Taylor & Francis
Taylor & Francis Group
Geophysical & Astrophysical
Fluid Dynamics

~“= = Geophysical & Astrophysical Fluid Dynamics

ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: https://www.tandfonline.com/loi/ggaf20

Rotating channel flow: Control and upstream
currents

J. A. Whitehead & John Salzig

To cite this article: J. A. Whitehead & John Salzig (2001) Rotating channel flow: Control
and upstream currents, Geophysical & Astrophysical Fluid Dynamics, 95:3-4, 185-226, DOI:
10.1080/03091920108203725

To link to this article: https://doi.org/10.1080/03091920108203725

@ Published online: 19 Aug 2006.

N
CJ/ Submit your article to this journal

||I| Article views: 55

A
& View related articles &'

@ Citing articles: 2 View citing articles &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ggaf20


https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20
https://www.tandfonline.com/loi/ggaf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03091920108203725
https://doi.org/10.1080/03091920108203725
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03091920108203725
https://www.tandfonline.com/doi/mlt/10.1080/03091920108203725
https://www.tandfonline.com/doi/citedby/10.1080/03091920108203725#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/03091920108203725#tabModule

Geophys. Astrophys. Fluid Dynamics, Vol. 95, pp. 185-226 © 2001 OPA (Overseas Publishers Association) N.V.

Reprints available directly from the publisher Published by license under
Photocopying permitted by license only the Gordon and Breach Science
Publishers imprint,

a member of the Taylor & Francis Group.

ROTATING CHANNEL FLOW:
CONTROL AND UPSTREAM CURRENTS
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Department of Physical Oceanography, MS #21, Woods Hole
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( Received 16 November 2000; In final form 20 June 2001)

Theory and experiments are presented for critically controlled flow of a layer of inviscid
rotating fluid. Flow is controlled by a level passage. For a wide upstream channel of
fixed depth (i.e. constant potential vorticity) the volume flux on the right-hand wall is
unaffected by passage flow. This suggests that specifying Bernoulli potential on the
right-hand passage wall produces a physically well-posed condition. The specification
results in one less dimensionless number than was required by previous formulations
to specify flow in the controlled passage. The upstream flow needs the same number
as before, so that a range of upstream conditions produce exactly the same passage
flow. A laboratory study is conducted using a thin layer of water under air. This is
pumped in steadily at various locations in a deep rotating upstream basin, with fluid
leaving through a level passage. All currents in the upstream basin cross to the left-
hand wall as the current approaches the passage over a sloping bottom. The current
crosses back to the right-hand wall within the passage. Velocity profiles of currents
agree reasonably well with constant potential vorticity theory. To the right of the
detached upstream current is a closed gyre that connects the upstream flows (that
have different patterns depending on source location) with the unique passage flows.
The results suggest that gyres upstream of critically controlling passages in the ocean
might serve as adjustment regions between the relatively unconstrained upstream
flows and the tightly controlled passage flows.

Keywords: Rotating flow; Hydraulic control; Currents; Turntable experiments

1. INTRODUCTION

The subject of “rotating hydraulics” has come to mean the study of
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stratified inviscid flows of a rotating fluid in which the flow is critically
controlled by a passage. The simplest way to visualize critical control
is to picture water pouring out of a pitcher. The lip of the pitcher is
tipped below the free water surface in the container. At the lip, the
flow adopts a flow speed equal to wave speed. In the pitcher itself,
water speed is less than wave speed. In the water leaving the lip,
speed exceeds wave speed. The trans-critical region transmits informa-
tion about the lip configuration to the upstream water. This region
also has a maximum possible volume flux leaving the region.
Numerous books on hydraulics show that other internal properties
are extremalized at the lip too. Rotation effects do not change the
picture appreciably.

Probably the simplest possible configuration to understand ocean
applications has inviscid rotating fluid with a free surface flowing
out of a narrow passage from a big upstream reservoir. The flow in
the passage is critically controlled by the configuration of the passage.
Theoretical models include flows through gaps (Stern, 1974; Whitehead
et al., 1974; Gill, 1977; Shen, 1982; Nof and Olson, 1983; Pratt, 1983,
1984; Pratt and Armi, 1987), and gravity currents (Stern, 1980; Stern
et al., 1982; Griffiths and Hopfinger, 1983). Other configurations
include shelf flows (Hughes, 1986a,b; 1987), coastal currents (Nof
and Olson, 1983; Nof, 1988), planetary zonal currents (Armi, 1989;
Woods, 1993; Haynes e al., 1993; Johnson and Clarke, 2001), hydrau-
lic jumps (Nof, 1986; Pratt, 1987), currents encountering obstacles such
as the coast (Whitehead, 1985), bottom topography, (Borenas and
Lundberg, 1986; Spitz and Nof, 1991; Nof, 1995), crossing the equator
(Nof, 1990); and bounds on the above (Killworth, 1992; Killworth and
McDonald, 1993; Killworth, 1994). Studies including the effect of fric-
tion include two layer exchange flow (Johnson and Ohlsen, 1994) and
the effect of friction on a controlled flow without rotation (Pratt, 1986).
Recently some questions about the nature of upstream currents have
been analyzed (Pratt, 1997a,b, Pratt and Chechelnitsky, 1997;
Borenas and Whitehead, 1998).

Formulating such problems with a rotating fluid usually requires
potential vorticity conservation. The first formulation assumed zero
potential vorticity (Whitehead et al., 1974). This is convenient because
only one upstream condition (the elevation of the upstream water
surface above the floor of the passage) is required to calculate
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volume flux. The more general formulation of constant potential
vorticity followed soon thereafter (Gill, 1977). This requires three
upstream conditions instead of one. They are the upstream fluid
depth; some measure of the strength of upstream currents near the
walls; and the elevation difference between the upstream floor and
the passage floor. From this, volume flux out of an exit passage can
be calculated. A maximum value of the flux exists, and it was shown
that the maximum flux produces a stationary small wave in the passage.
Therefore, maximum flux is equivalent to a critical condition with
Froude number equal to one.

Gill chose as the second upstream parameter i;, the ratio of the
volume flux of two currents on the two upstream walls. This parameter
is convenient algebraically. However, it is not clear how one would
impose a value of ¥; for the inviscid problem. For instance, no thought
experiments show how such a ratio could be controlled and held fixed
for an inviscid fluid, since volume flux out of the passage is a compon-
ent of the two currents. The dynamics of the upstream currents them-
selves can be analyzed if more physical processes are included. For
instance, Pratt (1997a,b) and Pratt and Chechelnitsky (1997) developed
conditions that include the effects of friction in the upstream basin.

