have two such flow statespelow the floor of the cylinder so that;=0.18 m andh,

one driven mostly by temperature and the other driven by the-0 2 m[these are defined in Fig(@]. A submersible pump
winds or blowers. One of the states might be undesirable g% |ocated in a catch basin below the tube and overflow tube.
dangerous. ) . . . We have a portable classroom demonstration defxig.

A demonstration device for multiple equilibrid simple 317 15 show the desired processes. It consists of a pump and
laboratory water device which shows this kind of multiple rggerygir in a rectangular plastic container attached by quick
equilibrium is schematically sketched in Fig(@8 In this  oj0a5e holders to a cylinder that holds the upper tube, the
device, air is used instead of temperature to produce a buoyp,ipie the, and the pinch valve. The overflow tube and the
ancy force. A funnel is fitted into a piece of transparent tUb'tube from the pump can be separated from the pump and

ing that has a variable clamp midway along the tube. Thereservoir so that the two parts can be taken apart and fit into

funnel and tube must be firmly mounted with the funnel : . :
lying above the tube and with their central axis vertical. The? suitcase for travel. On our device, the overflow diameter

funnel and tube must be placed in a location with a source otﬁas proven to be slightly too sma}ll to handle the overflow. If
constant water flux and adequate water drainage such ast ehftllovxé rate thr%l:gh tthe ftltjr?e IS almo_ts; ZEro wie have to
sink, or outdoors. Water should be steadily directed into thesr']g y eﬁ[]ease etrabe(t) € P(;Jmp V\]fl' a p":ﬁ Yﬂmt b
funnel at a rate great enough to overflow the funnel when th howc? on ﬁpuan utekoav0| over owwt]g € %p u g'.
clamp is fully opened. Water will also descend through the' '€ GE€VICE Nas been taken on NUMErous trips and used n
tube. Assuming the greatest drag, and hence the greaté ctures to illustrate the multiple states that such climate-like
pressure drop, is across the pinch, pressure difference acrdigvices can have. .

the pinch comes from a positive pressure due to hydrostatic M&asurements of flow rate as a function of the number of
head from the water lying above the pin6h the tube and valve turns reveal the features of interest as shown in Fig.
funne) minus a pressure below the pinch that is less tharg(C):- The top data were obtained as the valve was started
atmospheric from the siphon action of water in the tube befully open and then was gradually closed. At a value of about

low the pinch. If the clamp is wide open, the tube becomed)-2 turns from fully closed, the flow dropped to a lower level
completely filled with flowing water. If the clamp is partially that corresponded to the lower tube suddenly becoming filled
closed, below a critical flow rate air travels up from the With air. The bottom data were obtained as the valve was

bottom of the tube to the pinch so that the siphon effect iropened between successive measurements. At a value of 3.5
the lower tube is lost. Driving pressure across the pinch idurns, the flow at the base of the tube reached a value suffi-
thereby reduced. This is fully visible in the transparent tub-cient to drive air out of the bottom tube. The rate thereupon
ing. In the air-bound state, flow is considerably slower tharfose to a higher value which corresponded to the lower tube
when the bottom tube is filled with water. We will show becoming flooded with water. Since the changes in valve
below that the governing equations can have behavior simisetting were made very slowly, and the device was allowed
lar to that sketched in Fig. 2. to come to a steady state between each change, this device
Our device uses a 0.0125-m-diam, 0.28-m-long verticalproduces more than hysteregigsponse lagging the change

flexible, transparent, Tygon tube. The top of the tube is conit possesses two values of flow rate within a given range of
nected to the bottom of a vertical cylinder that has a 0.02-mvalve settings as the valve is changed from fully open to
diam overflow tube in its sidewall. The cylinder substitutesfully closed and back to fully open. This also demonstrates
for the funnel and serves as a reservoir whose water surfadbe other typical features of multiple-equilibrium flows. The

is kept at a constant level 0.1 m higher than the top of thdransition between the air-bound lower tube and the water-
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filled lower tube is found at a very different valve opening as p
the valve is opened than as the valve is closed. In addition,
the flow rate jumps from one value to another at transition.

