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ABSTRACT

Velocity, surface height profiles, and volume flux are calculated for critically controlled flow of a layer of
rotating fluid from a channel to an exit passage. The upstream fluid possesses constant potential vorticity. These
are models of an internal layer of ocean water flowing out of a basin through a passage. An analysis is used
that allows general passage bottom shapes. A number of features differ from those of nonrotating critically
controlled flow. First, sizeable gyres appear for a range of upstream conditions. Second, more than one critical
flow (maximum flux) is possible at the control point for the same upstream condition, but only one of these is
allowed with continuous laminar flow from the channel to the passage. Third, a bottom that slopes away from
the right-hand side (Northern Hemisphere rotation) and that is at right angles to flow direction produces small
volume flux at high rotation rates. Fourth, although there is a rigorous bound for flux out of a passage, this is
exceeded for some cases with multiple exits.

1. Introduction

Numerous problems have been studied in critical con-
trol of rotating fluid. For example, there are many cases
developed in review articles by Griffiths (1986), Pratt
and Lundberg (1991), Whitehead (1998), and Johnson
and Clarke (2001) and examples in books (Pratt 1990).
The typical calculation in such problems determines ve-
locity and fluid surface profiles for flow through con-
stricted passages in the presence of frame rotation. The
fluid may attain a critical wave speed due to geometric
changes along the flow path. At the point where flow
is critical the shape of the passage controls flux mag-
nitude. Problems are typically studied using theories that
incorporate rotating fluid dynamics with idealized pas-
sage shapes. Frequently only one or two layers of fluids
with different density are adopted due to the compli-
cated nature of the algebraic solutions. Subsequent nu-
merical studies using methods appropriate for transcrit-
ical flows can then clarify many aspects of temporal
adjustment. In addition, constraints such as upper
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bounds have been found by replacing profiles deter-
mined by the equations of motion by profiles that ex-
tremalized some integral property of the flow (Killworth
1992, 1994; Killworth and McDonald 1993).

Probably the simplest possible configuration has in-
viscid rotating fluid with a free surface flowing out of
a narrow passage from a big upstream reservoir. Ro-
tation necessitates potential vorticity conservation. The
first formulation assumed that zero potential vorticity
fluid is supplied by the upstream fluid (Whitehead et al.
1974). The more general condition of upstream fluid
with constant potential vorticity was soon analyzed (Gill
1977). This required a specification of both the non-
dimensional upstream potential vorticity and the ratio
of volume flux between two upstream currents that lie
in opposite walls of a very wide upstream channel. Us-
ing these two upstream conditions and information
about the elevation of the exit passage bottom compared
to upstream basin elevation, the velocity and surface
elevation profiles are readily calculated.

If the passage bottom is not flat, the calculation is
more challenging, because the ratio of volume flux be-
tween two currents in the upstream basin is not nec-
essarily fixed as the bottom shape changes (Shen 1981).
A recent thought experiment (Whitehead and Salzig
2001) motivates an alternative upstream condition to the
ratio of volume flux. Consider an upstream channel of
counterclockwise (Northern Hemisphere) rotating fluid
of depth H initially at rest with respect to the rotating
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FIG. 1. (a) Plan view of the upstream channel and the passage.
Waves transport information counterclockwise in the upstream chan-
nel so that no information from the left wall influences flow at the
passage. (b) Elevation view of the channel and passage and definition
of the change in bottom elevation and pertinent surface elevations.

frame as sketched in Fig. 1a (top panel). The upstream
channel extent is infinite in the upstream direction, and
its width is large compared to the Rossby radius of
deformation. A gate is opened in a passage that removes
fluid from the channel. A current is initiated by a wave
of depression that propagates upstream from the passage
along the left-hand wall of the channel. Note that all
further references to right-and left-handed walls refer
to the frame looking from the upstream channel to the
passage. Gill (1976) describes the Kelvin wave on the
left-hand wall in such a channel, and Pratt (1983, 1984)
analyzes the characteristics. Specifically, if the current
in the channel remains subcritical, the characteristic that
conveys information upstream is trapped along the left-
hand wall irrespective of currents that initially were in
the channel before the exit flow starts. No current along
the right-hand upstream wall is produced or altered by
opening the passage. Then, additional currents can be
started with pumps (of constant vorticity fluid) located
in the walls of the channel. Using the characteristic
solutions of Pratt (1983, 1984), it is readily shown that
if the upstream depth is greater than zero everywhere
in the channel, such wall currents are small enough to
be subcritical with respect to the wave speed (Whitehead
and Salzig 2001). For a wide channel, the characteristic

