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On multiple states in single-layer flows

Peter G. Baines
CSIRO Atmospheric Research, Aspendale 3195, Australia

J. A. Whitehead
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

(Received 13 March 2002; accepted 24 October 2002; published 6 Januapy 2003

For free surface flows over obstacles in a channel of constant width, there is a range of parameter
values where two steady flow states are possible, with the state that is actually obtained being
determined by the past history. Specifically, one of these flow states is wholly super¢riggaio

waves can propagate upstream against the)ftoxer the obstacle. The other has a hydraulic jump
that travels to upstream infinity, and the flow undergoes a subcritieal waves can propagate in

both direction$ to supercritical transition at the obstacle crest. A new, third steady solution is
described here, in which a hydraulic jump is stationary over the upstream face of a long obstacle.
This new solution is contiguous with the other two, and in a sense, lies between them. It is shown
that this new solution is unstable, in that if the stationary jump is displaced to a location with a
slightly different bottom height, it will move further in the same direction. By this criterion, jumps
are unstable on upslope flow, and stable on downslope flow. These properties, and the general
character of hysteresis implied by these multiple hydraulic equilibria, have been tested with two
series of experiments. The new solution is ordinarily not found because of its instability, but it can
be viewed by manually balancing the unstable jump. Comparisons were also made between the
observed abrupt transitions between flow states, and the predictions of hydraulic theory.
Qualitatively the agreement is quite good, with differences attributable to experimental factors that
are not contained in two-dimensional long wave hydraulics.2@3 American Institute of Physics.

[DOI: 10.1063/1.1531178

I. INTRODUCTION specified and flow at the obstacle crest is critical, and a re-
gime diagram corresponding to Fig. 1 results. Lawrence also
Hydraulic solutions for flow of a single layer over a long verified the multiple-state/hysteresis phenomenon experi-
obstacle of maximum elevatidn, are known to possess two mentally, and showed that when upstream jumps were pro-
possible steady solutions within a certain range of flow pagyced, friction could cause them to become stationary at fi-
rameters. If the flow is commenced at some initial time withpite distances upstream of the obstacle.
an initial fluid speedJ, initial f!uid depthdq, .t.he resulting One may ask whether a hybrid of these two “multiple
steady flow stateﬁzare determined by the initial Froude nuMsae57 is possible, in which the upstream flow is supercriti-
ber Fo=U/(gd,)™* and the height ratiddn=hm/do, and .5 1t 4 stationary hydraulic jump exists over the upstream
there are five main flow types as shown in Fig. th the face of the obstacle. This would give a supercritical to sub-

region GAE, two different locally steady flow states are POS~cyitical transition over the upstream face, with a subcritical to

sible, anq the.solu'uon obtglned |n.pract|ce depends on thgupercrmcal transition further downstream at the obstacle
manner in which the flow is established, as shown, for ex- . . . .

. . crest. Such solutions do in fact exist, as demonstrated in the
ample, by Pratf.In one of these solutions the flow is super-

L next section, and the new solutions provide a continuous
critical everywhere—the local Froude numtier1 every- junction between the other two. However, these new solu
where, and linear wavef.e., small disturbancescannot | ) k

progress upstream against the flow. In the other, the ﬂovy_ons are unst_able, as shown in _Sec. !II. This has been inves-
undergoes a transition from subcritical to supercritical at thd!gated experimentally as described in Sec. IV. Flow states

crest of the obstacle, and a hydraulic jump progresses tfat correspond to the previously known stable states are
upstream infinity, effectively altering the flow state upstreamfound. There is a considerable range of observed hysteresis,
of the obstacle. This “multiple state” regime has been known@lthough this is smaller than predicted. A laboratory device
for at least the past 20 yeats. has been constructed which enables an operator to balance