The pressure difference across the valve during the P1+P2=
flooded state can be thought of as being comparable to the pg(hy+hy)
constant wind pressure term in the above thermally driven
problem. With the pinch valve fully open, water flows p1=pgh;

steadily down through the entire tube. We assume the for-
mula for the velocity is like that iri2.4) with T=0. It stays
steady since the pressure change across the valve stays con-
stant. However, the area (8.5 changes as the valve closes, Fig. 4. A diagram comparable to Fig. 2 for the funnel experiment. The
so the flow ratgvolume fluy goes down with area. As the heavy solid curves give pressure produced by the static height of water in
flow rate is decreased by closing the valve, the air at thdhe cyIinde_r and tube. Pressupe is ‘hydrostatic pressure due to water of
bottom outlet to the tube suddenly can force its way upwardePthh: (Fig. 3 andp, is hydrostatic pressure due to water of deph
through the tube by buoyancy as the Froude number base‘l’&e heavy horizontal dashed. line would r_eplace the horizgntéihe for_a
. ... valve located at lower elevations so thmtis greater. Consequentlp, is

on radius at the bOttom,O.f the tube falls below a critical less by the same amount so the sum of pressures is the same. The light lines
value. The presence of air in the bottom tube can be thoughfive laws for flow rate across the valve for three different settings. The
of as temperature. The dynamics can be expressed by Eghlue is increasingly open for smaller slopes. The syn@pbtands for the
(2.4), but instead of Eq(2.7) there is a step function relation volume flux at transition.
between “temperature’{air content and the flow. Above a
critical flow rate the tube is filled with water and “tempera-
ture” (air content is zero. At the critical flow rate, the air at so that “temperature” jumps up and the pressure changes to
the bottom of the tube creates a bubble whose rise spegs=p,. At this point, flow rate decreases, and only the lower
equals the descent speed of the water. For lower flow ratestersection points are found as shown by point 3, which is
air rises up the lower part of the tube to the valve. Consethe intersection of the heavy curve with the straight, light,
quently, “temperature”(air content jumps from zero to a long-and-short dashed line. This state continueR gees to
fixed positive value for flow rates below this value. The dia-zero. Now let us imagine what happens as the valve is
gram comparable to Fig. 2 is shown in Fig. 4, but the curvespened. For smalR, volume flux through the tube is small
are inverted so that the pressure drop across the valve gmpared to the flux at which the air bubble rose, so the
plotted as a positive function of flow rate. Below the critical water does not have sufficient flow rate to expunge the air
flow rate, the pressure, shown as a bold horizontal line, has fajom the lower part of the tube and “temperature” is high.
low constant value proportional to the pressure differencenly the lower intersection point 3 exists. As radiRsn-
caused by the vertical distance from the top of the funnel t@reases, the intermediate “three-intersection” stage is en-
a spot immediately below the pinch where the air is encouneountered, but the solution remains on a lower trajectory
tered by the water. Above this critical rate, the aggregate&uch as shown by point 4 since volume flux is below the
pressure is also a horizontal bold line with a larger valuecritical value. At some value oR, the flow following the
proportional to the distance from top of the spillway to the|ower branch reaches the transition flow rgtg. Above this
bottom of the tube. The two are connected by a verticalate, intersection with the bottom curve terminates as air is
curve. o ) ) ) driven from the lower part of the tube. As this happens, the
The straight sloping lines describe the relationship betweefow rate jumps upward, reinforcing the elimination of air
volume flux squared and pressure across the pinch for thregom the bottom portion of the tube. In the above analogy,
different pinch valve settings. They are found using Eqs:temperature” will plunge to zero as water is driven from
(2.4) and(2.5) setting3U?=pg(h;+h,) andpgaTH=0 or  the lower part of the tube. Upon the loss of air in the bottom
—pgh,. One such solution is the light, solid, straight line part of the tube, flow rate will jump to a new higher value
shown in Fig. 4 that intersects the bold curve at three pointsclose to point 1. This high rate continues for all subsequent
Two of the intersections are labeled “2” and “4.” We note increases oR.
first that if p, were larger in relation t@,+ p, as shown by This kind of behavior is commonly found in chimneys that
the horizontally dashed bold line, intersection would only beare poorly placed so that in the winter cold air is directed
at point 2. This could be produced, for example, by locatingdown the chimney by exterior winds. The unfortunate occu-
the value at lower elevation with everything else the same,pants find that a small fire results in the smoke being driven