Our primary motivation for asking about upstream conditions lies in
the application to the ocean. There seems to be no way to pick a value
for i; in the ocean without already knowing the magnitude of the two
flows approaching the gap. If these are known, their difference gives the
value of flow out of the passage. Attempts have been made to estimate
parameters near ocean gaps by using data from upstream regions
(Whitehead, 1989, 1998). Using only bathymetric data and CTD
information upstream of a number of deep ocean sills, it is possible
to estimate volume flux through such gaps. There are a number of
such estimates with “good” agreement (tens of percent) with direct
measurements and some with “poorer” agreement (factors up to
three). The question naturally arises about the nature of upstream
conditions, particularly the currents supplying such flows. At present
very little is known. The Denmark Strait overflow, for example, is
abundantly measured downstream of the sill (Dickson et al., 1990;
Dickson and Brown, 1994). There are also recent measurements of
currents at the sill region (Girton and Sanford, 1999; Girton, et al.,
2001). But upstream of the sill, there is only sparse information.
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Density distribution is not resolved well enough to indicate if any
localized currents exist. In addition, there are almost no direct current
measurements upstream of the sill at all. Thus there is no direct
information available to pick y;. The same situation exists for the
flow through the Vema Channel (Hogg et al., 1982; Speer and Zenk,
1993); the Hunter Channel (Hogg et al., 1999); the Faroe Bank
Channel (Borenas and Lundberg, 1988; Saunders, 1990); Discovery
Gap (Saunders, 1987); Charlie-Gibbs Fracture zone (Saunders,
1994); and the Samoa passage (Rudnick, 1997). The flow of
Antarctic Bottom Water over the Ceara Abyssal Plain is resolved in
an east-west channel centered roughly on the equator that serves as
an entrance region (Hall ez al., 1997), and is more poorly resolved at
about 4°N, (Whitehead and Worthington, 1982) but the control
point location is unknown. In all such cases it would be extremely
useful to know whether an upstream current might be expected along
either the right-hand boundary facing the gap from upstream, the
left-hand boundary, or both. It would also be very useful to know
what the implications of upstream currents are on our present flux
estimates.

Section 2 presents a physical argument and theory that indicates that
information about the strength of any current flowing along the
right-hand wall facing the passage from upstream is vital. (We take
the convention that rotation is counterclockwise as in the Northern
Hemisphere). In Section 3, flows resulting from the imposition of a
source of currents in an upstream channel are examined in laboratory
experiments. Comparison with theory has a velocity profile in good
agreement with constant potential vorticity theory for the main current
traversing the passage. A gyre is found upstream of the passage that
seems to play an important role in coupling the upstream flow to the
flow in the passage. Sections 4 and 5 discuss and then summarize the
main results.

2. THEORY

A constant potential vorticity current can be pictured as arising from a
channel of stagnant fluid with constant depth. The following thought
experiment indicates that the value of volume flux imposed at the
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right-hand wall of the upstream channel is a fixed variable that can be
used to determine the flow out of a controlling passage. Let an
upstream semi-infinite channel of counterclockwise rotating fluid of
depth H be initially at rest with respect to the rotating fluid (Fig. 1).
A gate is opened in a passage that allows removal of fluid from the
channel. This sets up a critically controlled current in the channel in
the same way that tilting a pitcher starts fluid pouring out. The
onset of the current is accompanied by a Kelvin wave that propagates
from the passage into the upstream portions of the channel along the
left-hand wall. This wave produces a jump in the Bernoulli function
and sets up a current (Gill, 1976) (For consistency, all further refer-
ences to right and left-handed walls refer to the frame looking from
the upstream channel to the passage as in Fig. 1). We assume that
the channel is infinite in the upstream direction so the Kelvin wave
and the upstream current it produces extend indefinitely in the
upstream channel. For purposes of the thought experiment, let

Yy
DAM ). . .t --
PASSAGE
Depth=H-AH

Kelvin
Wave
Kelvin Direction

l S

Layers
Left hand wall Right hand wall

FIGURE 1 Sketch of the problem and definition of the coordinates. A passage of
constant depth lies next to a semi-infinite flat bottom channel filled with fluid of depth
H. After a gate is removed at a passage, a boundary layer establishes a current along the
left-hand wall. Additional sources and sinks produce more currents along the walls, but
only those on the right-hand wall reach the passage due to Kelvin wave propagation as
shown.
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the upstream channel be wider than the upstream Rossby radius of
deformation. In this case the Kelvin wave occupies a boundary layer
of Rossby radius width on the left-hand wall of the channel and
does not alter the depth of the interior stagnant fluid in the upstream
channel. No current along the right-hand upstream wall is produced
by this Kelvin wave.

Next, imagine that additional currents are started by initiating
pumps located in the walls of the channel labeled “S” in Fig. 1.
These can be either sources or sinks as sketched. The following
argument is based on the solutions of the characteristic equations
by Pratt (1983, 1984). Because the ambient upstream currents are
subcritical (i.e., less than the wave speed), the information about the
newly formed current propagates away from the source along the
wall in a normal direction to the right of a vector projecting tangen-
tially from the wall into the channel. Currents that are set up by sources
or sinks on the left-hand side of the channel extend only upstream -
away from the passage. They influence neither the depth of stagnant
interior fluid in the channel nor the flow in the exit passage. They
merely get lost in the indefinitely large upstream region of the channel.
This suggests that, in contrast to Gill’s formulation which sets a value
of fixed and constant y; in the upstream basin, that the currents
produced by sources or sinks on the left-hand wall do not alter the
flow at the passage that has already been established. We conclude
that information about currents on the left-hand wall is not required to
calculate flux out of the passage.

In contrast, sources or sinks lying along the right-hand wall produce
currents that extend downstream — toward the passage. These currents
thereby could influence the flow through the passage. Since the opening
of the gate and the ensuing change of current intensity in the passage
produce Kelvin waves that propagate along the right-hand wall looking
away from the passage, there is no change in the value of the flux along
the right-hand wall looking toward the passage. This suggests that only
information about the right-hand wall currents is necessary to calculate
flux out of the passage. In addition, currents along the right-hand wall
are independent of the magnitude of flux out of the passage so that
their values are not altered by the value of flux of the passage flow.
A thought experiment with sources or sinks turned on before opening
the passage gives the same conclusion.
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This information is to be incorporated in a formulation. The simplest
such formulation assumes constant potential vorticity flow and is used
here. The velocity distribution and fluid depth distribution across a
constant potential vorticity current obey geostrophy and conservation
of potential vorticity.

