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For free surface flows over obstacles in a channel of constant width, there is a range of parameter
values where two steady flow states are possible, with the state that is actually obtained being
determined by the past history. Specifically, one of these flow states is wholly supercritical~i.e., no
waves can propagate upstream against the flow! over the obstacle. The other has a hydraulic jump
that travels to upstream infinity, and the flow undergoes a subcritical~i.e., waves can propagate in
both directions! to supercritical transition at the obstacle crest. A new, third steady solution is
described here, in which a hydraulic jump is stationary over the upstream face of a long obstacle.
This new solution is contiguous with the other two, and in a sense, lies between them. It is shown
that this new solution is unstable, in that if the stationary jump is displaced to a location with a
slightly different bottom height, it will move further in the same direction. By this criterion, jumps
are unstable on upslope flow, and stable on downslope flow. These properties, and the general
character of hysteresis implied by these multiple hydraulic equilibria, have been tested with two
series of experiments. The new solution is ordinarily not found because of its instability, but it can
be viewed by manually balancing the unstable jump. Comparisons were also made between the
observed abrupt transitions between flow states, and the predictions of hydraulic theory.
Qualitatively the agreement is quite good, with differences attributable to experimental factors that
are not contained in two-dimensional long wave hydraulics. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1531178#

I. INTRODUCTION

Hydraulic solutions for flow of a single layer over a long
obstacle of maximum elevationhm are known to possess two
possible steady solutions within a certain range of flow pa-
rameters. If the flow is commenced at some initial time with
an initial fluid speedU, initial fluid depthd0 , the resulting
steady flow states are determined by the initial Froude num-
ber F05U/(gd0)1/2 and the height ratioHm5hm /d0 , and
there are five main flow types as shown in Fig. 1.1 In the
region GAE, two different locally steady flow states are pos-
sible, and the solution obtained in practice depends on the
manner in which the flow is established, as shown, for ex-
ample, by Pratt.2 In one of these solutions the flow is super-
critical everywhere—the local Froude numberF.1 every-
where, and linear waves~i.e., small disturbances! cannot
progress upstream against the flow. In the other, the flow
undergoes a transition from subcritical to supercritical at the
crest of the obstacle, and a hydraulic jump progresses to
upstream infinity, effectively altering the flow state upstream
of the obstacle. This ‘‘multiple state’’ regime has been known
for at least the past 20 years.3

An alternative description of these flow states has been
given by Lawrence,4 who chooses as the basic variables
dc /hm andd0 /hm ~in present notation!, wheredc denotes the
layer thickness at the obstacle crest. These variables provide
a less comprehensive picture, but they are convenient for
discussing locally steady flows where the total flow rate is

specified and flow at the obstacle crest is critical, and a re-
gime diagram corresponding to Fig. 1 results. Lawrence also
verified the multiple-state/hysteresis phenomenon experi-
mentally, and showed that when upstream jumps were pro-
duced, friction could cause them to become stationary at fi-
nite distances upstream of the obstacle.

One may ask whether a hybrid of these two ‘‘multiple
states’’ is possible, in which the upstream flow is supercriti-
cal, but a stationary hydraulic jump exists over the upstream
face of the obstacle. This would give a supercritical to sub-
critical transition over the upstream face, with a subcritical to
supercritical transition further downstream at the obstacle
crest. Such solutions do in fact exist, as demonstrated in the
next section, and the new solutions provide a continuous
junction between the other two. However, these new solu-
tions are unstable, as shown in Sec. III. This has been inves-
tigated experimentally as described in Sec. IV. Flow states
that correspond to the previously known stable states are
found. There is a considerable range of observed hysteresis,
although this is smaller than predicted. A laboratory device
has been constructed which enables an operator to balance
the unstable solution and thus allow it to persist indefinitely.
This situation is of interest because it is perhaps the simplest
example in fluid mechanics of hysteretic three-state flow, it
may be readily demonstrated experimentally, and it gives
intuition concerning more complex flows containing similar
properties.
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II. A NEW SOLUTION TO THE FLOW UPSTREAM OF
AN OBSTACLE

We consider the flow of a layer of fluid of thickness
d(x,t) and velocityu(x,t) in a channel of uniform width,
over a long obstacle of heighth(x). The essential equations
and assumptions are standard and are given in Baines1 ~Sec.
2.3!. We write d5d01h2h, where d0 is an equilibrium
depth andh is the interface displacement;u andd are then
governed by

ut1uux52ghx , ~1!

dt1~du!x50. ~2!