But instead of changing some geometric parameter, let ugito the dwelling rather than up the flue when the chimney is
imagine that the valve has cross section of rafubat can  cold. Only a large fire can overcome the downdraft suffi-
be changed at will. We will imagine th& initially is set to  ciently to force heat up the chimney walls and create an
a large value so the flow line is the dashed straight slopingipdraft. Fortunately, once heated the chimney can continue
line in Fig. 4. The rapidly flowing water fills the tube so that to serve with only a small fire.
the flow is driven by pressune=p;+ p, and the solution is
the intersection near point 1. As we decre&sthe straight ||| A NONLINEAR OSCILLATOR
line gets progressively steeper so solutions move along the
upper curve toward the left, in the direction of the top arrow. A small modification of the above device produces quite
As the dynamics curve enters the intermediate stage whedfferent behavior as sketched in Fig. 5. Assume now that a
one unstable and two stable values of intersection exist, thieng, tall vertical cylinder replaces the funnel at the top,
solution continues to move along the top curve, and reacheshich had been overflowing. We bend the tube below the
point 2. At the value where the top curve no longer intersectsonstriction upward and then downward again so there is a
the dynamic curve for decreasifyy the air rises up the tube crest. This maximum in the tube height is at an elevakipn
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Qo increases, and the cylinder is emptied of water. At this stage,

1 | air enters the tube from upstream, the flow slows down or
ceases, and the tube can no longer remove as much water as
is being pumped in. Water level in the tube then builds up
from zero again until the level reaches the crest. The cycle

Ih(t) then repeats itself again and again.

We have conducted studies of flows in such a device with
R=0.032m, h;=0.118 m, h,=0.64 m, r=0.0064 m, and
volume flux Q, set at values ranging up to 16més™%.
Figure 5 shows measurements of surface height, taken from
pressure data, for a number of different values of input flow
rate. Each curve is offset upward by 0.15 m. The numbers on

-~ I a) the right correspond to the imposed volume flux. The time is
: : divided by the time scale= wR?h;/Q,. The bottom curve

[T 100 | shows that for smaller volume flux the flow is steady. We

] saw visually that the flow becomes critically controlled at the

crest of the tube. Water spilled out the rest of the way as

/V\/\/\/\/\/%.S sketched by the dark striped region in Figa)5 For the next

three volume fluxes upward, the flow oscillated. The oscilla-

Wgﬂ tion sequence was as follows: After a height minimum, the
, cylinder would begin to fill and the water surface in the tube

WWMb rose until the flow at the crest became critical. But then the

) free surface of the water intersected the top inner surface of

height (m)

0.10 . .
/ ‘ 114 the tube so that the air/water contact point moved down the

0 ¢ 5 10 15 tube. This drove air from the tube and produced a siphon that
t b) evacuated the cylinder and started the cycle again. We can

estimate the critical volume fluXQo., by assuming that the
Fig. 5. (a) A device for producing oscillations with a critical flow and a Crest has a square cross section with sides of lengthle
siphon.(b) Height of water in the cylinden(t’) for different values of input ~ use the standard hydraulic formula for flow over a {
volume flux(the units are 10° m*s™). Q=(2/3)*%gh¥* and set the fluid height at the crest /3
=r. Thus Qu.=Jgr®?=10.4x 10 *m®s™. This value is
below the value of transition to oscillations seen in this ex-