signal for any newly formed current from the suddenly
started source propagates to the right of the source look-
ing offshore along the wall. Thus, the signal that sets
up a current from either a source or sink on the left-
hand wall of the channel moves away from the passage
and does not influence the flow in the passage, as in-
dicated in Fig. 1a. In contrast, the signal that sets up a
current from either a source or sink lying along the right-
hand wall of the channel propagates to the passage and
influences the flow there.

This picture motivates a straightforward reformula-
tion of the dynamics of nonlinear critically controlled
rotating flow with constant potential vorticity following
a path first explored by Shen (1981). We assert that the
only upstream condition about currents required is the
Bernoulli height along the streamline on the right-hand
channel wall that extends to the passage. This condition
applies downstream of all sources or sinks on the right-
hand wall. As in all such problems, the well-known
dynamical equations are the equation for geostrophic
flow and the equation of constant potential vorticity.
The latter requires a specification of depth of the fluid
in the channel interior. This is a region that is away from
the boundary currents in the wide upstream channel.
The approach is similar to Gill’s (1977) approach except
that a different upstream Bernoulli condition is speci-
fied. There is no fundamental mathematical difference,
but physically there is a difference. With this formu-
lation, one can imagine that changing something at the
passage will change the flow through the passage, but
it does not change any physical upstream conditions that
we set. These are the upstream fluid depth, the elevation
of the passage floor above the floor of the upstream
channel, and right-hand wall sources or sinks. In con-
trast, the earlier analysis held the ratio of the two up-
stream currents along the two sidewalls fixed without
telling how this could be accomplished physically. The
controlled flow at the passage was then calculated, and
the two flows along the two walls in the upstream chan-
nel was then determined. The revised approach is at
least of conceptual value.

This note presents a few results of such calculations.
The objective is to show some effects peculiar to ro-
tating fluid and thus to stimulate further work in con-
junction with oceanographic, numerical, or advanced
analytical work. The methods can easily be used to cal-
culate results for other parameters.

2. Theory
Velocity distribution and fluid depth distribution

across a constant potential vorticity current obey geos-
trophy and conservation of potential vorticity:

dh
fy 5 g , (2.1a)

dx

dy
1 f

dx f
5 . (2.1b)

h 2 b H
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Here, h(x) is elevation of the fluid surface, and b(x) is
elevation of the bottom above the deepest point in a
controlling passage. A very wide channel lies upstream.
H is the fluid depth in the middle of the channel far
away from wall currents, f is the Coriolis parameter
(positive for counterclockwise rotation), and g is the
acceleration due to gravity (and we could consider this
to be reduced gravity g9 5 gDr/r if we are studying a
layer of fluid of density r 1 Dr, lying below an infi-
nitely deep region of stagnant fluid of density r). A plan
view of the channel and passage is shown in figure 1a
along with the coordinates. The coordinate x is at right
angles to the direction of flow, and y is velocity that is
positive in the downstream direction. Gill (1977)
showed that Bernoulli’s equation is conserved along
streamlines for this system, but that the upstream value
of the Bernoulli function must be specified. We assume
steady flow and utilize the Bernoulli function at the
right-hand wall:

1
2B 5 gH 5 y 1 gh. (2.2)r 2

Here the overbar means that local height is the elevation
above the upstream bottom. A streamline will extend
from an upstream point on the right-hand upstream
channel wall to the right hand wall in the passage. Using
exponential solutions to Eqs. (2.1a,b) for the flow in the
boundary currents in the channel, Whitehead and Salzig
(2001) showed that Bernoulli height is

2H hurH 5 1 , (2.3)r 2 2H

where hur is surface elevation at the right-hand wall in
the upstream channel. This elevation is related to the
volume flux of the right-hand current Qr 5 g( 2 H 2)/2hur