An alternative description of these flow states has beefhe unstable solution and thus allow it to persist indefinitely.
given by Lawrencé, who chooses as the basic variables This situation is of interest because it is perhaps the simplest
d./h,, anddy/h,, (in present notation whered, denotes the example in fluid mechanics of hysteretic three-state flow, it
layer thickness at the obstacle crest. These variables provideay be readily demonstrated experimentally, and it gives
a less comprehensive picture, but they are convenient fdntuition concerning more complex flows containing similar
discussing locally steady flows where the total flow rate isproperties.
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II. ANEW SOLUTION TO THE FLOW UPSTREAM OF whereh,, is the maximum topographic heigtthis obstacle
AN OBSTACLE is termed a “weir” in the present experimetsiere Eq.(5)

is given by the conservation of mass flux, E§) by the
critical condition at the obstacle crest, E¢#&. and(8) by the
Bernoulli equation each side of the jump, and E). from
the conditions across the jump in the fokB). These seven
equations contain seven unknowhs; uy, d,, Uy, dg, Uc,
andd.. To nondimensionalize, we define

We consider the flow of a layer of fluid of thickness
d(x,t) and velocityu(x,t) in a channel of uniform width,
over a long obstacle of height(x). The essential equations
and assumptions are standard and are given in Baies.
2.3). We write d=dy+ »—h, whered, is an equilibrium
depth andy is the interface displacement;andd are then
governed by

d d d h h
U+ UU=— g7y, (1) - _u _d — _.m
t X g’?x D doy Du dO' Dd dO’ H dO, Hm dOI
d¢+(du),=0. 2 (10)

A hydraulic jump is represented by an abrupt increase ir]Examination of the above equations shows that they only

Mave physically relevant solutions inside the region GAE of
Fig. 1. This is the region oH,,—F, space in which flow
over long obstaclepgoverned by Eqgs(1), (2)] has two so-
lutions, as described above.

, 94y dqg In order to compute the locatigspecified by the bottom

CJ:T( + d_u> ) elevationn and amplitude of the stationary jump from Egs.

) ) ] (5)—(9), we first fix F; and the(scaled depth on the up-

The flow is characterized by the Froude numbBedefined  giream side of the jumm,,, which must lie in the range 1

by Fz:uzlgq- o N <D,<F3?. The topographic height at this point is then
We consider flow that is uniform and supercritical up- given by Eq.(7) in the form

stream of the obstacle, and look for steady solutions of Egs.

(1), (2) in which there is a stationary hydraulic jump situated

values ofd and u are given byd,, u,, anddy and ug,
respectively, the speed of the junty relative to the up-
stream fluid is given by

over the upstream face of the obstacle, as shown schemati- H-=m=(1—D ){ B F_S (1+ Du)} (11)
cally in Fig. 2. IfU andd, are the upstream values ofand I d, u 2 D7 |
d, the upstream Froude number is given by

U where 0<H;<H,. The depth downstream of the stationary

FOzW' (4)  jump is then given by Eq(9), which gives

which has values greater than 1 for supercritical flow. With
notation as indicated in Fig. 2, the steady-state forms of Eqs. |
(1), (2) show that the flow state is specified by

Q=Udy=ucd.=u,d,=uqdq, 6)
uZ=gd,, (6)
1, 1Q?
7 U +ng:§d_5+g(du+hj)a (7)
3ug+g(dg+hy)=3ug+g(dc+hp), ®)
» 90y dg . , . . .
U,=—5— 1+ —/, 9 FIG. 2. Schematic diagram showing a stationary hydraulic jarejative to
2 du the groundl over the upstream face of an obstacle, with notation.
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) F212 o (dytd)(uy+u}—c)?+ 2g(d,+d})?
Dy=5|DZ+85]| — . (12
u

so that the jump amplitude is given yy—D,. The maxi-
mum topographic heightl,, is then given by Eqgs(5), (6),
and(8), which is

2

Fo 3
7—5F3’3—<Dd—Du)[

D2+8
= (dg+dj)(ug+ug—c)®+3g(dg+dj)? (17)

We ask whether the jump in the new region adopts a velocity
which moves it back to the original location, or away from
that location. Mathematically the objective is to calculate
F% (Dg+Dy) For a very small change in bottom depth, it can be assumed
2 W_ that the primed quantities are small compared to their
(13)  unprimed counterparts.