_ g N(dv N\ _ S
fv—gdx, h(dx+f)—H' (2.1a,b)

The coordinates are shown in Fig. 1 where v is velocity in the y
direction. The coordinate at right angles to the direction of flow is
x. The fluid depths are given by A(x), which is height of the fluid
above the local, level bottom and H, which is the depth of the fluid
above the level bottom in a wide channel where the water is stagnant
and at rest, (sometimes called the potential vorticity depth). The
dynamic parameters are f, which is the Coriolis parameter, and g
which is the acceleration due to gravity (and we could consider this
to be reduced gravity g = gAp/p if we are considering a layer of
fluid of density p + Ap, lying below an infinitely deep region of stag-
nant fluid of density p). The well-known equation

d2h f2 f2
A g—Hh =7 2.2

is found by combining (2.1a) and (2.1b). It has general solutions

h=H— Adye™® - gye™/®, v (Aue™R — A2e®)  (2.3a,b)

_ &
"R
where R = /gH/f. These equations are valid in both the upstream
channel (i=1) and the passage (i=2). Without loss of generality
we can consider the upstream channel being much wider than R. In
that case there are boundary layers on both upstream sidewalls so
that velocity far from the walls decays to zero. This is easily seen by
redefining the constants in the relation for upstream depth A, in
the following way:

hy = H — A eC70/R _ g 6=x/R, (2.4)

where x; and x, are locations of the upstream walls. In the upstream
channel we will specify two things: the upstream stagnant fluid
depth H, also specified by Gill (Joc. cit.), and volume flux of the
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upstream boundary current along the right-hand wall Q,,. This flux is
trapped on the right-hand side since (2.4) shows that for a very wide
upstream channel (x, — x; > R) the velocity goes to zero away from
the right-hand wall. In concert with the thought experiment, we
presume the latter is due to volume flux sources or sinks of fluid
with the interior value of potential vorticity on the right-hand
upstream wall and is independent of the volume flux of the critically
controlled flow at the passage. From (2.1a) the right-hand upstream
volume flux is

g 12 2
r = vhydx = = (h;. — H*). 2.5
0 f ) 2 @5)
Thus the flux is related to A,,, the fluid depth on the right-hand wall.
The Bernoulli function

B=1"4gh (2.6)

is conserved along streamlines (Whitehead et al., 1974) and it is conve-
nient to determine it on the right-hand wall. This is because such a
streamline will extend from an upstream point on the right-hand
wall to the right-hand wall in the passage. Let us call the Bernoulli
function B = gH, on the right-hand upstream wall. Then it is simple
to show that

H, =1H + Y1, /H). 2.7

This is a known quantity since H and Q,,, are known. This is in accord
with the thought experiment that a pump along the right-hand
upstream wall produces a Kelvin wave (and also a characteristic)
that travels toward the passage. This signals that the pump is supply-
ing or removing fluid. No information is required from flow along
the left-hand wall to determine these constants. This agrees with the
fact that a Kelvin wave moves from passage to upstream along the
left-hand wall.

At the passage the bottom has shoaled by an amount AH. It is
convenient to take the origin along the right-hand wall as sketched
in Fig. 1. We define the depth of the fluid at the origin as h¢ and velocity
as vp. Since the streamline along the right-hand upstream wall must
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also be in contact with the right-hand wall in the passage, these two are
related to the upstream Bernoulli function on the upstream right-hand
wall by the Bernoulli equation that leads to

v = v/2g(H, — AH — hy). (2.8)

This result generalizes an earlier study that had no current on the
right-hand upstream wall and no bottom shoaling (Whitehead,
1989). Equations (2.3a,b) along the right-hand passage wall are

ho=H — A3 — An, +/2g(H, — AH — hy) =f£R(A'2 — Ax)
(2.9a,b)
so that
A Az = %[H —hy++/2H(H, — AH = ho)] (2.10)

so equations (2.3a,b) are

h = H — (H — hy)cosh (x/R) + /2H(H, — AH — hy) sinh (x/R),

y= fiR [—(H — ho)sinh (x/R) + v/2H(H, — AH — ho) cosh (x/R)].

(2.11a,b)

Volume flux Q in the passage of width L is

0= % [ - (h(~L)]

= % (h%,[H - %[H — o+ /2H(H, — AH — ho)]eL/R

—[H — ho - V2H(H, = AH —ho) |e R}Z),
A A
A1 -y - AT 3= ,,)]e-mr) @12)



194 J.A. WHITEHEAD AND J. SALZIG
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FIGURE 2 Heights along the right-hand wall at the passage and in the channel.

where y = hy/H, 8 = (H + AH — H,)/H. To help visualization of the
definition of heights along the right-hand wall, they are sketched in
Fig. 2. These heights determine the two governing dimensionless num-
bers y and § whose physical meaning is important to understand. The
first is the ratio of fluid depth along the right-hand wall in the passage
to the depth of stagnant fluid in the channel. Shear along the right-
hand wall is positive, zero, or negative; and this depends respectively
on whether y is greater, equal to, or less than one. The maximum
value is y = 1 — § for which velocity is zero at the right-hand wall of
the passage. One can consider the parameter y to be the free param-
eter that can be varied within a physically sensible range. As it
varies, volume flux (if positive for any value of y) passes through
the maximum value that defines the critically controlled flux as
discussed in the introduction. However, we will shortly adopt a
substitute dimensionless number for y.

The second dimensionless number expresses the difference between
depth of interior channel fluid and depth of stagnant fluid (for which
8§ =1—y) at the right-hand wall of the passage, with both depths
divided by depth of fluid in the channel. If § is positive, fluid columns
decrease in height between upstream and passage along the right-hand
wall and vorticity is anticyclonic everywhere in the passage. However,
if & is negative and if fluid at the passage has the maximum possible
value of y, fluid columns stretch between upstream and passage
along the right-hand wall and vorticity is cyclonic at the wall.
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Let us compare equation (2.12) with Gill’s Eq. (5.13) that relates a
collection of dimensionless flow variables. In his notation the average
scaled fluid depth is D. This is related to the two geometric variables
A and ¢ and the two upstream parameters ﬁw and ¥;, making a total
of five dimensionless numbers. In the present formulation, the
volume flux is @, the dimensional flow variable is /g, the geometric
variables are L and AH, and the upstream variables are H and H,.
These six variables along with f and g, and using the hydrostatic
approximation, can define five dimensionless parameters which relate
scaled volume flux to the five variables given above. This is the
same number as Gill’s. However, (2.12) has only four dimensionless
numbers. The scaled flux is easily seen to be 2Qf/gH? and this is a
function of the three dimensionless parameters (y, 8, L/ R) rather than
four parameters. The decrease in the number of dimensionless num-
bers has come about because the geometric parameter AH is always
subtracted from the flow parameter H, in this formulation. Because
of this, their difference produces only one dimensionless number.
This feature has apparently not been previously noted. It produces a
useful simplification in the way the solutions can be presented.