2 f . This flux is presumed to be known. In contrast, the
current along the upstream left-hand channel wall is
unknown and is set up by controlled flow in the passage.
Figure 1b (bottom panel) shows an elevation view of
some of the geometric and surface elevation parameters.
At the passage, the deepest bottom point is DB above
the upstream channel bottom and depth of the fluid in
the passage at the right-hand wall (which we take as
the origin) is h0, so total surface elevation at the right-
hand wall above the channel floor is 5 h0 1 DB.h
Velocity there is found using (2.2) to be

y 5 Ï2g(H 2 DB 2 h ). (2.4)0 r 0

Using the following velocity, height, and lateral
length scales, , H r 2 D B, andÏg(H 2 DB)r

/ f , Eqs. (2.1a,b) in the passage reduce toÏg(H 2 DB)r

dh9
5 y9, (2.5a)

dx9

dy9
5 [z(h9 2 b9)] 2 1, (2.5b)

dx9

where the primed are dimensionless variables. The di-
mensionless number z 5 (Hr 2 DB)/H expresses the
upstream condition. It is elevation of the Bernoulli
height above the passage bottom divided by the potential
vorticity height H [identical to 1 2 d in Whitehead and
Salzig (2001)] and it must be positive. In the passage,
the boundary conditions are

h9 5 g 5 h /(H 2 DB), (2.6a)0 r

y9 5 y9 5 Ï2(1 2 g) at x9 5 0. (2.6b)0

We take flow out of the passage to be in the positive
direction. Here g is nondimensional height at the right-
hand passage wall. This can take a wide range of values
until some control condition is invoked. The axis for x
is positive toward the right, so the integration from the
right-hand wall must proceed in the negative x direction.
In addition, other parameters could express the passage
shape such as lateral width of the passage w, that is,

W 5 wf /Ïg(H 2 DH ). (2.7)r

For any cross-passage bottom profile it is straightfor-
ward to pick values of the governing dimensionless pa-
rameters and numerically integrate (2.5a,b) across the
passage. Volume flux is scaled by g(Hr 2 DH)2/ f and
the maximum possible value of scaled flux through a
passage is 0.5 (Killworth and McDonald 1993). This
value corresponds to zero potential vorticity (z 5 0)
flow over a wide flat passage (Whitehead et al. 1974).
A critical condition is most easily found by calculating
volume flux in the passage as a function of various
values of g and then finding g c, the value that produces
a maximum volume flux. Gill (1977) showed that such
maximized flow is also characterized by an arrested
wave with Froude number equal to one.

3. Results

a. Upstream separation

As the water flows from a very deep upstream channel
to a shallower passage, vortex columns shrink and vor-
ticity of the fluid becomes negative. Vorticity amplitude
can approach the dimensional value 2 f for great con-
traction of vertical columns. This has the value 21 in
dimensionless units. The resulting shear can produce
stagnation along the right-hand wall (Shen 1981) and
also sizeable recirculation upstream of the controlled
flow (Borenas and Whitehead 1998). To demonstrate
one effect of vertical contraction, some channel flow
surface profiles have been calculated for the case with
z 5 0.01. The results are shown in Fig. 2. At the top,
above the bold line is a sketch of the profile in the very
wide upstream channel that feeds fluid into the passage.
The lateral coordinate for this profile is 5 xu/R9 wherex9u
R9 5 / f is Rossby radius based upon depth of theÏgH
upstream fluid. Here we have assumed that the boundary
current on the left-hand upstream wall supplies all the
fluid. The bottom depth in the channel is 299 but all
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FIG. 2. Surface elevation profiles for flow approaching a flat passage
for z 5 0.01. Above the bold line is sketched the height profile in
the very wide upstream channel that feeds fluid into the passage. The
lateral upstream channel coordinate is scaled by a Rossby radius based
on the potential vorticity depth. Below the bold lines is shown surface
height profiles in a passage of constant width approaching the control
passage. Passage floor elevations are shown for the values b 5 0,
21, 250, 270, and 299, respectively, which correspond to increas-
ing depth as one progresses upstream from the control section to the
deep upstream region. The parabolic profiles indicate the presence
of a gyre upstream of the control passage.

channel bottom depths deeper than 250.0075 are pos-
sible as indicated in Eq. (2.19) of Whitehead and Salzig
(2001). Different depths have different upstream current
distributions.