The flow is supercritical on the upstream side of the

jump, whether moving or stationary, and subcritical on the

shows that §o|u't|ons exist within the region GAE of F|g.'1, downstream side. It follows that for a perturbed and possibly
but not outside it. Hence there are three stationary solutlonﬁ]oving jump, the flow on the upstream side will be undis-

for hydro_sta.tlc flow over an opstacle inside GAE_’ but Onlyturbed, but that the flow on the downstream side may be.
one outsiddi.e., all three solutions are equal outside GAE However, the moving jump is now at a slightly different

We describe these new solutions in terms of the jump heig : .
D, defined aD = Dy- D,,. Figures &) and 3b) show the nﬁgzggn, and consequently different depth and mean flow.

known stable solutions. Figure(8 shows the solution in

BAE with the upstream jump extending to A@&rmed solu- (uytu))(d,+d)=0Q, (18
tion 1), and Fig. 3b) shows the supercritical solution above
AG extending down to AHtermed solution ). The corre-
sponding jump amplitudes for the new soluti@olution 111) u'd. +du.=0 (19)
are shown in Fig. ). One sees that it is contiguous with um e

both of the others, equalling the solution in FigbBat AG,  and with Eq.(16)

and that of Fig. 8) at AE, where the jump height rapidly I ,

becomes zero as AE is approached from AG. Along AG, C(dg—dy)=Ugdg+dalg- (20)
solutions | and Il are equal, with an effectively stationary The Bernoulli function on the upstream sigelative to fixed
jump at the upstream end of the obstagiheren=0). As  axes will be unchanged, so that

Fo decreases toward AE, the speed of the upstream jump in | , . Lo ,

solution | increases, and it propagates away upstream, 2Yut9du=32(Uy+uy) +g(dy+d,—9), (21)
whereas in solution Il the jump remains stationa_ry and reyyhere the change in topographic heightis. This gives
treats downstream up the face of the obstacle, with decreas-

ing amplitude. As curve AE is approached, the jump ampli- . Uy ,

tude in solution 11l decreases rapidly to zero and the solution dy=0- EUU' (22
approaches the wholly supercritical state. On crossing AE ) )

solution 11l changes abruptly to solution I, as does solutionFquations(19) and(22) give

Hpm=1+

Exploring these conditions in parameter spade,(Fg)

so that after linearizing, we have

. 8 . u, b , ug
Wioe Wi RTge @
IIl. THE STABILITY OF UPSTREAM HYDRAULIC u u u u
We consider the stability of a steady solution of a sta- d’ d’
ti . . : . , gdd 2dd d dd u
ionary hydraulic jump situated over sloping topography,ina  c=u,——I|| 1+ —|—— — = |- (24)
similar manner to that described in Sec. Il. Since we are only 4uy dy /dg dydy

considering small perturbations, we may assume that the tqn order to obtain an equation farin terms of— 5, we need

pography consists of a plane slope. The steady solution ign extra condition omlj andu)j, which will depend on the

given by circumstances further downstream. There are two distinct
u,d,=ugdg=Q, (14) possibilities: (i) assume that there is no effect from further

downstream that influences the jump, afid assume a

downstream controlor other conditioin that fixes the value

of the Bernoulli function downstream of the jump. We dis-

dyu2+igd2=dgui+ sgd3, (15)  cuss these in turn.

implying mass flux conservation as in E&), and momen-
tum flux conservation

which implies Eq(9). We next consider a small perturbation o case (i)
to this steady state, in which the perturbed jump (sasal) ) ] .
speedc, and departures from the steady values are denoted N 9eéneral, perturbations to the jump will cause pertur-
by primes. Taking axes moving with the jump at speegt*  Pations to the flow immediately downstream of it. Assuming
corresponding to Eqg14), (15) we have that these changes are not influenced by any factors further
downstream, or equivalently, that there is no downstream
(Uy+uj—c)(dy+dy)=(ug+ug—c)(dg+dg), (16)  source of waves propagating in the upstream direction to-
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FIG. 3. (Continued)
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(27)

and then from Eq(20)

(28)

(31

Substituting Egs(23) and(31) into Eq. (24) then gives

(32

(29

and(32) show that perturbed jumps on

both Eqg29)
pward sloping topography move further away from their

initial stationary point, implying that these flows are un-

stable. For downward sloping topography the converse ap-

plies, and the jumps are stable.