A hydraulic jump is represented by an abrupt increase in
depth of the fluid layer, and if the upstream and downstream
values ofd and u are given bydu , uu , and dd and ud ,
respectively, the speed of the jumpcJ relative to the up-
stream fluid is given by

cJ
25

gdd

2 S 11
dd

du
D . ~3!

The flow is characterized by the Froude numberF, defined
by F25u2/gd.

We consider flow that is uniform and supercritical up-
stream of the obstacle, and look for steady solutions of Eqs.
~1!, ~2! in which there is a stationary hydraulic jump situated
over the upstream face of the obstacle, as shown schemati-
cally in Fig. 2. If U andd0 are the upstream values ofu and
d, the upstream Froude number is given by

F05
U

~gd0!1/2, ~4!

which has values greater than 1 for supercritical flow. With
notation as indicated in Fig. 2, the steady-state forms of Eqs.
~1!, ~2! show that the flow state is specified by

Q[Ud05ucdc5uudu5uddd , ~5!

uc
25gdc , ~6!

1

2
U21gd05

1

2

Q2

du
2 1g~du1hj !, ~7!

1
2ud

21g~dd1hj !5 1
2uc

21g~dc1hm!, ~8!

uu
25

gdd

2 S 11
dd

du
D , ~9!

wherehm is the maximum topographic height~this obstacle
is termed a ‘‘weir’’ in the present experiments!. Here Eq.~5!
is given by the conservation of mass flux, Eq.~6! by the
critical condition at the obstacle crest, Eqs.~7! and~8! by the
Bernoulli equation each side of the jump, and Eq.~9! from
the conditions across the jump in the form~3!. These seven
equations contain seven unknowns:hj , uu , du , ud , dd , uc ,
anddc . To nondimensionalize, we define

D5
d

d0
, Du5

du

d0
, Dd5

dd

d0
, H5

h

d0
, Hm5

hm

d0
.

~10!

Examination of the above equations shows that they only
have physically relevant solutions inside the region GAE of
Fig. 1. This is the region ofHm2F0 space in which flow
over long obstacles@governed by Eqs.~1!, ~2!# has two so-
lutions, as described above.

In order to compute the location~specified by the bottom
elevation! and amplitude of the stationary jump from Eqs.
~5!–~9!, we first fix F0 and the~scaled! depth on the up-
stream side of the jump,Du , which must lie in the range 1
,Du,F0

2/3. The topographic height at this point is then
given by Eq.~7! in the form

H j5
hj

d0
5~12Du!F12

F0
2

2

~11Du!

Du
2 G , ~11!

where 0,H j,Hm . The depth downstream of the stationary
jump is then given by Eq.~9!, which gives

FIG. 1. Flow regimes on theF02Hm diagram for hy-
drostatic single-layer flow over an obstacle.

FIG. 2. Schematic diagram showing a stationary hydraulic jump~relative to
the ground! over the upstream face of an obstacle, with notation.
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Dd5
1

2 FDu
218

F0
2

Du
G1/2

2
Du

2
, ~12!

so that the jump amplitude is given byDd2Du . The maxi-
mum topographic heightHm is then given by Eqs.~5!, ~6!,
and ~8!, which is

Hm511
F0

2

2
2

3

2
F0

2/32~Dd2Du!FF0
2

2

~Dd1Du!

Du
2Dd

2 21G .
~13!

Exploring these conditions in parameter space (Hm ,F0)
shows that solutions exist within the region GAE of Fig. 1,
but not outside it. Hence there are three stationary solutions
for hydrostatic flow over an obstacle inside GAE, but only
one outside~i.e., all three solutions are equal outside GAE!.
We describe these new solutions in terms of the jump height
D j , defined asD j5Dd2Du . Figures 3~a! and 3~b! show the
known stable solutions. Figure 3~a! shows the solution in
BAE with the upstream jump extending to AG~termed solu-
tion I!, and Fig. 3~b! shows the supercritical solution above
AG extending down to AE~termed solution II!. The corre-
sponding jump amplitudes for the new solution~solution III!
are shown in Fig. 3~c!. One sees that it is contiguous with
both of the others, equalling the solution in Fig. 3~b! at AG,
and that of Fig. 3~a! at AE, where the jump height rapidly
becomes zero as AE is approached from AG. Along AG,
solutions I and III are equal, with an effectively stationary
jump at the upstream end of the obstacle~whereh50). As
F0 decreases toward AE, the speed of the upstream jump in
solution I increases, and it propagates away upstream,
whereas in solution III the jump remains stationary and re-
treats downstream up the face of the obstacle, with decreas-
ing amplitude. As curve AE is approached, the jump ampli-
tude in solution III decreases rapidly to zero and the solution
approaches the wholly supercritical state. On crossing AE,
solution III changes abruptly to solution I, as does solution
II.