Before presenting calculations of volume flux, a better scale for
vertical depths than H will be considered. Since velocity in the
passage cannot be imaginary, Ay < H, — AH. Defining

n=H,— AH —hy, (2.13a)

h(-L)=H —(H — H, + AH + n)cosh (L/R) — /2Hnsinh (L/R),
(2.13b)

makes the formula for volume flux more compact
0= % {-I(H — H, + AH + ) + 2Hr)sinh®(L/R) + 2H(H — H,

+ AH + ) [cosh(L/R) — 1] + y/2Hn[2H sinh(L/R)
—2(H — H, + AH + n)sinh(L/R) cosh(L/ R)]} (2.13¢)

but this is only valid if A(—L) > 0; otherwise the rapidly rotating limit
is recovered

_g(H,—AH —n)’ _gh}

2 2f i

(2.14)
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This is maximum for n =0. For L « R, the formula for flux of
nonrotating fluid

0 = /2gn(H, — AH — )L (2.15)

is recovered from (2.13c). This is maximum for n = 2/3(H, — AH).

Both (2.14) and (2.15) have maximum flux depending upon Bernoulli
elevation above the passage floor H, — AH rather than either H, or H.
Moreover, H obviously does not govern the wave speed in the control
section as directly as H, — AH. This suggests the use of H, — AH as
a depth scale for volume flux rather than upstream depth so we find
that Eq. (2.12) becomes:

. 20
F=——
g(Hr_AH)
1 1{ 1 2(1 — 1Y)
— ¥ _ _ 2 _p* 0 L/R
=h [1—5 2(1—5 W+ =r—5 ’e (2.162)
2
By " 20 -\ _1»
2\1-§ ° 1-8 ’
where

K = ho/(H, — AH). (2.16b)

The use of H, — AH for depth scale rather than either H, or H is in
accord with the flux laws of a number of earlier results. For example
there is the result by Killworth and McDonald (1993) that 0* = 1 isan
upper limit. This is based on a maximum bound for flux through a
passage for arbitrary potential vorticity and arbitrary passage
bottom profile. The greatest flux found by Whitehead et al. (loc.
cit.) for zero potential vorticity (§ — 17) is also 0* = 1. And finally,
this is the magnitude of greatest scaled flux for calculations of constant
potential vorticity flow where there is no volume flux on the right-
hand upstream wall so that H, = H (Whitehead, 1989).

Calculations of volume flux are shown in Figs. 3 and 4. These show
that the results collapse to a few simple curves. In addition, some results
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FIGURE 3 Curves of normalized volume flux versus normalized depth at the right-
hand wall in the control section. Values of § are labeled on the curves. (a) Scaled width
L/R=0.1. (b) Wider control section L/R=1.0. (c) Very wide control section L/R=1.5.
(d) Very large negative values of § with L/R=1.0.
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FIGURE 3 (Continued)
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with negative & are new. We chose to vary the free parameter hj. The
critical value that produces maximum flux is to be called Aj,.

Figure 3 contains curves of Q* calculated over the range 0.6 <
H; <1 for a number of different passage widths. Panel (a) shows
flux for a narrow passage with a scaled width of L/R=0.1. The
profiles are for the values § = 0,0.5,0.9, and 0.99. It is obvious that
the various curves of Q* differ by only a few percent. For § = 0.99
the upstream depth is 100 times greater than the stagnant depth of
water in the passage, so that the approximation of zero potential vor-
ticity is extremely well approximated. Results with the present scaling
cluster to within about 5% of each other, and all attain a maximum
flux at a value of A}, = 0.7. This value is close to 2/3, the critical
value for Eq. (2.15). Calculations for a channel much narrower than
the Rossby radius were made with L/R=0.01 and in the range
0 < § <0.99. Results were indistinguishable from (2.15) within 1%.

Figure 3b shows results for a passage as wide as a Rossby radius
(L/R = 1). It has seven curves in the range —2.0 < § < 0.99. Results
for positive § are described first. The profiles have maximum values
of scaled flux within 20% of 1.0. This vindicates the scaling used for
the vertical length scale. The range of /. is (0.86 < A, < 0.94) which
is larger than for a narrow opening as in Fig. 3a. For § > O critical
(maximum) volume flux changes by less than 25%. Although § is
not a large factor in determining volume flux in this range, velocity
and height profiles across the passage (not shown) differ with é.
The variation of the profiles with dimensionless numbers was
illustrated by Gill (1977). For a wider passage (Fig. 3c¢) the maxi-
mum flux is found for Af > 0.95 with § >0. Magnitude of the
scaled flux is within 15% of 1.0.

Negative values of & are not discussed widely in previous studies.
In Figs. 3b and 3d the profiles with negative § have a range of nega-
tive flux near Aj = 1 (where vo =0 from (2.8)). This reverse flow is
produced by cyclonic shear in the passage near the right-hand wall
as follows: At hj = 1.0 there is zero velocity at the right-hand wall
so there is always some negative flux near the wall for § < 0. The
values of negative flux are deleted from the curves in Figs. 3b and d,
but they can be imagined as extensions to the left of the shown
curves. As hj is decreased from a value of one, velocity at the wall is
directed downstream and volume flux becomes less negative. The
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volume flux becomes positive everywhere at some smaller value of A}
and it also attains a maximum as in the previous examples. Figure 3d
shows calculations for the extreme values of § = ~10 and § = —100.
Flux is very much smaller than that shown in Figs. 3b and 3c, and
hg is less.

Note that from the first line in Eq. (2.12) the criterion for negative
total flux is that A(—L) > hy. Using this with (2.13a,b) and with
n=0, gives the criterion for reverse flux and it reduces to
(H.— AH — H)cosh(L/R) > H, —- AH — H. Since cosh(L/R)> 1,
this requires that both sides are positive which in turn requires that
8 < 0. Two separate factors in the upstream region can contribute to
producing & < 0. One factor is the presence of a current next to the
right-hand upstream channel wall so that H, > H. For example, a
pump feeding additional fluid along this channel wall will pile up
fluid and make a current flowing toward the passage. This accumula-
tion both makes Bernoulli potential greater and produces a current
with positive shear even in the upstream basin. The second factor is a
deeper bottom in the passage than upstream, so that AH < 0. This
produces cyclonic shear by vortex stretching of columns as they
travel from the channel to the passage. Both influences must add
together to make § < 0.