IV. EXPERIMENTS

is a lack of experimental studies of hydraulic

There

except for Lawrence’s stuliyhe region GAE of

and also to investigate the theoretical flow proper-

stationary hydraulic jumps over sloping topography? Two

devices have been constructed that show the hysteresis that is
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(©

and substituting this into Eq20) gives

1)

(dd_du) 4
(9dg)™? (1+Fq) " 1-F%

dy=

Substituting Eqs(23) and (28) into Eq. (24) then gives

gdy

Fqd
1+F4 Q

This implies a negative change in jump speed for a decreasgepce

in bottom height(positive 6), and hence an unstable jump on |,

an upward slope.

B. Case (ii)

If there is a flow feature that lies downstream from the

jump that has influence ofor control of the flow so that it

sends disturbances upstream toward the jump and affects It,

it may be more realistic to incorporate this into the stability

analysis. This applies in the specific case of interest herdlows where multiple flow states are predicted by theory. In

namely control at an obstacle crest, which fixes the Bernoullparticular,

section and the jump, in applying this to the flow we makeThe following experiments were carried out as a step to rec-

constantR. Since the flow is subcritical between this control Fig. 1 has not been investigated at all in any formal sense.
the assumption that the two are close together, so that distutify this

a quasistatic state in this region with no material stored irdered under what circumstances can one readily produce

bances may communicate rapidly between them, maintaininges described in the previous sections. In particular, we won-
between.

Corresponding to Eq22) we then have
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predicted from the above. The first is a flurhich is a

channel that supports a continuous flow from one end to the

othep that was made so that it could contain an hydraulic dmax
jump upstream of an obstacle. The second device, or flume hf— hc

enabled the observation of upslope flow with the obstacle
curvature zero in order to come closer to the long wave ap-
proximation.

Analysis of the preceding sections is inviscid, but in or-
der to accommodate experimental convenience and reality, il
is necessary to include two additional factors. The first of
these is frictional drag, effected by means of a drag coeffi- ~ I —»J
cient, and the second is a tilted channel floor, as a convenien “
means of driving the flow. Both of the sets of experiments
have been carried out in a flume, tilted at angléo the FIG.A‘_.. The tank desi_gn and t_he measured flow pgrameters of the first set of
horizqntal, Wi.th the conventior) tha@>0 for QO\{vnward z:)(sveirsln;ﬁ)r:;si;thteosrlgﬁs gate is denoted by the thick line on the left, and the
slope in the direction of flow. With the added frictional drag
term, Eq.(1) becomes

c

small sliding gate held in grooves in the sidewall. The chan-
Ug+ Ule+g 7= —Cpu?/d, (83)  nel was held at an adjustable angle so that the elevation of