III. THE STABILITY OF UPSTREAM HYDRAULIC
JUMPS OVER TOPOGRAPHY

We consider the stability of a steady solution of a sta-
tionary hydraulic jump situated over sloping topography, in a
similar manner to that described in Sec. II. Since we are only
considering small perturbations, we may assume that the to-
pography consists of a plane slope. The steady solution is
given by

uudu5uddd5Q, ~14!

implying mass flux conservation as in Eq.~5!, and momen-
tum flux conservation

duuu
21 1

2gdu
25ddud

21 1
2gdd

2, ~15!

which implies Eq.~9!. We next consider a small perturbation
to this steady state, in which the perturbed jump has~small!
speedc, and departures from the steady values are denoted
by primes. Taking axes moving with the jump at speed ‘‘c,’’
corresponding to Eqs.~14!, ~15! we have

~uu1uu82c!~du1du8!5~ud1ud82c!~dd1dd8!, ~16!

~du1du8!~uu1uu82c!21 1
2g~du1du8!2

5~dd1dd8!~ud1ud82c!21 1
2g~dd1dd8!2. ~17!

We ask whether the jump in the new region adopts a velocity
which moves it back to the original location, or away from
that location. Mathematically the objective is to calculatec.
For a very small change in bottom depth, it can be assumed
that the primed quantities are small compared to their
unprimed counterparts.

The flow is supercritical on the upstream side of the
jump, whether moving or stationary, and subcritical on the
downstream side. It follows that for a perturbed and possibly
moving jump, the flow on the upstream side will be undis-
turbed, but that the flow on the downstream side may be.
However, the moving jump is now at a slightly different
location, and consequently different depth and mean flow.
Hence

~uu1uu8!~du1du8!5Q, ~18!

so that after linearizing, we have

uu8du1du8uu50, ~19!

and with Eq.~16!

c~dd2du!5uddd81ddud8 . ~20!

The Bernoulli function on the upstream side~relative to fixed
axes! will be unchanged, so that

1
2uu

21gdu5 1
2~uu1uu8!21g~du1du82d!, ~21!

where the change in topographic height is2d. This gives

du85d2
uu

g
uu8 . ~22!

Equations~19! and ~22! give

du85
d

12Fu
2 , uu852

uu

du

d

12Fu
2 , Fu

25
uu

2

gdu
, ~23!

and Eqs.~16! and ~17! then give

c5uu82
gdd

4uu
F S 11

2dd

du
D dd8

dd
2

dd

du

du8

du
G . ~24!

In order to obtain an equation forc in terms of2d, we need
an extra condition ondd8 andud8 , which will depend on the
circumstances further downstream. There are two distinct
possibilities:~i! assume that there is no effect from further
downstream that influences the jump, and~ii ! assume a
downstream control~or other condition! that fixes the value
of the Bernoulli function downstream of the jump. We dis-
cuss these in turn.

A. Case „i…

In general, perturbations to the jump will cause pertur-
bations to the flow immediately downstream of it. Assuming
that these changes are not influenced by any factors further
downstream, or equivalently, that there is no downstream
source of waves propagating in the upstream direction to-
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ward the jump, the equation for the appropriate ‘‘Riemann
invariant’’ applies. This may be expressed in the form
Baines1 @Eqs.~2.3.4!, ~2.3.5!#

d

dx
~u22~gd!1/2!52

g

u2~gd!1/2

dh

dx
, ~25!

which for small changes gives

d~u22~gd!1/2!52
g

u2~gd!1/2dh. ~26!