above the bottom of the cylinder. The bottom of the tube isPeriment by about 50%. Since we only crudely approximated
located at a distanck, below the bottom of the cylinder. the geometric details, ignored surface tension effects, and
Water is fed into the cylinder at a constant r&g, where- simplified a number of _o_ther aspects Qf the real experiment,
upon it flows out of the bottom through the tube. Imaginethe experimental transition to OSC|IIat|_0ns could not be ex-
what happens for very slow flow, and in the absence of friclected to happen exactly at the predlcted value. Therefore,
tion and with surface tension neglected. Water accumulate§€ agreement between the magnitudegf and the value

in the cylinder until the elevation of water in the cylinder Of the experimental number for transition crudely supports
exceeds the crest of the bend in the tube. The water in th&lis mechanism. For flows just above the critical value of
tube then flows over the crest and becomes controlled at théolume flux, the oscillation amplitude is large. The actual
topographic maximunilike flow over the weir of a dagn  instant when the emptying starts varies for each cycle and the
The free surface of the water lying above the tube crest adflow is obviously not exactly periodic in the experiment.
justs itself so that the critically controlled flow matches the Theoretically, since there are only two time derivatives and
input. For increasing values of input the elevation of water inthe coefficients are constant, the equations would produce
the cylinder and the elevation of the free surface in the tubdows that approach either fixed points or periodic oscilla-
increase. The contact point between air, water, and the top ¢fons that correspond to limit cyclé8.

the tube moves toward the crest of the top of the tube. At For moderately greater values of volume flux, the oscilla-
some specific value of input flow rate, depending mostly ortions become more regular. In dimensional time the cycle
the size of the tube, but also in reality on some aspects deriod decreases. This decrease is not very apparent using
tube shape and other physical properties such as surface testaled time in Fig. &), so the scaling parameter seems to
sion and wettability of the tube material, the free surfaceroughly fit, but in real laboratory time the change in period
contacts the crest of the top of the tube. Close to this stagdyith increasing pumping rate is obvious. The oscillations are
the steady flow develops instability and the behavior changesaw-tooth alternations between filling and evacuation events.
to that of a Tantalus cul, which is a device in which a Above this is a range between the top two curves where a
siphon is within a container with sides higher than the top ofmixture of air and water enters the tube at irregular times and
the siphon. The contact point at the top of the tube movesgo cyclic flow is seen. But finally at flow rates great enough
downstream, which causes pressure to drop at the crest of the support a steady siphon, the flow is steady again. The top
tube so that pressure difference between the crest and tleeirve shows such a steady flow being approached. For height
cylinder increases and flow rate in the tube increases. Thistarting from zero, the steady final value is overshot in order
drives the contact point further downstream within the tubeto prime the siphon, and then steady state is approached as a
hence flow further accelerates. Quickly thereafter, the condecaying curve. The assumption that the flow in the large
tact point is driven to the bottom of the tube, flow greatly tube is governed by Bernoulli's law, so that the criterion for
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transition to steady flow igu?>>gh,, produces an unrealis-

tically great value ofQu=4.5x10 “m®s L. Thus in our R2

apparatus, we suspect that there is viscous drag along the

tube walls. R22 —
Finally, experiments were done for assorted other values

and signs oh, andh,. For negative values df, a range of R17‘ |

multiple equilibria was found without oscillations similar to
the experiments of Sec. Il.

a
IV. THE ROLE OF THE CONTROL PARAMETER h Q )

Both problems have very similar features that can be un-
derstood by investigating the relation between the control
parametefindependent variableand the dependent variable
for both the funnel and the siphon experiments. We will then O
show a “unified diagram” that has features of both of the 1
above relations and describe an experiment that obeys this

diagram. Thus, this final experiment possesses both the mul- Q Q Q
tiple equilibrium character of the funnel experiments and the b)
oscillations of the siphon experiments, depending on which h
parameter we select to be the control parameter, or indepen-
dent variable. hy = »