the floor of the sluice was above the crest of the obstacle.
where n=d+h(x), X is horizontal, » and d are measured This ensured that supercritical flow could arrive at the crest
vertically, andCy, is the frictional drag coefficient. The prin- of the obstacle, given sufficient tilt of the channel bottom and
cipal parameter for these flows is again the local Froudemall friction. The lower, downstream end of the flume ex-
number,F. The parameter to be varied in the experiments isended over a large basin filled with water so that water
the tilt angled, which results in changes to the Froude num-flowing downstream of the crest could spill into the basin.
ber. For steady flows wherdu=Q, F?=(d,/d)* where water was pumped from this basin into a small region up-
ds=(Q%g)">. In downslope flows, a steady state in which stream of the sluice gate at a fixed, controlled volumetric
andd are constant witlx is possible, where the downslope flow rateQ, . This rate was carefully controlled at a constant
buoyancy termgsin¢ balances the drag; with this as the flux for each set of observations and monitored with a flow
mean state, hysteresis phenomena do not éBiaimes, Sec.  meter with accuracy of approximately 5%. The gap at the
2.3.4. However, in these experiments this balance is nobottom of the sluice was set at a size sufficient to allow water
realized because the viscous drag is too small @ugiiva-  to accumulate to a level of about 0.05 m above the gap, and
lently) the flume is too short. For these experimedtis in  enter the channel as a supercritical flow. This current would
the range 5% #<8° andCp, has valueof order 0.004for  then flow down along the tilted bottom of the channel, where
Reynolds numbers of order 40 implying that frictional it would encounter the obstacle. The size of the apparatus
drag is small but not entirely negligible. Fluid effects gener-and the flow rates were selected for ease of handling, and to
ated by flow over an obstacle should therefore be locallyminimize frictional loss of the flow; smaller apparatuses
small. Friction may have secular effects on waves propagatyould be subject to molecular viscosity.
ing away from the obstacle, and hence be substantial at large Water speed downstream of the sluice gate was governed
distances from i{Lawrencé), but they should remain small by two factors: first, the height of the sluice gate opening,
in the short tanks used here. For steady flow over featurelesghich was kept fixed, and second, by the angle of the chan-
sloping terrain, Eqsi33), (2) give nel. This was set using a labjack that was placed under the
upstream end of the channel. A side-view of the water was
recorded using a video camera. The water was dyed to en-
able the surface to be seen clearly. Thirty-five-mm slide pho-
tographs of selected runs were also taken, using a uniformly
Hydraulic jumps{governed by Eq(3)] may be inserted into lit white background. In these experiments the upstream fluid
such flows. Stationary jumps may exist on flows downemerging from the sluice was always supercritical. This flow
slopes, since the decrease in fluid depth behind the jump asrémained supercritical as it moved down the charoetil it
propagates upslope decreases the jump speed, to the poartcountered an obstacle or hydraulic jumut the thickness
where it vanishegfrom Eg. (8)]. and speed varied according to E§3) because of the slop-

With these theoretical preliminaries, we begin with a de-ing channel.

scription of the experiments with the first flume. As sketched  The experimental procedure was as follows. The flume
in Fig. 4, this experiment was done in a uniform channel, langle 6 was set at a small value, and the sluice gate was
m long, 0.07 m deep, and of width=0.05 m. An obstacle opened. Observations were then made after the flow had ad-
was placed in it with the shape of a smooth weir that wagusted to steady-state, with a form as shown in Fig. 4: super-
elevated 0.038 m above the horizontal floor of the channelcritical flow upstream, with a stationary upstream hydraulic
The obstacle crest was 0.3 m from the downstream end of themp to subcritical flow, and then critical flow at the obstacle
tank. Near the upstream end a sluice was constructed usingcaest. Measurements were taken by hand with rulers, but

dd  dh/dx—CpF?

R S 34
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FIG. 5. Some measured features that display hysteresis as the elevation ¢
the upstream reservoiH = (h{—h.)/ds, is varied in the first experiment.
The top panel displays tHscaled upstream positiofdistance from the rear

of the obstacleof the hydraulic jump. The middle panel shows the maxi-
mum water thickness; this is located upstream of the crest in the place wher:
the bottom is deepest. The bottom shows the water thickness at the crest ¢