The profiles in a narrow passage approaching the con-
trol passage are shown below the bold line. To calculate
these profiles, Eqs. (2.5a,b) were integrated numerically
across the passage starting from suitable initial condi-
tions on the right-hand wall of the passage. The finite
difference formulae were integrated starting from the
right-hand wall in a negative direction. We used finite
difference approximations to Eq. (2.1a,b) by setting
h9(m 1 1) 5 h9(m) 2 y9(m)dx9 and thereby finding
surface elevations at point m 1 1, and then by calcu-
lating velocity y9 at that point with the formula y9(m 1
1) 5 y9(m) 2 z [h9(m) 2 b(x9)]dx9 1 dx9. The step value
dx9 5 0.001 was used, and the equation was integrated
2500 steps across the passage. Consequently, scaled pas-
sage width is 2.5. The neglected terms are about dx92/
2 plus higher order terms for each step. The estimate
of our error across the opening is thus about 0.1%.

For the first calculations, elevation of the bottom of
the passage was set to b 5 0. The value of volume flux
is Q 5 [h9(m) 2 b(m)][y9(m)]dx9. The maximum2500Sm51

flux at the control passage is 0.5 with about 0.1% ac-
curacy for g c 5 1 as expected from earlier solutions to
this problem. The value of shear ranges from 20.99 at
the right hand wall to the value 21 at the point where

the surface intersects the bottom. Therefore this flow
has shear that approximates the value of 21 that cor-
responds to the dimensional value of 2 f for zero po-
tential vorticity (Whitehead et al. 1974) to about 1%.
The profile of this surface appears to be almost perfectly
parabolic.

To calculate the follows upstream, we took a narrow
upstream channel with the same width as the controlled
passage and in successive calculations set depth to the
upstream values b 5 21, 250, 270, and 299. The
increasingly more negative values of b correspond to
increasing passage depth with a constant width as one
progresses upstream from the control section to the deep
upstream channel region. We then altered g by trial and
error for each value of b to give Q 5 0.5. For b 5 21,
250, and 270, the calculations produced almost per-
fectly parabolic surface profiles that possessed signifi-
cant negative surface elevation slope in the right-hand
region. This signifies that there is a return flow in part
of the passage, which in turn requires separation of the
streamline from the upstream right-hand wall. The so-
lution shows that streamlines for fluid flowing over the
sill of the passage are located at the extreme left so that
they have separated from the right-hand wall upstream
of the passage. Values of shear in the regions approach-
ing the controlled passage have values of approximately
20.98, 20.5, and 20.3 for each of the bottom depths
of b 5 21, 250, and 270, respectively.

Borenas and Whitehead (1998) noted the important
feature that the local Bernoulli height in the recirculation
region differs from any upstream value. These calcu-
lations illustrate this. For example, the surface elevation
profile for b 5 270 in Fig. 2 visibly extends above the
level of the free surface (h 5 1) in the upstream basin.
This signifies that the Bernoulli function is greater than
one for these streamlines. This differs from the model
for zero potential vorticity where the Bernoulli function
is one everywhere (Whitehead et al. 1974). A number
of other differences between zero and very small po-
tential vorticity are also shown by Borenas and Pratt
(1994). For constant potential vorticity, the upstream
Bernoulli function is only applied to the right-hand
streamline of the fluid that leaves the region. It is easy
to show that all fluid leaving the region has a Bernoulli
function with value less than one as a consequence.
Since the recirculation region is composed of fluid that
does not leave the region between the wide upstream
channel and the controlled passage, it can have a Ber-
noulli function greater than the value that is found along
the upstream right-hand wall. Borenas and Whitehead
(1998), analyze analytically upstream gyres in two-di-
mensional flows. Those examples do not contain such
extreme shoaling of the bottom as are used in this ex-
ample. Recirculation gyres are also prominent in their
laboratory experiments and those by Whitehead and Sal-
zig (2001).

Last, the surface height profile in the narrow upstream
channel with the bottom elevation of 299 is also shown
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FIG. 3. (a) Surface height profiles over a parabolic bump across a
passage for z 5 1.5 and g 5 1.0, 0.9993, 0.992, and 0.867, from
top to bottom, respectively. Volume flux magnitude is given for each
profile. The two volume flux maxima are shown by the second and
fourth contours from the top. They are separated by the third contour
for minimum flux. (b) Contours of volume flux as a function of the
adjustable free parameter g and elevation of the topography in the
passage. The ordinate scale is nonlinear to stretch the values that are
close to 1. The contours of the three critical values of flux from (a)
are indicated by bold numbers. The two flux maxima possess the
well-known crossing of iso-flow lines that characterize the connection
of two conjugate states. The minimum is indicated by a point (en-
larged for clarity). Other contours of flux are included to help vi-
sualization of the adjustment as the crest is approached. Their values
are indicated by the other contour labels. The encircled pluses and
minuses indicate regions where flow is either super- or subcritical,
respectively; the four such regions being separated by the dashed
curves.