Below the maxima in Fig. 3 panels b—d the curves merge. This
indicates that the interface intersects the bottom of the passage. For
two of the values of § in Fig. 3c, the interface depth at x = —L is
negative for all values of hj so that Aj =1 itself produces intersec-
tion with the bottom. The criterion for critical flow in the case
where the interface intersects the bottom is n =0 from (2.14). This
can be used with a criterion requiring intersection with the bottom
that is found by setting # = 0 in (2.11a). The combination yields the
following simple criterion for intersection of the bottom with maxi-
mum flow:

cosh(L/R) > 5. 2.17)

This implies that for § = 0 the value of L is infinite. This is a special
case that was previously noted to be true for a flat bottom, i.e.
AH =0 (Gill, 1977). However, it was noted only for the example
with no current along the right-hand wall. With upstream currents
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FIGURE 4 Contours of volume flux as a function of scaled channel width L/R and .
The dashed lines to the left denote limits to the calculation from Eq. (2.19) for four
values of r shown. To the left of the dashed lines the upstream channel is unable to
supply fluid to the passage.

of any magnitude the complete criterion for which there is no intersec-
tion for all passage widths is § > 0 so that the upstream conditions are

H+AH-H, > 0. (2.18)

Contours of scaled flux are shown as a function of § and L/R in
Fig. 4. We see that the effects of the variation of the parameter & are
most pronounced for wide passages. Can the values of Q*shown in
Fig. 4 be satisfied for all upstream channel flows? This requirement is
readily calculated by setting flux less than the maximum total volume
flux toward the passage in the upstream channel which is given setting
the fluid elevation at the left-hand wall to zero, so that Quax = gh2,/2f.
Using Eq. (2.7) this becomes

Q* <@, =Qr-1)(1-5872 (2.19)

This introduces the dimensionless parameter r = H,/H. The criterion
given by (2.19) is shown as dashed curves. Above and to the left of
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these curves, the upstream cannot supply enough volume flux for
values given by the contours. Therefore in these cases the flux is lim-
ited by the flow in the upstream basin. The free surface intersects
the bottom of the infinitely wide channel and has a maximum value
there. The flow in the passage cannot be a maximum value and thus
would be subcritical.

It is clear from (2.7) that the strength of the right-hand upstream
boundary layer varies with the value of r. This fact brings the present
formulation to agreement with Gill’s formulation that contains three
dimensionless numbers needed to specify the conditions upstream.
The significant difference between the present choice in dimensionless
variables and Gill’s is that r is not required to determine the properties
of flow at the passage.

Since both the maximum flux is specified for fixed § and L/R and the
strength of the right-hand upstream boundary layer varies with the
value of r, the strength of the left-hand upstream boundary layer
must also vary with the value of r. In addition, AH varies with the
value of r for fixed § and L/R. It is then obvious that there is a range
of r (and thus a range of upstream flows) that produces the same
point in Fig. 4.

To illustrate a variety of upstream flows for the same passage flow,
we pick the parameters § =0.2 and L/R =1 for which Q* =0.75.
The relation between upstream height on the walls and the parameters
are then found first by using (2.7)

hu/H =+/2r -1, (2.20)

second by using the upstream relation for volume flux

halH = /2r — 1 (1 — 8120%, @.21)
and third by using the definitions of the dimensionless numbers
AH/H=8§+r—-1. (2.22)

For simplicity, an example with Q* =% is shown in Fig. 5. It shows
the profiles of the left and right-hand upstream surfaces for five
values of r. The rectangular passage along with the maximum flux sur-
face profile is the same for all these cases. This is included in the middle
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FIGURE 5 A range of upstream surface profiles for various values or r. These
all create the same exit profile shown in the center. For this case, L/R =1.05 = 0.2
and (@) r=0875, b)r=1L @) r=1,(d)r=2,(e)r=1.

of the figure. Also shown by stars are elevations of the floor of the pas-
sage above the upstream channel for each case. The smallest possible
value is r = 0.875. For this, both of the currents on the sides of the
channel are currents of depression, and the current on the left-hand
upstream channel is touching the bottom. Fluid on the left-hand wall
flows toward the passage and fluid on the right-hand wall flows
away from the passage. The floor of the passage is 0.075 times H
above the channel floor. The next value is r =1, (H, = h,, = H).
There is no current on the right-hand wall. Passage floor elevation is
0.2. In contrast, for the next value r= 1% there is no current on the
left-hand wall. Passage floor elevation is 0.575. For r = 2 both currents
are currents of elevation. Fluid flows toward the passage along the
right-hand wall with volume flux of 2. Some fluid also flows away
from the passage along the left-hand wall. For r = 7 the currents are
simply greater than those of with smaller r. Scaled elevation of the
floor of the passage is 6.2, a value greater than the maximum height
on the right-hand wall in the upstream basin of magnitude 3.6.



204 J.A. WHITEHEAD AND J. SALZIG

Scaled flux along the right-hand wall has a magnitude of 11.96. The
only way for the fluid to attain the elevation of the channel is for
some of the fluid to be raised to the level of the channel by the
Bernoulli potential of the right-hand current. The picture of very
rapid right and left-hand currents continues for all greater values of r.

All the upstream channel flows are subcritical even though A, >> 1,
ha > 1 for r>> 1. It is simple to determine that all such upstream
currents are subcritical using Eq. (3.20) of Pratt (1983). In the limit
of infinitely wide upstream channels the Froude number becomes
\hyy — H|/(h,, + H) and |hy — H|/(hy + H) for the right and left-
hand currents, respectively. These values are always less than one
since all heights are positive.

3. EXPERIMENTAL OBSERVATIONS OF CONSTANT
POTENTIAL VORTICITY FLOWS

Laboratory observations of flow upstream of critically controlled
rotating flows are scanty. For a long passage with level depth they con-
sist of three laboratory studies (Whitehead et al., 1974; Shen, 1982;
Borenas and Whitehead, 1998). Only the last study measured some
aspects of the velocity profile near and upstream of the control section.
A closed gyre is located upstream of the control point, a feature in
accordance with the accompanying semi-geostrophic theory. This fea-
ture can be found with the present equations by letting AH go
smoothly to zero between upstream and the control section. But the
nature of currents further upstream is still unknown. Most ocean
studies (summarized by Whitehead, 1989, 1998) do not contain CTD
sections across the upstream channel that reveal the distribution of
upstream currents. The following experiment was made to see
upstream flows and to measure velocity distribution at the sill.