the weir. For these experimer,=340 cn? s~ 1. T
l TR

were found to be inferior to on-screen measurements fromr FEEESSSS = '
videotape, which was recorded for all runs. This method was
found to be sufficiently precise for these data, as the presenc.
of near-random surface waves limited the resolution that wag| . Fiow in a channel for tilt angles near transition values of the hys-
possible. The labjack setting was then increased by about t@resis range. Flow is from left to right, and all flows are approximately
or 3 mm, and a new run was carried out, repeating the meateady. The crest of the weir is the highest part of the crescent shaped black
surement process. At each setting, the video images and 21,1 [0 o 1 91, e e g i o
slides were taken after noting that the flow achieved steady,) ¢ ncritical flowH =4.03.
state. This procedure was repeated until the flow was ob-
served to be wholly supercritical, after which the angleas
increased once more. The experiment was then continueshme value oH over the interval 3.78 H<5.25(+0.10).
with € being decreased in corresponding steps with the sanmiehe upper values are interpreted as representing subcritical
observational procedure at each step, until finally the upflow upstream of the obstacle crest, and the lower values
stream jump and subcritical flow were again observed. Theepresent supercritical flow throughout this region. Results
whole procedure was then repeated a number of times, arfdr a slower flow rate were very similar qualitatively but the
then repeated again for a different flow rate. details differed as one would expect. The transition in the

From the video images, measurements were taken of thigkow state at the larger value &f was seen just as the jump
following four dimensions, which are also shown in Fig. 4: approached the obstacle base. Thus no jump was ever located
(1) distance of the location of the hydraulic jump upstream toon the part of the obstacle sloping upward in the direction of
the right-hand edge of the obstadlg,; (2) maximum thick-  the flow. The measurement errors are estimated to be the size
ness of water upstream of the cred,,,; (3) thickness of of the symbols. The length measurements have relatively
water at the crest of the weid.; and(4) elevation of the large errors due to the difficulty in defining the exact location
free water surface in the reservdiy minus elevation of the of the jump in an image.
crest of the weirh.. As hy—h, was systematically varied up In Fig. 6, photographs from slides show the multiple
and down, a “hysteresis loop” was found for both flow rates. equilibrium character of the flow for four different channel
The results for the fastest flow rat®(=340cn?s 1) are tilt angles. Angle values, or the equivalent valuesHpfare
shown in Fig. 5. This contains measurementdpf dax precise to=0.01°. This is about a factor of 10 smaller than
and d.. These are divided by the depth scath,  those possible with videotape images used for Fig. 5. The top
= (Q?%/w?g) 3= (Q?/g)*3, which is the theoretical thickness panel, Fig. €a), shows a stationary hydraulic jump just up-
of a critically controlled flow of two-dimensional flow ra@  stream of the obstacle, followed by subcritical flow, with the
at the crest of a critically controlling weir. They are plotted floor of the channel tilted at an angle of 7.829€5.05).
againstH = (h;—h;)/dg, which is the scaled elevation dif- This angle is close to the upper transition anee Fig. 5,
ference between the free water surface level in the reservoignd the supercritical flow upstream of the hydraulic jump has
h¢, and the scaled elevation of the crest of the weir, The  pushed the jump almost to the location of the upstream nose
data show two values of each dependent variable for thef the obstacle. The hydraulic jumps in these experiments are
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Source Honeycomb 1.2 m long, 0.2 m deep, and of width=0.052 m was used,

inclined at a variable anglé to the horizontal. This channel

had a flat glass bottom, and contained a rounded sluice gate

made of foam covered with smooth plastic tape in the middle
m of the passage. The tank was aligned withegative(slop-

) ? ing upward in the direction of floyy and water was pumped
Labjack into the cavity behind the sluice at the lower end. Turbulence
FIG. 7. The tank design and measured flow parameters of the second set Bere was damped with a honeycomb of loose plastic foam.
experiments. The water level in this upstream reservoir would build up

above the depth of the sluice gate opening, and the pressure
produced flow into the downstream, working part of the tank
turbulent, and spread out over a length of 3—4 cm. Henc@ength 0.6 m, up the tilted channel. The downstream end

their positions are not precisely defined, and are complicatega|| was absent so that water could spill out freely there. As
by across channel variatioismaller scale experiments with , the previous design, the downstream end of the flume

. . _8 . . .