in Fig. 2. This bottom elevation is the same as in the
hypothetical infinitely wide upstream channel. Here, the
surface profile has almost uniform slope and the change
of surface elevation between the right-and left-hand wall
is about 0.005. Shear is relatively small (,20.005).
There is no recirculation of the fluid and all of the fluid
in this section flows up the slope and through the con-
trolling passage. Thus the streamline along the right-
hand wall detaches between this section and the one
farther downstream.

It is readily shown that for z 5 0.01 any value of b
, 250.0075 can provide a flux of 0.5 to the passage
in the infinitely wide channel. The value b 5 250.0075
is the highest bottom elevation that permits delivery of
that amount of flux according to the relation of maxi-
mum upstream flux Qmax 5 (2r 2 1)/z2 according to
Whitehead and Salzig [2001, their Eq. (2.19)]. Here r
5 Hr/H is an additional dimensionless number that spec-
ifies the strength of the right-hand upstream current.
Substitution of b . 299 produces Hr , H. This means
that the flow along the right-hand channel wall is away
from the passage and flow toward the passage is along
the left-hand channel wall. For b 5 299, Hr 5 H and
velocity is zero along the right-hand channel wall. This
means that flow in the channel toward the passage is
located only along the left-hand wall. For approximately
299.1 , b , 299 flow is toward the passage along
both walls. For b , 299.1 flow is toward the passage
along the right-hand wall and away from the passage
along the left-hand wall. Regions upstream of oceanic
sills may reasonably have parameters in the range 299.1
, b , 299, with currents along both walls flowing
toward the passage and stagnant flow in the interior.

For b substantially above 299 the results seem bizarre
for geophysical applications. The surface height of the
stagnant fluid in the wide upstream channel interior is
above one. For example, with b 5 250.0075 (the high-
est bottom elevation possible), the stagnant interior sur-
face height in the wide upstream channel is approxi-
mately 50. The water elevation along the left upstream
channel wall is exactly hl 5 250.0075. An immense
current with a flux of almost 5000 conveys water toward
the passage along the left wall, and a slightly smaller
current conveys water away from the passage along the
right wall.

b. Multiple extrema

In contrast to all previous studies, multiple extrema
have been found. To be specific, as the value of g is
smoothly changed downward from 1, the value of flux
increases to a maximum value, then decreases to a min-
imum, then increases to a second maximum and then
decreases again. These are found only with certain con-
ditions present at the passage. First, the passage bottom
shoals midway across the passage, it is deeper near the
sides than at the center. Second, the multiple extrema
are found only for z . 1 so far. This condition requires

either a shallow upstream channel or a sizeable current
flowing toward the control section along the right-hand
upstream wall (Whitehead and Salzig 2001).

An example of surface height profiles with multiple
equilibria is illustrated in Fig. 3a. The bottom is a par-
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abolic bump extending upward across the passage with
an elevation of 0.625 above the deepest point. This ex-
ample uses the value z 5 1.5. The volume flux as a
function of g contains two maxima separated by a min-
imum. The top curve shows the surface profile for g 5
1.0. For decreasing g, volume flux increases until the
first maximum is reached at g 5 0.9993, which is shown
as the second profile from the top. The third profile is
for minimum volume flux. Below this is the fourth pro-
file, which possesses the second maximum volume flux.

The maximum and minimum volume fluxes in Fig.
3a are extrema (zero change in flux with a change in
g). Gill (1977) gave a simple explanation of why a flux
extremum implies that there is a stationary wave. Es-
sentially, the volume flux is unchanged with a change
in surface elevation so that a wave is frozen in position.
Therefore, all three extrema in Fig. 3a are consistent
with a stationary wave in the passage.