In the funnel experimenitFig. 3(@)], we imagine that in- hy |- E_D\

stead of a pinch valve there is a very small tube whose radius
R (indicated as the ordingtearies as the control parameter,
and that(2.5 governs there. Thus we sketch in Fig. 6 that
volume flux (the dependent variable given along the ab- QIT Q

scissa goes as the square of radiBgor fixed pressure drop Q Q )

pgh;. A step increase in flux is found at a critical fl@¥, 0

where pressure changes abruptly gh(h;+h,). For this g 6. Diagrams expressing the behavior of the two types of experiments.
greater flux, a second curve also has volume flux propor¢) Sketch of the solution to a simplified set of equations expressing the
tional to the square oR. But this second curve is offset to funnel experiment. The control parameterR3. If R<R,, only the left-

the right because the bottom tube is filled with water anchand line is possible and so this gives the value of volume @uif R,
hence produces a siphon effect at those flow rates. Figur’éR<R2 either line is possible. IR>R,, only the right-hand line is pos-

- s sible. AsR is changed the solution can move along either line except if the
G(a) shows the relations between flux aﬁa and this flgure line ends. In these cases, the arrows show transitions from one curve to the

is similar to Fig. 3c), but the axes are switched. The squar€other. The vertical arrows show the direction of the chang@.ifthe hori-
of the pinch radiuR is the control parameter, or independent zontal arrows show the direction of the consequential jufapSketch of
variable, plotted along the abscissa in Figg)6Flow rateQ  solutions to a simplified set of equations to the siphon experiment. The
is the dependent variable, plotted as the ordinate in Faj. 6 control parameter is the steady forcing of volume f@g. If Qo<Q;, only

As the control parameter is slowly changed, flow rate carihe left-hand curve gives the steady stable solu@n Q. If Q1<Qp

take two values in a certain range. <_Q2 no steady stgble flow exists and _oscnlatlons are foun@glf QZ the
For comparison, in the nonlinear oscillator volume fi@ rlght-ha_nd curve gives the steady solut@& Qo (c_) Sketch c_)f solutions to

. ! ; - & a simplified set of equations for an experiment with a continuous curve. If

into the top of the tube is the control parameter. It is relateds the control parameter, the solutions exhibit multiple equilibrium features

to volume flux and height by volume conservation like the funnel experiment. IR, is the control parameter the solutions
dh exhibit the oscillatory features of the siphon experiment. A device that pro-
duces such a curve is shown in Fig. 7.
Agi = Q0= Q (4.1 9

for h>0. The volume flux in the tube obeyQ  pehavior jumps to the curve on the right again. At this time
=mgR?\g(h+h,) if the siphon is primed, andQ the flow out exceed®, and the cycle repeats itself. And
=(2/3)3’29 hﬁ/ZR if the siphon is unprimed. This is plotted finally, if Qy<Q; a steady flow is also found.

along the abscissa in Fig(l§, where in this case heightis We also found that if negative values bj were made
the dependent variable given along the ordinate instedi of impossible by elevating the bottom of the tube above the
The relations are thus somewhat similar to those in the funpottom of the cylinder in Fig. 5, steady multiple equilibria

nel experiment although the equations are different in detailyere found. This feature can be understood as an overlap of
More importantly, the behavior of the flow governed by thetne two curves due to the fact thab<Q,.

curves shown in Fig. ®) is similar to that of the curves in An experiment that possesses a smooth curve and thus
Fig. 6(a). If Qo>Q, a steady flow is found. In contrast, if demonstrates both of the features, namely multiple equilibria
Q1<Qp<Q>, the flow out follows one of the two curves in and oscillation$2 is also readily produced in the laboratory,
Fig. 6(b). If the siphon is primed, then according to the curveput present models have response times of over an hour so
on the rightQ>Q, and Eq.(4.1) states that height decays. that devices cannot quickly reveal the desired features. Its
Height reaches zero, then air is pulled into the tube and th&-shaped curve relatingandQ is sketched schematically in
flow out follows the curve on the left. Then E¢t.1) says Fig. 6c). A diagram of the devidethat produced it is
that heighth increases until the siphon is primed and thesketched in Fig. 7. Corn syrup was fed into the top of a
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Fig. 7. (a) The apparatus with an input volume fl@¢ of corn syrup as the 2)
control parameter. The corn syrup flows out through a chilled tube and a 0.7
steady relation between pressure and flow rate obeys a curve as sketched in
Fig. 6(c). For some parameters the height and flow rate oscillate with time.
(b) The apparatus with an overflow that produces fluid heighas the 0.65 S
control parameter. The flogdependent variablexhibits multiple equilibria o™ i
like the funnel experiment. » A
0.6 [ .
® L]
hm) | & .
0.55- ." .
vertical cylinder. This fluid has the property that the viscos- e .o
ity increases greatly as temperature is decreased, so the vis- 0.5 ." .
cosity is about one order of magnitude greater when the ’ L o KX
syrup is about 15 °C colder. We used a gravity feed for the o o
sourceQ, that consisted of a cylinder with a radius of about 0.45 T T T T 1
0.1 m and with about 10- capacity with a small tube 0.04 m 0 05 1 15 2 25 3 35
in radius and 0.1 m long in the bottom. The cylinder that Q (m3s1 XI06b)