axisymmetric geometfy give a good picture of along-jump  extended over a large catch basin filled with water. Water
variability). The second pan¢Fig. 6(b)] shows supercritical a5 humped from this catch basin into the small upstream
flow at the slightly greater angle of 7.90f5.10). Shortly  regeryoir at a fixed volumetric ra®, . This rate was care-

after the increase in channel slope, we saw the supercriticgl;y controlled and measured to be a constant flux to better
flow sweep the hydraulic jump downstream over the crest than 1% accuracy.

the obstacle. The third panig. 6(c)] shows flow in which Runs were conducted after setting a sluice gap height of

the angle has been decreased all the way down to 5195° (0.0052, 0.0107, or 0.0153 m. To start, the tilt of the tank was

:4'|04.)' Fo;tr}!sr:{[iiluebthe ﬂt(r)]W IS Stl'” fsuptercrlt!tc_al, EUt tkh? made minimal so that supercritical flow extended down-
angie Is just slightly above the angie for transition Dack 10g.04 1y of the gate to the end of the flume. Then the tilt was

subcritical flow. We saw that trapped waves became PreVq, creased by increment so that the elevation of the down-

lent near the crest as the transition value was approache ream end progressively became larger than the bottom of

For example, this panel shows a marginally stable wave e gap. Time for readjustment of the upstream free surface

thg grest as an wregulanty of the_surface. The wave Wa?]eight was allowed to pass after each change in tilt angle.
visibly created by a small irregularity at the sidewall along Finally, at a critical elevation of the downstream end, a bore

the middle of the channel, but the flow remained steady for,

) . . . formed over the water surface next to the downstream end,
minutes in this state. Finally, as soon as the angle was

brought down to a very slightly smaller angle of 5.93 ( and propagated upstream as an hydraulic jump. This transi-

=4.03) (a change in labjack elevation of only about 1 jm tion 1S shown in photographs in Fig. 8, pa.nedas and (b),

a wave propagated upstream starting from the crest. F'Emd it may be shgwn .from Eq(333)—(34? that it corr esponds'
brought the system to the subcritical state shown in the bot© the curve EA in Flg._l_._Th_e resultm_g Schm'(_:al flow 1S
tom panel of Fig. 5. Here, the upstream depression of théhown in panel &); the initial increase in layer thickness is

floor was filled with subcritical flow and a stationary hydrau- Part of the initial stationary hydraulic jump, and the subse-
lic jump was located further upstream. guent decrease in thickness is in accord with &4). The

Detailed predictions from the hydraulic model, Eqs_tilt was then decreased by increments. At a_se_cond critical
(33), (2), may be used to predict the flow properties for com-€levation .of the downstream end, the hydraulic jump located
parison with experiment. This has not been done here bt the sluice gate moved downstream to the end of the tank
cause the details are complex if frictional drag is included@nd vanished. This transition is shown in panelsthrough
and the comparison is not meaningful given the limited na{& in Fig. 8, and it corresponds to curve AG in Fig. 1.
ture of the observations and the nonhydrostatic character of ~ThiS experiment permits quantitative comparison be-
many of the details. Nevertheless, the fact that the maximurfvéen experiment and theory. Using the value of the gap of
value ofd./ds in Fig. 5 is close to unitywithin about 15%  the sluice gately, the elevation of the floor of the down-
indicates that the scaling used in this experiment is appropristream end of the tank over the elevation of the sluice gate,

ate, and that friction is negligible in the vicinity of the crest hm, and the (two-dimensional volume flux of waterQ
of the obstacle. =Q,/w, we can calculate the values Bf andH,,. Their

Experiments with the second flume design gave mor&alues for the two sets of transitions are shown compared
quantitative data of the multiple state regime, in a form thatwith the inviscid curves AG, AE, and BC in Fig. 9. The
could be related directly to Fig. 1. In the preceding designgualitative agreement is excellent. A wide gap between the
upward centrifugal force from curvature of the weir wastwo transitions is found, and both occur within the hysteresis
sometimes a sizeable percentage of the downward force dfand. Quantitative agreement between experiment and
gravity. This introduced a large unwanted modification totheory differs by tens of percent, and the width of the hys-
quantitative calculations. In the second design, the bottonteresis regions in the experiments is less than theory predicts.
was completely straight so that centrifugal effects wereThis is not surprising since the experiments possess a num-
eliminated. In addition, the main operating region was theber of additional physical processésotably shorter and
plane upsloping portion of the flume, to minimize frictional steeper waves, side and bottom boundary layers, waves
energy loss. The apparatus is sketched in Fig. 7. A channellong the sidewall, a crest that is not level, and some turbu-
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Hypy=hy/dy