Applying this to conditions immediately downstream of the
jump, with dh52d, we have

FIG. 3. ~a! The theoretical upstream jump heightD j5Dd2Du as a function ofF0 andHm for the solution with upstream disturbances in the region GAE.~b!
The same as~a!, but for the solution that is wholly supercritical in region GAE.~c! The upstream jump heightD j for the new third solution, where the jump
is stationary over the upstream face of the topography, as depicted in Fig. 2. The jump height decreases rapidly to zero as the curve AE is approached, and
the jump approaches the obstacle crest.
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ud85S g

dd
D 1/2S dd82

d

12Fd
D , Fd

25
ud

2

gdd
, ~27!

and substituting this into Eq.~20! gives

dd85
c

~gdd!1/2

~dd2du!

~11Fd!
1

d

12Fd
2 . ~28!

Substituting Eqs.~23! and ~28! into Eq. ~24! then gives

c52
Fd

11Fd

gdd

Q
d. ~29!

This implies a negative change in jump speed for a decrease
in bottom height~positived!, and hence an unstable jump on
an upward slope.

B. Case „ii …

If there is a flow feature that lies downstream from the
jump that has influence on~or control of! the flow so that it
sends disturbances upstream toward the jump and affects it,
it may be more realistic to incorporate this into the stability
analysis. This applies in the specific case of interest here,
namely control at an obstacle crest, which fixes the Bernoulli
constantR. Since the flow is subcritical between this control
section and the jump, in applying this to the flow we make
the assumption that the two are close together, so that distur-
bances may communicate rapidly between them, maintaining
a quasistatic state in this region with no material stored in
between.

Corresponding to Eq.~22! we then have

ud852
uu

du

d

12Fu
2 , ~30!

and then from Eq.~20!

dd85

d2c
Fd

2

ud
~dd2du!

12Fd
2 . ~31!

Substituting Eqs.~23! and ~31! into Eq. ~24! then gives

c52
gdd

Q
d. ~32!

Hence, both Eqs.~29! and~32! show that perturbed jumps on
upward sloping topography move further away from their
initial stationary point, implying that these flows are un-
stable. For downward sloping topography the converse ap-
plies, and the jumps are stable.

IV. EXPERIMENTS

There is a lack of experimental studies of hydraulic
flows where multiple flow states are predicted by theory. In
particular, except for Lawrence’s study,4 the region GAE of
Fig. 1 has not been investigated at all in any formal sense.
The following experiments were carried out as a step to rec-
tify this, and also to investigate the theoretical flow proper-
ties described in the previous sections. In particular, we won-
dered under what circumstances can one readily produce
stationary hydraulic jumps over sloping topography? Two
devices have been constructed that show the hysteresis that is

FIG. 3. ~Continued.!
.
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predicted from the above. The first is a flume~which is a
channel that supports a continuous flow from one end to the
other! that was made so that it could contain an hydraulic
jump upstream of an obstacle. The second device, or flume,
enabled the observation of upslope flow with the obstacle
curvature zero in order to come closer to the long wave ap-
proximation.

Analysis of the preceding sections is inviscid, but in or-
der to accommodate experimental convenience and reality, it
is necessary to include two additional factors. The first of
these is frictional drag, effected by means of a drag coeffi-
cient, and the second is a tilted channel floor, as a convenient
means of driving the flow. Both of the sets of experiments
have been carried out in a flume, tilted at angleu to the
horizontal, with the convention thatu.0 for downward
slope in the direction of flow. With the added frictional drag
term, Eq.~1! becomes

ut1uux1ghx52CDu2/d, ~33!

whereh5d1h(x), x is horizontal,h and d are measured
vertically, andCD is the frictional drag coefficient. The prin-
cipal parameter for these flows is again the local Froude
number,F. The parameter to be varied in the experiments is
the tilt angleu, which results in changes to the Froude num-
ber. For steady flows wheredu5Q, F25(ds /d)3, where
ds5(Q2/g)1/3. In downslope flows, a steady state in whichu
and d are constant withx is possible, where the downslope
buoyancy termg sinu balances the drag; with this as the
mean state, hysteresis phenomena do not arise~Baines,1 Sec.
2.3.4!. However, in these experiments this balance is not
realized because the viscous drag is too small and~equiva-
lently! the flume is too short. For these experimentsu is in
the range 5°,u,8° andCD has values5 of order 0.004~for
Reynolds numbers of order 104), implying that frictional
drag is small but not entirely negligible. Fluid effects gener-
ated by flow over an obstacle should therefore be locally
small. Friction may have secular effects on waves propagat-
ing away from the obstacle, and hence be substantial at large
distances from it~Lawrence4!, but they should remain small
in the short tanks used here. For steady flow over featureless
sloping terrain, Eqs.~33!, ~2! give

dd

dx
52

dh/dx2CDF2

F221
. ~34!

