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 J. A. Whitehead, Jr.  Cellular Convection

 Experiments in which disordered turbulence gradually emerges
 from an ordered pattern offer hope for understanding

 turbulent flows

 Humankind lives in a fluid environ
 ment; his two most immediate needs,
 air and water, are fluids. Among the
 myriad processes involved as a new
 born babe emerges from the womb,
 one of the most vital?and most
 symbolic to humans?is the first
 breath, which introduces gaseous oxy
 gen to the living being. He will meet
 new fluid processes in a variety of
 encounters, from raindrops in a puddle
 to the magnificent majesty of a tower
 ing cumulus. Dripping faucets will
 result in long, dull, sleepless nights,
 while bubbly wine will tickle his nose.
 A documentation of man's conquest
 of fluid processes includes a relatively
 comprehensive history of man himself.

 In the same light, a scientist involved
 in the study of fluid dynamics can often
 find application of his discipline in
 a variety of applied subjects, ranging
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 Figure 1. Movie and still cameras recording the evolution of an instability to cellular con
 vection rolls.

 from macroscopic astrophysics to
 microscopic biophysics. The subject of
 this article, cellular convection, shown
 in Figure 1, is no exception.

 Cellular convection exists in its
 simplest form when a thin horizontal
 layer of fluid is heated from below so
 that the warm fluid near the bottom
 tends to float up buoyandy and dis
 place the denser fluid above. One
 finds that for low heating rates, a
 disturbance cannot sustain itself
 against the combined stabilizing in
 fluences of thermal conduction, which
 smooths out the thermal disturbance,
 and viscosity, which damps motion.
 For greater heating, experiments
 demonstrate a collection of well
 ordered roll-like cells whose wave

 length must lie within two very close
 limits, as shown in Figure 2.

 Fluids, in general, are capable of very
 complex flows, as the previous ex
 amples show, and a complete analytic
 solution of the "laws of motion" would
 be virtually impossible. In addition,
 the behavior of fluid in many cases is
 nonlinear, meaning that one cannot
 necessarily utilize the principle of
 superposition to obtain a number of
 relatively simple solutions which can
 then be added together. Fortunately,
 one can group together problems that
 share similar dynamics. In this vein
 we say that cellular convection is one
 of the simplest examples of interchange
 instabilities, in which an exchange of
 neighboring blobs of fluid leads to
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 internal forces that tend to continue
 the motion. As such it often serves as
 an archetype for more complicated
 flows in nature.

 Three examples come to mind. The
 first is a model of motions inside the
 viscous mande of our planet. It has
 been suggested that convective cells
 are rising from the hot interior of the
 earth, which might generate the con
 tinental drift motions seen on the crust
 of the earth. The model is still hazy
 since viscosity is believed to vary
 gready in the mantle, the crust of the

 Figure 2. Shadowgraph pictures of convection
 as seen from above. The white lines corre
 spond to cool fluid plunging into the interior
 from the top surface, and the dark lines to
 hot fluid coming up from the bottom. The
 top picture shows cells somewhat similar to
 the ones seen by B?nard in the late nineteenth
 century; the top surface was exposed to air.
 The bottom surface shows roll-like structures
 which occur when the fluid is bounded above
 and below by rigid non-slip boundaries.

 earth is believed to behave as a semi
 rigid plate, and a careful account of
 heat production inside the earth is not
 possible. It falls to experimenters and
 theoreticians to assess the influences of
 these factors on the simple cellular

 model.

 A second example occurs in the top
 layers of the ocean and in the mixed
 region of our atmosphere. Solar
 energy, after heating the earth and
 oceans, is transported upward by a
 convective process, sometimes generat
 ing the strikingly well-ordered cumu
 lus patterns seen in our atmosphere.
 On the average, such motions must
 occur on an earthlike planet because
 moist air is not transparent enough to
 re-radiate outward as much solar
 energy as falls on the earth. Again the
 suitability of simple convection as a
 prototype of these processes must be
 assessed.

 The third example of cellular con
 vection is found in a layer of our sun
 that is relatively opaque to radiant
 energy coming from the interior.
 Astronomers who have photographed
 the cellular-type layer of the sun have
 coined the word "granulation" to
 describe this effect ; it is believed to be

 an important process in many types of
 stars. There is presently an active
 effort to understand the granulation
 process in light of what we know about
 cellular convection.