FIG. 9. Parameters of the runs when transitions were observed, compared
with the theoretical curves identified in Fig. 1. Sluice gate heights are:
+ dp=0.0107 m,* dy=0.0052 m. The two lowest values withhaved,
=0.0153m.

the hydraulic jump moves away from the location of the new
stationary solution if it is displaced by an infinitesimal
amount.

Some experimental observations using two different de-
vices have demonstrated the existence of the multiple states,
and provided support for the theory. Although the new flow
solution could not be observed, the presence of multiple
__ _ equilibria within the theoretically expected parameter range
FIG. 8. Photographs of the transitions seen with the second set of experi- . . . .
ments. The fluid flows in from the left through a sluice gate and ascends Xvas Conjlm_]ed’ con3|stent Wlth_ the observatlorjs of
constant sloping bottom. For this rufi,=5.6. (a) Supercritical flow,H,, Lawrence; with two different experimental configurations.
=7.9. (b) An hydraulic jump moving upstream, triggering a transition to Hysteresis was easily obtained in these two devices. They
subpritical flow upstr_eam of the crest,,=8.0. (c)' Sgbcritical ﬂpw in the can be used for classroom demonstrations of the phenom-
entire upstream regiorti,=6.0. (d) An hydraulic jump that is moving o Vjsible waves on the water surface arose from geomet-
downstream(up the slopg triggering a transition to supercritical flow,, o o .
—4.4.(e) A few seconds later with the same parameters. ric irregularities in the walls and floor, and the wave activity

was very obvious when the flow was close to the AE transi-
tion in Figs. 1, 9. And with a smoother device, the transition
from supercritical to subcritical flow at the crest may be
lence within the flowing wateércompared to the theory. It moved even closer to AE than shown in Fig. 9.
can be shown from Eq$33)—(34) that the inclusion of bot- The behavior observed here has some parallels with the
tom friction alone causes the lower transition curve to risemore general phenomenon of forced nonlinear oscillators
above AE, consistent with observations. However, the beha\hear resonance. Such systems may be characterized by a pa-
ior of the upper transitioinear AG depends on the effect of rameter(T", say, which for the present experiments could be
friction on the speed of hydraulic jumps, a more complexidentified withH) that measures the amplitude of the forcing,
process. An additional feature not found in the theory is thQ)r of the non"nearity’ or a combination of both. A generic
presence of stationary solitary wavelike features, which sikxample is the forced Duffing equatidiere, for small val-
upstream of the exit when the flow is slightly supercritical yes ofI" there is a single solution for all values of the forcing
(i.e., to the left of AB. frequencyw, but asl” increases this solution curve folds over
to give three solutions, of which the upper and lower are
stable but the middle one is unstable. A second example oc-
V. DISCUSSION AND CONCLUSIONS curs in weakly nonlinear two-layer baroclinic instabittfy,
and a third example is the multiple equilibrium of thermoha-

We have shown that there is an additional solution toline flows!'~'3 Experimental examples of multiple flow
flow of a single layer over a long obstacle, in the ranges oftates are described by Whitehesidal 1* The present system
values ofFg andH,, in which two stable solutions are al- therefore constitutes a new member of the family that exhib-
ready known to occufregion GAE of Fig. 1. This new its this form of behavior, in which the parameter correspond-
solution provides a continuous junction between the otheing to I' is a combination ofF, and H,, centered in the
two solutions, but is predicted to be unstable in the sense thaggion GAE of Figs. 1 and 2.
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