received this flow wa 1 m high and 0.05 m diameter. At the
bottom of this cylinder was an OUtﬂQW thgit was fed out Fig. 8. Results of a laboratory experiment with a fluid that has a
through a small copper tube 0.02 m in radius and 0.145 Memperature-dependent viscositg Oscillations of height of the interface
long with about half its length immersed in antifreeze atin the reservoir with time(b) Phase plane of height and volume flux through
roughly —11°C. In this way, sufficiently slow flow in the the cooled tube as a function of time.

copper tube caused the syrup to be very cold and thus very
viscous. In contrast, fast flow allowed the syrup to transit the
cooled regions quickly so that the syrup remained warm and
it became only slightly more viscous. This device exhibited
oscillations when fed by a steady flow of syrup into the top
of the cylinder. In this demonstration device, oscillation pe-
riods were hours, and thus too long for classroom use unlessgr
students were free to leave it running and record the flows o
time lapse video. Figure(l) shows a second configuration
that produces multiple equilibria instead of oscillations. In p
this case the level of the syrup above the end of the copper(T)Q=——,
tube is held constant in each run by a spillway. But the

elevations of the spillway were varied from run to run. This gP

is achieved in the laboratory by simply having a large hoId—fE:Qo_Q-

ing tank for the syrup. In practice, the holding tank elevation

above the bottom of the copper tube was the control paramFhese equations are dimensionless. The depth of the cooled
eter. It was simpler to vary the elevation of the copper tubgube is the depth scale and the velocity scale is the depth
and the sleeve around it with chilled antifreeze and keep th&cale divided by the thermal diffusion time scale. The first
large holding tank fixed. Thus a wide flexible tube connectecequation is conservation of heat with conduction between the
the holding tank and the chilled copper tube. As the elevatiorluid and the tube walls. This produces a relaxation time that
difference between the holding tank surface and the chille@enerates the right-hand term of the top equation. The sec-
tube outlet is slowly increased up from zero and then dowrpnd equation is simple viscous flow. A likely equation for
again, flow follows the trajectory shown by the arrowi@  viscosity isu;(T)=e?~T) which is an Arrhenius-type law
phase space in Fig(®. This single apparatus thus exhibits with the denominator expanded as a Taylor series. The third
all the features of the two preceding devices. However, it igepresents pressure change from accumulation of material in
very slow to cycle and typical cycle periods are over an houra compressible reservoir. These particular equations are
Thus unless this is automated, it does not allow conveniertaken from a model that includes volatile effects on viscosity
classroom study over an afternoon. of magma during a volcanic eruption. The paramdteep-

Naturally, to produce oscillations two time derivatives are
needed. A typical set of complete oscillating model equa-
tions have the forfh

AN =0
Q5;=-T T=1onz=0,

p=0 at z=1, p=P at z=0, 4.2
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HEADED FOR GRIEF

Szilard had known what the neutrons would mean since the day he crossed the street in
Bloomsbury: the shape of things to come. “That night,” he recalled later, “there was very little
doubt in my mind that the world was headed for grief.”

Richard RhodesThe Making of the Atomic Bom{$imon & Schuster, New York, 1986p. 292.
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