3.1. Apparatus

The primary objective was to clarify the nature of flows upstream of a
controlling passage. Experiments were conducted using one layer of
water under air over a very flat bottom on a rotating turntable as
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FIGURE 6 Sketch of the laboratory apparatus.

sketched in Fig. 6. Water flowed from a smooth and deeper upstream
basin into a level passage. The water spilled from that into a catch
basin over a sharp edge with the intent that at some point of the
passage a critical point would form. The experimental apparatus
consisted of a 2-meter diameter cylindrical container fixed to a rotat-
ing turntable with a vertical axis of rotation. A glass plate 74 cm wide
and 96 cm long served as the bottom of the passage. It was crucial that
this be very flat and level. The former was served well by plate glass
which is flat, except for sagging from its own weight and the weight
of water above it, to better than 0.01 cm through a combination of
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its own strength and reinforcement. The latter was accomplished
by leveling to within. 0.07 cm/meter using a tripod arrangement of
adjustable vertical legs, measurements being taken with a precise
level. The container was full of water to experimental depth to com-
pensate for any compression of the bottom of the large fiberglass
tank. An upstream basin was constructed of thin acrylic and PVC
plastic sheet. Contours of the bottom and sidewalls were constructed
of smooth curves, and the bottom slope of the upstream region was
fixed at 10 degrees. Sidewalls were adhered to the sloping bottom
and plate glass after the glass plate was leveled to ensure precise level-
ing, although the level was carefully checked after construction was
complete. The bottom and sidewalls were made smooth with filler
material to eliminate abrupt edges. In the catch basin a submerged
impeller pump with a flow rate of 4.2 x 10~ m3s™! was used as the
fluid source.

Water entered the upstream region via flexible tubing; with the
outlet end of the tubing imbedded in open cell foam with pore sizing
of 14 porescm™2. The length of tubing inside the foam was made
large enough for the flow to seep uniformly out of the foam through
all surfaces. A rough porous false bottom of layers of stainless
steel screening was constructed over the deep upstream bottom in a
peripheral region surrounding the foam source for a distance of
roughly 20 cm. The thickness of this region was more than 1 cm deep
near the source, and comprised of five layers of screen, but the
number of layers and thus the thickness was tapered to zero at the
edge of the region. This attenuated any eddies produced by con-
centrated currents near the source, so there was a large diverging
water source with relatively uniform outflow around this region. The
source was located at four different positions in the upstream basin.
The first location was at the right-hand wall and produced the flows
of greatest interest. The second was in the middle of the upstream
basin not in contact with any wall, the third was in the middle of the
upstream basin in contact with the outer wall of the tank, and
the fourth was at the left-hand wall. At the outer end of the passage,
the water spilled into the catch basin. This basin was located below
and around the glass-bottomed passage, bounded by the outer
walls and bottom of the cylindrical tank, and filled with the working
fluid—water dyed black.
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Measurements were taken after the turntable was brought to steady
rotation, accurate to better than one percent. The pump was then
turned on and upstream height increased until water began to flow
over the level passage, which was painted white so that small or zero
water thickness was obvious. Velocity observations were determined
by using white polyethylene spheres placed onto selected regions of
the upstream basin and subsequently floated along the water surface
to mark the current. The pellet trajectories were recorded both on
video and with streak (time-lapse) photographs. It would typically
take fifteen to twenty minutes for the upstream flow to settle down
to what appeared to be its asymptotic long-time configuration.

Few experiments have produced rotating critically controlled flow
using a layer of water under air. Some previous experiments have
used the air-water experiment to investigate flows and the hydraulic
jump downstream of a control point (Pratt and Lundberg, 1991) or
with other geometries (Whitechead and Porter, 1977; Whitehead,
1986). Previous experiments investigating hydraulic control
(Whitehead et al., 1974; Shen, 1982; Borenas and Whitehead, 1998)
have always used two layers with fluids of different density which, in
virtue of producing a reduced gravity, made local Rossby Radius as
small as centimeters in size. Thus it is important to give estimates of
the governing parameters to illustrate why this experiment was
expected to work.

With water under air, the height of the upstream fluid above the floor
of the passage on the right-hand wall is found using (2.14)

ho Z{TQ. 3.1)

Using the values g =9.8ms™2, 0 =4.2 x 10~*m3s~!, and the three
values f = 0.5, 1.0, and 2.0s~! respectively, hy=0.0065, 0.0091, and
0.013 m, respectively. Rossby Radius based on that depth is given by

R = \/%E, (3.2)

and has the values R; = 0.50, 0.30, and 0.18m, respectively. Since
passage width is greater than those values, the rapidly rotating
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predictions of rotating hydraulic theory can be tested. However, the
layer thickness is small enough so that viscous drag might be import-
ant. To assess this possibility, note that the velocity scale is

vs = Vgho (3.3

which is v, = 0.25, 0.30, and 0.36m s, respectively with the above
values.

Thus a water particle will traverse the 0.96 m passage in about 3 or 4s,
although some water will go slower than this and the traverse time will
be accordingly longer. The spin-down time due to Ekman drag is

tg =—2=292s, (34)

an interval longer than the traverse time scale. Thus there is some hope
that viscous drag plays a small role, although clearly it is not negligible
everywhere.

Centrifugal force will cause the surface of motionless water dp to
assume a parabolic shape according to the formula dp = Q%r%/2g.
Values of dy=0.01m are found at radii of 1.8, 0.9, and 0.45m for
f=0.5, 1.0, and 2.0s~", respectively. The deflection is comparable to
transforming the flat passage bottom into an inverted parabola. Thus
the shallowest point is at the exact center of rotation surrounded by
circular contours of greater depth. The runs with f=0.5 and 1.0s™"
have depressions of dp=0.00625 and 0.0025m at the 0.45m radius
and are judged to be more strongly effected by geostrophic effects
rather than centrifugal force. The results with f=2.0 probably have
an equal influence of each. But in all cases, the control point should
be located close to the center of rotation.

3.2. Qualitative Observations

Experiments were conducted for rotation rates of =0, 0.5, 1.0, and
2.0s7! giving L/R; = 1.4, 2.5, and 3.9 respectively for the rotating
experiments. The experiment for f=0, was run to see if the geometry
was smooth, flat, and level enough to produce a uniform out-
flow along the passage. Videotape images reveal that the flow was
reasonably uniform in the region where the water ascended the sloping
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FIGURE 7 Streak photographs of floats in the passage for zero rotation. Time
interval is 0.5s.

bottom to the level passage. Outflow in the passage was uniformly
spread out across the passage as shown in Fig. 7.

For all source locations with rotation, the water in the upstream
basin had a distinctive flow pattern that differed with rotation rate
only in small details as described at the end of this section. This pattern
is most clearly illustrated for all three values of rotation with the source
at the right-hand wall in Fig. 8. The current emerged from the source
and flowed directly from the upstream right-hand wall to the left-hand
wall (bottom to top in the photographs) parallel to the sloping bottom
contours. A constricted, tightly curving current ascended the sloping
bottom near the left-hand wall. Over the level region the current was
pointed to the right of the axis of the passage and crossed to the
right-hand wall of the passage.