Hydraulic jumps@governed by Eq.~3!# may be inserted into
such flows. Stationary jumps may exist on flows down
slopes, since the decrease in fluid depth behind the jump as it
propagates upslope decreases the jump speed, to the point
where it vanishes@from Eq. ~8!#.

With these theoretical preliminaries, we begin with a de-
scription of the experiments with the first flume. As sketched
in Fig. 4, this experiment was done in a uniform channel, 1
m long, 0.07 m deep, and of widthw50.05 m. An obstacle
was placed in it with the shape of a smooth weir that was
elevated 0.038 m above the horizontal floor of the channel.
The obstacle crest was 0.3 m from the downstream end of the
tank. Near the upstream end a sluice was constructed using a

small sliding gate held in grooves in the sidewall. The chan-
nel was held at an adjustable angle so that the elevation of
the floor of the sluice was above the crest of the obstacle.
This ensured that supercritical flow could arrive at the crest
of the obstacle, given sufficient tilt of the channel bottom and
small friction. The lower, downstream end of the flume ex-
tended over a large basin filled with water so that water
flowing downstream of the crest could spill into the basin.
Water was pumped from this basin into a small region up-
stream of the sluice gate at a fixed, controlled volumetric
flow rateQn . This rate was carefully controlled at a constant
flux for each set of observations and monitored with a flow
meter with accuracy of approximately 5%. The gap at the
bottom of the sluice was set at a size sufficient to allow water
to accumulate to a level of about 0.05 m above the gap, and
enter the channel as a supercritical flow. This current would
then flow down along the tilted bottom of the channel, where
it would encounter the obstacle. The size of the apparatus
and the flow rates were selected for ease of handling, and to
minimize frictional loss of the flow; smaller apparatuses
would be subject to molecular viscosity.

Water speed downstream of the sluice gate was governed
by two factors: first, the height of the sluice gate opening,
which was kept fixed, and second, by the angle of the chan-
nel. This was set using a labjack that was placed under the
upstream end of the channel. A side-view of the water was
recorded using a video camera. The water was dyed to en-
able the surface to be seen clearly. Thirty-five-mm slide pho-
tographs of selected runs were also taken, using a uniformly
lit white background. In these experiments the upstream fluid
emerging from the sluice was always supercritical. This flow
remained supercritical as it moved down the channel~until it
encountered an obstacle or hydraulic jump!, but the thickness
and speed varied according to Eq.~33! because of the slop-
ing channel.

The experimental procedure was as follows. The flume
angle u was set at a small value, and the sluice gate was
opened. Observations were then made after the flow had ad-
justed to steady-state, with a form as shown in Fig. 4: super-
critical flow upstream, with a stationary upstream hydraulic
jump to subcritical flow, and then critical flow at the obstacle
crest. Measurements were taken by hand with rulers, but

FIG. 4. The tank design and the measured flow parameters of the first set of
experiments. The sluice gate is denoted by the thick line on the left, and the
flow is from left to right.
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were found to be inferior to on-screen measurements from
videotape, which was recorded for all runs. This method was
found to be sufficiently precise for these data, as the presence
of near-random surface waves limited the resolution that was
possible. The labjack setting was then increased by about 2
or 3 mm, and a new run was carried out, repeating the mea-
surement process. At each setting, the video images and the
slides were taken after noting that the flow achieved steady
state. This procedure was repeated until the flow was ob-
served to be wholly supercritical, after which the angleu was
increased once more. The experiment was then continued
with u being decreased in corresponding steps with the same
observational procedure at each step, until finally the up-
stream jump and subcritical flow were again observed. The
whole procedure was then repeated a number of times, and
then repeated again for a different flow rate.