 In addition to such interesting ap
 plications there is a second, more
 fundamental, reason for studying these
 flows, namely that they demonstrate
 how turbulence emerges in a fluid
 flow. Turbulence consists of rapidly
 fluctuating flow patterns which do not
 bear any apparent resemblance to the
 boundary conditions of the flow. In
 most experiments the transition to
 very complicated turbulence occurs
 suddenly, making it difficult to see
 any particular structure in the flow.
 However, cellular convection is one of
 the most ideal methods of studying
 turbulence, because the turbulent pat
 terns emerge more gradually and one
 can study the physical processes which
 determine how the fluid adopts each
 new pattern.

 One of the more common examples of
 cellular convection led to an early
 observation of the effect in 1882, when
 James Thompson (/) was hiking
 through the countryside with the
 Belfast Outing Club. He and a group

 of friends paused to rest near a build
 ing when their attention was attracted
 to a pail of hot soapy water in which
 sheets of relatively clear surface fluid
 were plunging downward into the
 dirty interior due to cooling from
 above. The sheets met to form the
 vertices of polygons that presented a
 kaleidoscope of changing shapes and
 patterns as the vertical sheets changed
 their size and orientation. The physical
 process which would produce these
 tesselated polygons intrigued him to
 the point that he discussed their origin
 before the Royal Society of Glasgow.

 Figure 3. Stability diagram of disturbances in
 a motionless fluid heated from below. One
 can infer from this that a Rayleigh number in
 excess of 1707 is sufficient for motion to occur.

 More intriguing yet were the ex
 tremely regular patterns generated in
 the laboratory by Henri B?nard, a
 Frenchman who did a series of very
 carefully conducted experiments in
 which a horizontal layer of oil was
 heated from below. As reported in
 1901 (2), he observed two principal
 features of this motion: first, he noted
 that with very low heating the fluid
 remained motionless; second, he ob
 served that when motion commenced
 it took place as a lattice of very regular
 polygons. The polygons then slowly
 shifted until eventually they arranged
 themselves as a perfectly regular
 honeycomb structure of hexagons.
 This pattern intrigued him, and ap
 parently others, principally because it
 was hoped that in certain circum
 stances as fluid fell away from an
 equilibrium value the first types of
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 motion to be expected would have the
 regularity that these polygons ex
 hibited. Unfortunately, there are not
 many examples of fluid flows where
 this happens?in most situations the
 fluid goes unstable cataclysmically,
 resulting in very complicated and
 disorganized turbulence.

 Linear stability
 In 1916 Lord Rayleigh (3) analyzed
 the equations of a small disturbance in
 a motionless fluid heated from below,
 and he was led to functions expressing
 the growing disturbance. The equa
 tions resembled those of free vibrations
 in a stretched membrane; in fact, the
 problem reduced to an eigenvalue
 problem similar to those Rayleigh
 discusses at length in his Theory of
 Sound. He was therefore well equipped
 to handle this aspect of cellular con
 vection, and his two findings?that an
 infinitesimal disturbance will grow if
 the temperature difference of the layer
 exceeds a certain critical value, and
 that the most unstable disturbance
 has a certain unique wavelength
 (see Fig. 3)?have been confirmed,
 experimentally and theoretically.

 Unfortunately, in the years closely
 following Rayleigh's analysis, no new
 physical or theoretical concepts of the
 selection process were introduced.
 Possibly the emergence of exciting new
 fields, such as quantum mechanics
 and relativity, seduced physicists away
 from this more classical study. Ap
 parently most people were satisfied
 that the stability problem of a motion
 less fluid was at the limit of tract
 ability, and so the efforts that were
 made improved the precision and
 scope of the linearized theoretical
 equations used by Rayleigh.

 In addition, a number of experiments
 were conducted to observe the flow
 more fully. It was found that the
 hexagonal structure so nicely observed
 by B?nard was strongly a function of
 the surface tension of the free surface
 on top of the fluid, and recent theories
 have shown that B?nard's original
 cells were'surface tension driven. In
 most instances where the surface
 tension force was lacking, a row of
 two-dimensional roll structures would
 result; hexagons are a result of a more
 complicated dynamic process, to be
 discussed later in this article. The
 rolls still had the same intriguing
 spatial periodicity as the hexagons,
 with a slight exception that the rolls

 were not always perfectly regular, but
 tended to curve. An exposition of such

 work, studying in detail this and many
 other problems where a small arbitrary
 disturbance begins to grow about some
 marginally stable state, by S. Chan
 drasekhar (4), was published in 1961.