There were two regions of very slow (almost stagnant) flow on both
sides of the upstream current. One lay over the deepest part of
the upstream basin to the left of the current that moves from right to
left in the upstream basin. The second was to the right of the curv-
ing current ascending the sloping bottom. It lay mostly over the
right-hand sloping bottom region, although there was a little stagnant
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FIGURE 8 Streak photographs of floats in both the upstream and controlled region.
@f=05s"", L/R=125(b)f=1.0s"", L/R; =2.5.(c) f =205, L/R, = 5.

water on the level passage as well. It resembles the gyre upstream of the
control point studied in a straight passage by Borenas and Whitehead
(1998).

As the current proceeded along the level passage (Fig. 9), each
streamline was approximately straight for the moderate rotation
experiments but tilted toward the right-hand wall. Streamlines that
were thereby forced into the right-hand wall veered and became aligned
with the wall. To the left of the large current in the flat passage was a
thin layer of water that we believe to be about an Ekman layer thick.
The white bottom is visible through this thin layer in some panels.
The water in this thin layer had steady uniform flow from the edge
of the large current to the end of the passage. Injected dye revealed
that the flow was directed at a different angle to the main current,
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(b)

FIGURE 8 (Continued)

but detailed measurements in this thin current have not been made. We
anticipated that this has an Ekman layer whose resolution required
instruments not available at the time. For f > 0.5s~! the stagnation
regions over the sloping bottom were much larger than the counterpart
with slower rotation.

For a flow rate of f = 2.0s~! (Figs. 8c and 9c) the upstream current
flowing from the right-hand wall to the left-hand wall over the sloping
bottom penetrated further to the left than previously. It then curved to
the right in a much more tightly curved and narrower arc near the left-
hand wall. The stagnant region to the right of the curving current was
much larger than the previous cases. The current over the flat passage
was directed more toward the right-hand wall than toward the exit.
Thus this current impacted into the sidewall and formed a pronounced
time-dependent current. We interpret this as a hydraulic jump that
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(c)

FIGURE 8 (Continued)

stood off the wall as a shock aligned with the sidewall. The picture of
the impacting current and the shock region is closely in accord with
the picture by Pratt (1987). Around and downstream of the shock a
strong narrow localized current formed at the right-hand sidewall of
the passage about midway along the passage where the curving current
impinged onto the wall. Turbulent appearing fluctuations were
frequently visible at the left-hand edge of this localized current on
videotapes. The region with a thin layer of water was also quite large
and covered most of the downstream half of the flat passage.

With source locations in the other three places, currents also flowed
to the left-hand corner of the upstream basin. With the source in the
middle of the upstream region the current circulated counterclockwise
(as required by angular momentum conservation) around the source so
that particles spiraled outward. At the outer wall of the cylindrical
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FIGURE 9 Streak photographs of floats in the controlled region. Time interval is 0.5 s
except for case (c) which has 0.25s. (a) f =0.5s"', L/R =125. (b) f=10s"",
L/R, =25.(@c)f =20s"', L/R; =5.
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FIGURE 9 (Continued)

tank, a wall current formed which went to the left. At the left-hand
upstream corner the water ascended the sloping bottom and entered
the level passage near the left-hand wall. With the source in the
middle of the outer wall of the tank, the flow went to the left in the
upstream basin and entered the level passage near the left-hand wall.
With the source near the left-hand wall, the current flowed directly
up the slope into the level passage. All source locations produced cur-
rents in the level passage that visually appeared to be identical to the
counterparts shown here. In addition the region corresponding to
gyres was of similar size.

3.3. Quantitative Measurements

Streak photographs such as those shown in Figs. 7-9 were obtained
after the steady flow had become fully established with upstream
source on the right-hand wall. Care was taken to obtain clear and
unambiguous streaks for all the particles so that information would
not be skewed by the neglect of some streaks. The streaks were digi-
tized from these and additional photographs.
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Naturally one expects little shear for the flow without rotation,
and that is clearly true in the digitized data in Fig. 10. With rotation,
(Figs. 10b, ¢ and d) there is a current flowing roughly in a straight
line at some angle to the axis of the passage. Since we desired to
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FIGURE 10 Digitized streaks in the controlled regions. (a) f=0. (b) f =0.5s7",
L/R =125 (c) f=1.0s"", L/R =25. (d) f =205, L/R, =5. (¢) Streaks from
case (b) rotated to lie in the direction of average flow.
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FIGURE 10 (Continued)

attain data perpendicular to the flow direction, we defined the coordi-
nate perpendicular to the sidewall x’ in panels a~d. To produce a
velocity profile across the current, this current was rotated to a coordi-
nate system with one axis in the flow direction and the other at right
angles to the current. The coordinate across the current is defined as
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x following the notation in Section 2. The average value of the angle
was determined for all the streaks in each figure and a geometric rota-
tion of that data set was executed. Such a rotated set is shown in
Fig. 10e. From this, length of the streaks was plotted as a function of
distance at right angles to the current, assigning an arbitrary value to
the zero distance. In this way, velocity profiles were obtained for the
four currents by dividing length by time interval. These are shown in
Fig. 11a—d.

For the run without rotation (Fig. 11a), the data have a mean velo-
city of 0.143 m/s with a standard deviation of 0.013 m/s. For inviscid
hydraulic control, we consider a passage L = 0.74m wide with a flow
rate of @ = 4.23 x 10~*m3s~L. The upstream height and passage velo-
city for inviscid hydraulically controlled flow is given by

H,— AH =YQ%/L*%)"?, v=[3(H, - AH) (3.5)

which gives upstream height of 0.0049 m and a velocity of 0.18 m/s, a
value of almost 30% greater than measurements. We estimate errors in
flatness of the glass of about +0.001 m, a value in accord with the dis-
crepancy between theory and data. In addition, friction and turbulence
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FIGURE 11 Speed versus cross current distance x. (a) f =0.5s"!,L/R =125,
(b) £ =105, L/R =25. (c) f =205, L/R,=5. The curves are solutions for
Eq. (2.11b) with H=0.07m and the values for the experiments.

may slow the fluid down. The scatter in the velocity is consistent with

turbulence being present.
In Fig. 11 panels b-d a direct comparison is shown between

data and a velocity profile from Eq. (2.11a), using H=0.07m, and
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FIGURE 11 (Continued)

ho= 0.0065m, and 0.0091m, and 0.013m, respectively, as given by
(3.1). There is good agreement between data and theory on the
right-hand side for Figs. 10b and c, where the shear is approximately
constant. The velocity profile curves terminate at the location where
the water surface is predicted to intersect the floor. Velocity data
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show poor agreement in the vicinity of the termination. In Fig. 11d
the data have more scatter on the right and thereby poorer agreement
with theory. Figure 10d shows one obvious reason why the fit is so
poor. The current is not straight but bends around a curving trajectory.
In this case it would be much more appropriate to treat the upstream
current in radial coordinates, but no theory is available for direct
comparison.