From the video images, measurements were taken of the
following four dimensions, which are also shown in Fig. 4:
~1! distance of the location of the hydraulic jump upstream to
the right-hand edge of the obstacle,Lu ; ~2! maximum thick-
ness of water upstream of the crest,dmax; ~3! thickness of
water at the crest of the weir,dc ; and ~4! elevation of the
free water surface in the reservoirhf minus elevation of the
crest of the weir,hc . As hf2hc was systematically varied up
and down, a ‘‘hysteresis loop’’ was found for both flow rates.
The results for the fastest flow rate (Qn5340 cm3 s21) are
shown in Fig. 5. This contains measurements ofLu , dmax,
and dc . These are divided by the depth scaleds

5(Qn
2/w2g)1/35(Q2/g)1/3, which is the theoretical thickness

of a critically controlled flow of two-dimensional flow rateQ
at the crest of a critically controlling weir. They are plotted
againstH5(hf2hc)/ds , which is the scaled elevation dif-
ference between the free water surface level in the reservoir,
hf , and the scaled elevation of the crest of the weir,hc . The
data show two values of each dependent variable for the

same value ofH over the interval 3.75,H,5.25(60.10).
The upper values are interpreted as representing subcritical
flow upstream of the obstacle crest, and the lower values
represent supercritical flow throughout this region. Results
for a slower flow rate were very similar qualitatively but the
details differed as one would expect. The transition in the
flow state at the larger value ofH was seen just as the jump
approached the obstacle base. Thus no jump was ever located
on the part of the obstacle sloping upward in the direction of
the flow. The measurement errors are estimated to be the size
of the symbols. The length measurements have relatively
large errors due to the difficulty in defining the exact location
of the jump in an image.

In Fig. 6, photographs from slides show the multiple
equilibrium character of the flow for four different channel
tilt angles. Angle values, or the equivalent values ofH, are
precise to60.01°. This is about a factor of 10 smaller than
those possible with videotape images used for Fig. 5. The top
panel, Fig. 6~a!, shows a stationary hydraulic jump just up-
stream of the obstacle, followed by subcritical flow, with the
floor of the channel tilted at an angle of 7.82° (H55.05).
This angle is close to the upper transition angle~see Fig. 5!,
and the supercritical flow upstream of the hydraulic jump has
pushed the jump almost to the location of the upstream nose
of the obstacle. The hydraulic jumps in these experiments are

FIG. 5. Some measured features that display hysteresis as the elevation of
the upstream reservoir,H5(hf2hc)/ds , is varied in the first experiment.
The top panel displays the~scaled! upstream position~distance from the rear
of the obstacle! of the hydraulic jump. The middle panel shows the maxi-
mum water thickness; this is located upstream of the crest in the place where
the bottom is deepest. The bottom shows the water thickness at the crest of
the weir. For these experimentsQn5340 cm3 s21.

FIG. 6. Flow in a channel for tilt angles near transition values of the hys-
teresis range. Flow is from left to right, and all flows are approximately
steady. The crest of the weir is the highest part of the crescent shaped black
region on the far right. To the left is the sluice gate.~a! Subcritical flow
H55.05,~b! supercritical flowH55.10,~c! supercritical flowH54.04, and
~d! subcritical flowH54.03.
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turbulent, and spread out over a length of 3–4 cm. Hence
their positions are not precisely defined, and are complicated
by across channel variations~smaller scale experiments with
axisymmetric geometry6–8 give a good picture of along-jump
variability!. The second panel@Fig. 6~b!# shows supercritical
flow at the slightly greater angle of 7.90° (H55.10). Shortly
after the increase in channel slope, we saw the supercritical
flow sweep the hydraulic jump downstream over the crest of
the obstacle. The third panel@Fig. 6~c!# shows flow in which
the angle has been decreased all the way down to 5.95° (H
54.04). For this value the flow is still supercritical, but the
angle is just slightly above the angle for transition back to
subcritical flow. We saw that trapped waves became preva-
lent near the crest as the transition value was approached.
For example, this panel shows a marginally stable wave at
the crest as an irregularity of the surface. The wave was
visibly created by a small irregularity at the sidewall along
the middle of the channel, but the flow remained steady for
minutes in this state. Finally, as soon as the angle was
brought down to a very slightly smaller angle of 5.93° (H
54.03) ~a change in labjack elevation of only about 1 mm!,
a wave propagated upstream starting from the crest. It
brought the system to the subcritical state shown in the bot-
tom panel of Fig. 5. Here, the upstream depression of the
floor was filled with subcritical flow and a stationary hydrau-
lic jump was located further upstream.

Detailed predictions from the hydraulic model, Eqs.
~33!, ~2!, may be used to predict the flow properties for com-
parison with experiment. This has not been done here be-
cause the details are complex if frictional drag is included,
and the comparison is not meaningful given the limited na-
ture of the observations and the nonhydrostatic character of
many of the details. Nevertheless, the fact that the maximum
value ofdc /ds in Fig. 5 is close to unity~within about 15%!
indicates that the scaling used in this experiment is appropri-
ate, and that friction is negligible in the vicinity of the crest
of the obstacle.