Figure 3b illustrates the adjustment of some of the
flow parameters as the crest of the bottom is approached
and passed. Parameters are the same as in Fig. 3a. Se-
lected contours of volume flux are shown as a function
of h0 and elevation of the bottom. The contours of the
three critical values of flux are shown. The two flux
maxima possess the well-known crossing of iso-flow
lines that characterize the connection of two conjugate
states. The minimum is indicated by a point (enlarged
for clarity). Some other contours of flux are included
to help visualization of the adjustment as the crest is
approached. The pluses and minuses indicate regions
where we infer that flow is either super or subcritical,
respectively; the four such regions are separated by the
dashed curves.

Figure 3b indicates that the middle subcritical region
does not extend far upstream and downstream of the
bottom crest. The consequence is that the lower maxi-
mum contours are not connected with a conjugate state
at the other end of the channel. One must conclude that
even though Fig. 3a indicates the possibility of multiple
equilibria in the form of two maxima and one minimum,
the lower maximum and the minimum in flux cannot
be realized by continuous laminar flow from upstream
of the passage to downstream. This also means that
setting the Froude number equal to one in the control
section generates some flows that cannot continuously
flow through the passage.

The profile for the top maximum has a small region
of flow reversal for the critically controlled flow. Bor-
enas and Lundberg (1986) also found some maxima with
flow reversal over a differently shaped parabolic bottom
(with greatest depth at the center). Since the gyre in
such a region will gradually slow down due to any small
amount of friction, the nature of control in such prob-
lems is still not clearly understood.

c. Limitations from bottom slope

If the bottom slopes away from the right-hand wall,
a sufficiently small bottom slope limits the cross-stream

surface slope and thereby by Eq. (2.1a) prevents large
velocities. This can produce small values of flux even
if the opening is very wide. Figure 3 shows the surface
height profiles for a passage with a bottom uniformly
sloping away from the right-hand side. Three different
values of scaled passage width are shown. For all three
cases maximum flux is found for g 5 1. The top profile
has W 5 0.675. The value of critical (maximum) flux
is 0.076. The middle profile has W 5 1.25. The interface
adopts a slope very close to that of the bottom slope,
and the volume flux is 0.210. This is a value much larger
than the top profile but still less than the maximum
bound of 0.5. The bottom profile has W 5 1.875. The
current is confined to a layer along the upper part of
the slope and volume flux is 0.066. Essentially, flux is
limited because the fluid velocity cannot exceed a value
dictated by the slope of the bottom over a sizeable re-
gion. Thus, with a bottom sloping away from the right-
hand wall, there is an opening width that admits greatest
flux. Both narrower and wider openings admit less flux.
These results were for z 5 1.0. Calculations with other
values gave very little qualitative difference.

Borenas and Lundberg (1986) found that volume flux
becomes very small in a very wide passage with a par-
abolic bottom with depression in the middle (rather than
elevation as in Fig. 2). The bottom was intended to be
a first approximation to smoothly varying ocean pas-
sages. They found that currents with unidirectional flow
were confined to a narrow boundary current along the
right-hand sloping bottom. These narrow currents did
not have maximum volume flux. Instead, currents ex-
tending over a sizeable portion of the passage had the
most volume flux, but these had very large return flows.
Shen (1981) also explored this problem but only found
an increase of flux with rotation. The analysis did not
extend to the asymptotic large rotation limit we show
next.

The analytical solution for the flux of zero potential
vorticity fluid (z 5 0) through a passage like that
sketched in Fig. 4 is Q 5 (8/3W 3)(1 1 3/4W) with g c

5 1. It is valid for W $ 2. Our numerical calculations
produced similar results with Q ; W23 for large width
and over a wide range of z.

d. Interrupted passages

With two passages with flat bottoms, flux can exceed
the maximum possible flux for one passage. It was
shown that the upper bound of flux through a single
passage for all upstream values of vorticity and for all
passage bottom shapes is 0.5 (Killworth and McDonald
1993). Since the Bernoulli function is almost the same
for all streamlines in the limit of a very deep upstream
passage (which approaches the zero potential vorticity
limit), it is easy to exceed this maximum flux with two
passages, especially with z ø 0. For example, Fig. 5
shows a calculation with z 5 0.1 where the two passages
produce a total maximum flux of 0.931. Profiles have
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FIG. 4. Three surface profiles and their associated values of volume
flux for cases with a narrow, moderate, and wide channel, respec-
tively. The top curve has W 5 0.675, the middle has W 5 1.25, and
the bottom has W 5 1.875.