 To proceed further entailed severe
 theoretical difficulties as the equa
 tions became nonlinear, and most
 standard methods of calculus became
 useless. How could one proceed to
 incorporate the nonlinear terms. in
 the equations and get a final steady
 solution valid above the critical tem
 perature difference? In this case the
 Rayleigh analysis indicated that a
 variety of wavelengths could grow,
 and it was unclear why only one
 wavelength would eventually grow to
 finite size, as experiments showed.

 The nonlinear terms were of the form
 U'V Ty where U is the unknown veloc
 ity of the fluid and T is the unknown
 temperature. Rayleigh solved his in
 finitesimal stability equations by say
 ing that the largest component of this
 term, for small velocities, was W?

 where ? is the (known) temperature
 gradient of the undisturbed fluid
 and W is the vertical velocity.

 A scheme to generate a nonlinear
 solution was developed by W. V. R.

 Malkus and G. Veronis (5) in the
 United States and independently by
 L. Gor'kov (6) in the USSR. The
 solution procedure, a refinement of
 earlier works by J. T. Stuart (7),
 employed Rayleigh's equations as a
 first approximation for the flow, and
 then solved for a correction due to the
 nonlinear terms. The solution was
 valid because the temperature gra
 dient of the fluid would be larger than
 any temperature perturbation of the
 fluid if the system was sufficiently
 close to the critical temperature
 difference above which motion began.

 In other words, the velocity and
 temperature disturbances that grew to
 finite size could be made to be as
 small as desired by getting arbi
 trarily close to the critical temperature
 difference, and in fact could be made
 smaller than ?> the temperature
 gradient produced by heating from
 below. Formally, this could be en
 visioned as setting the dimensionless
 temperature difference (called the
 Rayleigh number) as Ra = Rac
 (1 + 7) where 7 is small, and then
 expanding velocity and temperature

 B

 Figure 4. Mean temperature gradient of A,
 motionless fluid, and B, fluid in motion. Note
 that convection is accompanied by a de
 crease of the average temperature gradient,
 which is equivalent to a decrease in the aver
 age gravitational potential energy of the fluid.

 as an asymptotic series of the small
 parameter e

 W ? tWx + ?Wi + 0 (c3)
 T = T0+ eTx+ 2r2 + 0( 3)

 When these solutions are put into
 the differential equation, certain terms
 must be set equal to zero to avoid a
 mathematical resonance which would
 generate an infinite term. This re
 sults in a condition relating the
 amplitude of the disturbance t to the
 excess Rayleigh number 7 such that

 = V?**y
 The resulting analysis correctly pre
 dicted the magnitude of fluid velocities
 and the approximate excess heat
 transported by the motion.

 A principal result was that the most
 important nonlinear effect of the
 finite, but small, motion was to pump
 heat in such a way that the mean
 temperature gradient was decreased.
 In this way the fluid was made stable
 to all other disturbances and they

 would not grow to a finite size (see
 Fig. 4).

 At a given point in the analysis it was
 found that an assumption would
 have to be made as to the type of flow
 that existed?whether it was hex
 agons, squares, rolls, or something
 else. Calculations then had to be
 completed as to whether this type of
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 flow was stable and could exist. In
 other words, this procedure required
 an a priori assumption based upon the
 disturbance wavelength and the form
 of the convective pattern that would
 exist. It was felt that rolls or rectangu
 lar cells or square cells of a variety of
 sizes could exist in a stable manner.
 The question then remained as to
 what physical processes determine
 the pattern that is viewed in a given
 experiment. This problem has been
 the topic of active interest for the past
 ten years, and it appears now that

 many of the principal processes under
 study have been analyzed.

 Shortly after Malkus and Veronis
 developed their mathematical scheme,
 there was similar progress in Germany
 by A. Schl?ter, D. Lortz, and F.
 Busse (&), who subsequently went
 somewhat further and took the re
 sulting motions and mathematically
 subjected them to infinitesimal per
 turbations to find whether these

 motions were stable. It was found
 that neither three-dimensional hex
 agons nor squares nor rectangles were
 stable because perturbations grew in
 their presence, and also there was a
 bandwidth of wavelengths for two
 dimensional rolls that could exist in a
 stable manner. This bandwidth was
 considerably smaller than the band
 width of the solutions which would
 grow according to the linearized
 infinitesimal Rayleigh theory. If a
 roll was outside this bandwidth be
 cause of some initial conditions in the
 experiment, perturbations of a very
 different character would begin to
 grow.