Experiments with the second flume design gave more
quantitative data of the multiple state regime, in a form that
could be related directly to Fig. 1. In the preceding design,
upward centrifugal force from curvature of the weir was
sometimes a sizeable percentage of the downward force of
gravity. This introduced a large unwanted modification to
quantitative calculations. In the second design, the bottom
was completely straight so that centrifugal effects were
eliminated. In addition, the main operating region was the
plane upsloping portion of the flume, to minimize frictional
energy loss. The apparatus is sketched in Fig. 7. A channel

1.2 m long, 0.2 m deep, and of widthw50.052 m was used,
inclined at a variable angleu to the horizontal. This channel
had a flat glass bottom, and contained a rounded sluice gate
made of foam covered with smooth plastic tape in the middle
of the passage. The tank was aligned withu negative~slop-
ing upward in the direction of flow!, and water was pumped
into the cavity behind the sluice at the lower end. Turbulence
here was damped with a honeycomb of loose plastic foam.
The water level in this upstream reservoir would build up
above the depth of the sluice gate opening, and the pressure
produced flow into the downstream, working part of the tank
~length 0.6 m!, up the tilted channel. The downstream end
wall was absent so that water could spill out freely there. As
in the previous design, the downstream end of the flume
extended over a large catch basin filled with water. Water
was pumped from this catch basin into the small upstream
reservoir at a fixed volumetric rateQn . This rate was care-
fully controlled and measured to be a constant flux to better
than 1% accuracy.

Runs were conducted after setting a sluice gap height of
0.0052, 0.0107, or 0.0153 m. To start, the tilt of the tank was
made minimal so that supercritical flow extended down-
stream of the gate to the end of the flume. Then the tilt was
increased by increment so that the elevation of the down-
stream end progressively became larger than the bottom of
the gap. Time for readjustment of the upstream free surface
height was allowed to pass after each change in tilt angle.
Finally, at a critical elevation of the downstream end, a bore
formed over the water surface next to the downstream end,
and propagated upstream as an hydraulic jump. This transi-
tion is shown in photographs in Fig. 8, panels~a! and ~b!,
and it may be shown from Eqs.~33!–~34! that it corresponds
to the curve EA in Fig. 1. The resulting subcritical flow is
shown in panel 8~c!; the initial increase in layer thickness is
part of the initial stationary hydraulic jump, and the subse-
quent decrease in thickness is in accord with Eq.~34!. The
tilt was then decreased by increments. At a second critical
elevation of the downstream end, the hydraulic jump located
at the sluice gate moved downstream to the end of the tank
and vanished. This transition is shown in panels~d! through
~e! in Fig. 8, and it corresponds to curve AG in Fig. 1.

This experiment permits quantitative comparison be-
tween experiment and theory. Using the value of the gap of
the sluice gated0 , the elevation of the floor of the down-
stream end of the tank over the elevation of the sluice gate,
hm , and the ~two-dimensional! volume flux of waterQ
5Qv /w, we can calculate the values ofF0 and Hm . Their
values for the two sets of transitions are shown compared
with the inviscid curves AG, AE, and BC in Fig. 9. The
qualitative agreement is excellent. A wide gap between the
two transitions is found, and both occur within the hysteresis
band. Quantitative agreement between experiment and
theory differs by tens of percent, and the width of the hys-
teresis regions in the experiments is less than theory predicts.
This is not surprising since the experiments possess a num-
ber of additional physical processes~notably shorter and
steeper waves, side and bottom boundary layers, waves
along the sidewall, a crest that is not level, and some turbu-

FIG. 7. The tank design and measured flow parameters of the second set of
experiments.
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lence within the flowing water! compared to the theory. It
can be shown from Eqs.~33!–~34! that the inclusion of bot-
tom friction alone causes the lower transition curve to rise
above AE, consistent with observations. However, the behav-
ior of the upper transition~near AG! depends on the effect of
friction on the speed of hydraulic jumps, a more complex
process. An additional feature not found in the theory is the
presence of stationary solitary wavelike features, which sit
upstream of the exit when the flow is slightly supercritical
~i.e., to the left of AE!.