To the left of the constant shear regions are regions in which velocity
falls to smaller values but velocity exhibits wide scatter. We interpret
the scatter as arising from the edge of the main current where possible
meandering is found. Perhaps shear instabilities produce eddies. This
region is poorly understood experimentally and theoretically.
Probably the counterpart is not resolved in oceanic observations.

Movies in earlier experiments showed that the edge of the current
never settled down to completely steady flow (Whitehead et al., 1974,
movies akin to their Fig. 3 and caption). It was thought that the
instability was of a baroclinic nature (Smith, 1976), although later
theory showed that such fronts had a mixed barotropic-baroclinic
origin (Griffiths et al., 1982). Our video recordings show similar fluc-
tuations. Virtually the only discussion of the consequences of instabil-
ity in this region is found in Rydberg (1980). But any fluctuations in the
present configuration are certainly barotropic as there is no baroclinic
shear so that the nature of eddies at the edge of this current, if they
exist, is virtually unexplored.

4. DISCUSSION

Volume flux and profiles of velocity and depth for critically controlled
flows in rotating fluid with constant potential vorticity can be deter-
mined by specifying two independent upstream parameters. These
are upstream depth, and volume flux on the right-hand upstream
wall. Two geometric parameters of the passage are also required:
the shoaling of the bottom, and passage width. It is shown that all
features of flow in the passage depend on the parameter H, — AH.
This results in two dimensionless numbers to describe flow in the pas-
sage. For example, the volume flux scaled by g(H, — AH)*/2f is a
function of 8§ and L/R in Fig. 4. Upstream flows still depend on
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three dimensionless parameters, so that a range of upstream flow dis-
tributions produces identical flow in the exit passage. Pratt (1997a,b)
also found that a range of upstream flow can be realized by processes
not considered in this paper and suitable combinations of the present
formulation, with upstream models, seems feasible.

Laboratory experiments with volume flux imposed on the right-hand
upstream wall demonstrated considerable adjustment of current in the
slope region between the source and the passage. Current on the right-
hand side veers to the left along constant depth contours and enters the
passage on the left-hand side, but then crosses back to the right hand
side near the control section. A large stagnation region to the right of
this veering current is observed. Such a stagnation region is known
(Borenas and Whitehead, 1998). However, a laboratory and numerical
study with flow up a sloping bottom reports topographic westward
intensification (Kinder et al., 1986). Such adjustment is also seen in
recent numerical studies by Helfrich et al. (1999). This may be respon-
sible for the current directed from the right to left over the tilted
approach to the laboratory passage.

As mentioned in the introduction, the compelling motivation for this
work is to clarify the role of assorted upstream features that might
influence our estimates of critically controlled flux in ocean passages.
Detailed comparison of the theory of such currents and actual ocean
currents is still in a crude stage. Measurements of ocean volume
fluxes are compared with estimates from hydraulic theory for eight
ocean locations (Whitehead, 1998). To obtain estimates to use with
hydraulic theory, the elevation of the interface of water flowing into
the passage was estimated as the height above sill depth of the bifurca-
tion depth (the depth where a CTD record upstream of the sill splits
from a downstream record). From our new results, we find that a
better upstream measurement would be H, — AH along the right-
hand bathymetry. Our present theoretical results indicate that the ocea-
nic estimate of upstream height has an error of size H, — H, that is, the
Bernoulli height at the right-hand wall should have been used. It is
found that the ocean estimates are greater than measurements by fac-
tors ranging from about 30 to 170%. However, possibly some of
the error comes from currents flowing away from the passage on the
upstream right-hand sloping bathymetry. In addition to the above
error, additional possible reasons for the excess are: (1) the influence
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of known large-scale currents; (2) friction; (3) assuming a passage with
a flat bottom; and (4) other potential vorticity effects and more compli-
cated bottom profiles (Killworth and McDonald, 1993; Killworth,
1994). Figure 4 indicates that small reductions of up to 20% might
be found using § = 0 (appropriate for a layer of water upstream of a
passage) rather than 1.

The results of this work strongly suggest that ocean volume flux esti-
mates ideally require some measurement of the right-hand upstream
current. Note that Fig. 4 shows that for L/R > 1 volume flux is only
significantly less than the scale g(H, — AH)?/2f for 8§ < 0 and that in
turn is found only for r < 1 from (2.19). The physical way this can be
realized is to have currents on the right-hand wall flowing away from
the passage. In this case, the upstream current feeding the controlled
flow is found along the left-hand wall. This illustrates the need for
more information upstream of deep ocean passages.

The laboratory experiment recovered good agreement between
theory and a velocity profile at the control section, but it displayed
a gyre upstream of the passage. Whether such gyres exist upstream
of ocean passages remains unknown. If such features exist, future
measurements upstream of passages must take such structures into
account,

The approaches used here can be extended in a number of ways.
The formulation can be used with more complicated problems, for
example multi-layer problems or those with complicated passage
bathymetry. Since the upstream conditions are independent of flow
rate in the passage, one could numerically integrate (2.1a,b) with
bottom profile terms starting with any value of Ay using (2.8) and
(2.9) to determine vy.

The experiments utilizing water under air can readily be extended
and improved to address more questions. For example, if the upstream
region were larger the details of the upstream currents in a flat
upstream region could be investigated. The upstream region in this
study was narrower than the 50cm or more which constitutes an
upstream Rossby radius of deformation. But in spite of this, the
upstream currents were narrower than the Rossby Radius. Possibly
their width was governed by topographic beta plane scales. It would
be very useful to produce extensive upstream regions, perhaps on
larger turntables. One advantage of these experiments that employ
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water under air is that good quantitative resolution of the velocity
profile is obtained so that complete vorticity balances and internal
structure of the boundary layers can be resolved. These issues are
important in the subject of rotating hydraulics both in the laboratory
and in the ocean. Thus further documentation of flows in the hydraulic
jump regions and test of relevant theories also seems feasible.
Significant advances in this problem may be realized in combination
with numerical techniques. It is hoped to continue studies in such
problems.

5. CONCLUDING REMARKS

The central new finding of our formulation is that a transition in
“degrees of freedom” between upstream and passage is fundamental
in the hydraulics problem with rotation. The experiments, the first
with water under air, show that the gyre upstream of a passage is a
fundamentally important transition structure between the wider-
ranging upstream flows and the more tightly constrained controlled
passage flow. The results illustrate the sensitive and important
nature of the region immediately upstream of controlling passages.
They imply that present observations of ocean flows should be
extended further into the upstream regions to determine the nature
of the currents flowing into the controlled regions.
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