FIG. 5. Two passages with flat bottoms for z 5 0.1. The maximum
flux was found first for the right-hand channel and then the flux in
the left-hand channel was maximized keeping the same value of Ber-
noulli height on both sides of the middle wall. Combined flux of the
pair has more flux than the upper bound for a single passage.

been calculated upstream as in section 3a, as well. Each
passage develops a parabolic surface that indicates a
return flow. This implies that a gyre is found for in-
creasingly negative b until at b 5 29.0 the gyre van-
ishes. The two surfaces lose their region of negative
slope and merge into a unidirectional upstream flow.
Streamlines on both sides of the middle wall have the
same elevation and slope. The wall can vanish at that
bottom elevation. Anywhere upstream the channel can
be widened indefinitely. Calculations reveal that the to-
tal maximum flux for two passages with flat bottoms
goes down with increasing z. For example, with z 5 1,
the total maximum flux for both passages is only 0.58.

There are also peculiar results which seem physically
unimportant but which may warrant further study. For
example, with z . 1 the flux can be indefinitely big for
two passages if reverse flow is allowed in the right-hand
passage and the wall dividing the two passages extends
above b 5 1. In that case, the Bernoulli height at the
dividing passage can be larger than one, and the left-
hand passage can have very large, and even perhaps
indefinitely large flux. Most such fluid streamlines orig-
inate downstream of the controlled passage because
such a Bernoulli height does not exist in the upstream
channel. Therefore, this result seems to be badly posed
physically. Further investigation into all the features of
multiple outlets is needed to understand such surprising
results.

4. Implications of the results

This note illustrates new effects of passage bottom
configuration. These new features are revealed without

studying them in exhaustive detail. We indicate simple
methods for further computation.

First is the possibility of a passage containing a Ber-
noulli potential greater than the upstream value for fluid
that has a return flow in the passage. This happens be-
cause the streamlines in closed gyres do not originate
in the upstream region.

The second is that there can be more than one local
flux maximum. The results seem most pronounced for
z . 1. The presence of more than one extremum implies
that there is more than one condition with an arrested
wave. However, calculations in the upstream regions
show that only one extremum is physically realized.

The third new effect is the limitation of flow by pas-
sage floors that tilt away from the right-hand fluid sur-
face with small angles. Some passages in the ocean may
be sufficiently smooth to limit flow velocity in this way,
a possibility already raised by Borenas and Lundberg
(1986). One intriguing possibility is that viscous flux in
the bottom boundary layer under such currents may alter
the hydrodynamic conditions of the flow in such a way
that greater flux is achieved with friction than without.
This is only conjectural at this point, but the manner in
which Borenas and Lundberg (1986) found that the
greatest flux is achieved for flows with closed gyres
suggests that masses of stagnant water might act as ar-
tificial walls that enhance flows above gradually sloping
bottoms.

The fourth new effect is that flux out of passages can
exceed the value given by upper bounding theory. How-
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ever, this is due to multiple passages, and thus it is not
formally covered by existing theories.

Since both the second and forth effects involve the
deflection and even splitting of streamlines by topog-
raphy, this seems to be an area for further study. In no
case has a comprehensive exploration of parameter
space been conducted for these new effects. The method
used here is sufficiently simple that further calculations
of this sort in a number of directions are possible. By
using more advanced methods, a number of questions
could be answered. For example, a complete under-
standing of the time adjustment in the manner developed
for simple bottom topography (Pratt 1983, 1984) would
be very useful, as would numerical studies. Particularly
important are the properties of information propagation
with multiple outlets.

In planning future projects in the oceans to measure
flux through passages that appear to control flow, cal-
culations like these can help to decide on the best lo-
cation of measurements. These results illustrate the im-
portance of the Bernoulli height upstream of the passage
along the right-hand channel wall whereas existing anal-
yses (Whitehead 1989, 1998) only utilize this height in
the interior. These results also indicate that careful
placement of measurements is vital. Obviously one cur-
rent meter inside a gyre might measure a flow that is
in the direction opposite to the mean flow direction. In
addition, any currents approaching along the right-hand
upstream wall must be included in estimating the Ber-
noulli elevations. Indeed, the location of currents that
feed the ocean overflows are unknown, and we hope
that these and future calculations might help to clarify
their role more clearly.
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