V. DISCUSSION AND CONCLUSIONS

We have shown that there is an additional solution to
flow of a single layer over a long obstacle, in the ranges of
values ofF0 and Hm in which two stable solutions are al-
ready known to occur~region GAE of Fig. 1!. This new
solution provides a continuous junction between the other
two solutions, but is predicted to be unstable in the sense that

the hydraulic jump moves away from the location of the new
stationary solution if it is displaced by an infinitesimal
amount.

Some experimental observations using two different de-
vices have demonstrated the existence of the multiple states,
and provided support for the theory. Although the new flow
solution could not be observed, the presence of multiple
equilibria within the theoretically expected parameter range
was confirmed, consistent with the observations of
Lawrence,4 with two different experimental configurations.
Hysteresis was easily obtained in these two devices. They
can be used for classroom demonstrations of the phenom-
enon. Visible waves on the water surface arose from geomet-
ric irregularities in the walls and floor, and the wave activity
was very obvious when the flow was close to the AE transi-
tion in Figs. 1, 9. And with a smoother device, the transition
from supercritical to subcritical flow at the crest may be
moved even closer to AE than shown in Fig. 9.

The behavior observed here has some parallels with the
more general phenomenon of forced nonlinear oscillators
near resonance. Such systems may be characterized by a pa-
rameter~G, say, which for the present experiments could be
identified withH! that measures the amplitude of the forcing,
or of the nonlinearity, or a combination of both. A generic
example is the forced Duffing equation.9 Here, for small val-
ues ofG there is a single solution for all values of the forcing
frequencyv, but asG increases this solution curve folds over
to give three solutions, of which the upper and lower are
stable but the middle one is unstable. A second example oc-
curs in weakly nonlinear two-layer baroclinic instability,10

and a third example is the multiple equilibrium of thermoha-
line flows.11–13 Experimental examples of multiple flow
states are described by Whiteheadet al.14 The present system
therefore constitutes a new member of the family that exhib-
its this form of behavior, in which the parameter correspond-
ing to G is a combination ofF0 and Hm centered in the
region GAE of Figs. 1 and 2.

FIG. 8. Photographs of the transitions seen with the second set of experi-
ments. The fluid flows in from the left through a sluice gate and ascends a
constant sloping bottom. For this run,F055.6. ~a! Supercritical flow,Hm

57.9. ~b! An hydraulic jump moving upstream, triggering a transition to
subcritical flow upstream of the crest,Hm58.0. ~c! Subcritical flow in the
entire upstream region,Hm56.0. ~d! An hydraulic jump that is moving
downstream~up the slope! triggering a transition to supercritical flow,Hm

54.4. ~e! A few seconds later with the same parameters.

FIG. 9. Parameters of the runs when transitions were observed, compared
with the theoretical curves identified in Fig. 1. Sluice gate heights are:
1 d050.0107 m,* d050.0052 m. The two lowest values with* haved0

50.0153 m.
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The two devices described in Sec. IV were stationary
flumes mounted on a solid base. Two additional small por-
table devices with the design of Fig. 7 have been constructed
for educational demonstrations. Their channel lengths are
0.47 and 0.24 m, respectively, and their widths are 0.047 and
0.025 m, respectively. They easily reproduce the phenomena
described for the laboratory apparatus when held steadily by
hand. In addition, it is easy to manually balance the unstable
hydraulic jump derived in Sec. II. We simply begin with the
slope zero so that the flow is supercritical all along the chan-
nel. Then the slope is slowly increased~u,0! until a hydrau-
lic jump begins to form at the downstream end of the chan-
nel. As soon as the jump moves upstream, the angle is
decreased until the jump stops. The angle is further de-
creased if the jump moves upstream again; or the angle is
increased if the jump moves downstream again. The jump
moves with typical speeds of 0.01 ms21, so the stabilizing
adjustments are easy to make. If stabilizing adjustments
cease, the jump invariably leaves the channel as predicted by
the stability theory. A similar stabilization can be obtained in
the larger of the two devices by altering the volume flux with
a faucet or by pinching the hose that feeds the water into the
device, but it is considerably more difficult. The experiment
thereby shows that it is possible to stabilize an unstable
branch of such a solution using the correct stabilizing feed-
back between either slope angle or volume flux and jump
position. It is even conceivable that an appropriate elastic
relationship between slope angle and weight in the channel
would stabilize this jump completely, but such a relation has
not yet been worked out.
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