 For instance, if the rolls were too
 wide they would be unstable to other
 rolls of smaller width and at a slight
 angle to the original ones; if the
 rolls were too narrow, they would be
 unstable to larger rolls at right angles
 to the original ones. More extensive
 numerical calculations on the stability
 of rolls by Busse (9) have resulted in
 the stability map shown in Figure 5.
 There is a region on the Rayleigh
 number-wave number plane for stable
 rolls. The question of what size roll
 would exist in an actual experiment,
 however, was not precisely answered
 because there was still a bandwidth
 of possible roll sizes left in a stable
 state; the mechanism by which the
 nonlinear selection processes selected
 among all stable candidates to make
 the strikingly periodic rolls observed
 was not completely isolated.

 2x10?

 Un

 stable
 rolls

 2xlOM

 10?
 2.0

 neutral stability

 no motion

 -1
 3.0

 Wave number = (
 2ir

 4.0

 wavelength
 )

 Figure 5. Stability diagram of rolls, after Busse (9).

 L. Segel (10) attacked the problem
 of what would happen if two rolls
 existed simultaneously. It was found
 that if the amplitudes were small when
 they started, both would grow, but
 as they got larger they would interact
 in such a way that one would win out
 over the other and end up by ul
 timately absorbing all available energy.

 This was also found to be true for a
 larger number of discrete rolls. Al
 though there was some question as to

 whether neglected terms in the equa
 tion would produce additional rolls

 which might alter the results, Segel's
 equations showed that many sizes and
 orientations of rolls would grow ini
 tially but a well-defined selection
 process determined which rolls would
 finally persist. That the final state
 consists of only one set of well-de

 termin?e! rolls has been observed
 experimentally by Silveston (72) in
 Germany and Koschmieder (73) in
 the United States, and has even
 emerged in numerical calculations by
 DeardorfT (74) for two-dimensional
 regions wide enough to admit one
 couplet of cells, and by Foster (75) for

 wider regions.

 Stimulated by these results, M. Chen
 and the author (76) developed a
 technique for looking at rolls of
 arbitrary initial size. Motionless fluid
 below the critical Rayleigh number
 (Rayleigh number is proportional to
 temperature difference?when a Ray
 leigh number exceeds 1707 motionless
 fluid is unstable) was preheated with
 a spatially periodic heat pattern.
 The fluid was then raised above the
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 Figure 6. Laboratory photographs of rolls be
 coming unstable. Left, the rolls are large
 enough to be unstable to rolls at slight angles.

 Right, the rolls are small enough to be un
 stable to rolls at right angles.

 critical Rayleigh number to the de
 sired steady state, the preheating was
 stopped, and, since the preheated
 wavelength had such an amplitude
 advantage over random noise wave
 lengths, it would persist and would be
 observed as the initial roll size in the
 experiment. It was then possible to
 see what would happen to the rolls
 at subsequent times?whether they
 would be unstable or stable, and what
 the end motion would look like.

 The most striking aspect was the
 regularity and periodicity of the new
 rolls that would come in if the original
 rolls were too large or too small.
 When the rolls were too small they
 indeed did become unstable to rolls
 at right angles, as predicted by
 Schl?ter, Lortz, and Busse and as
 illustrated by recent pictures, taken
 jointly with F. Busse, in Figure 6.
 The original rolls can be seen, and a
 later picture shows the rolls coming
 in at right angles and completely
 obliterating the original rolls. When
 the rolls are too large, the instability to
 smaller rolls at slight angles is evi
 denced by the fact that the rolls begin
 to zigzag. The pictures show that the
 zigzags grow until they reach ap
 proximately 45 degrees, and then
 they break down.

 Recent refinements have continued to
 broaden the scope and power of the

 theoretical techniques. A. Newell and
 the author (77) and, independently,
 Segal (18) have used a theoretical
 technique basically similar to that
 used by Malkus and Veronis ten
 years earlier, but with the refinement
 that the form of convection does not
 have to be specified a priori. The
 results were put in the form of a
 relatively simple solvability equation
 showing that a large class of flows,
 most having a roll-like nature, are
 possible as steady solutions. In addi
 tion, initial conditions strongly in
 fluence the exact size and configura
 tion of the rolls that result, and
 boundaries can also have an effect.
 This solvability equation exhibits the
 same instabilities found originally by
 Schl?ter, Lortz, and Busse. The most
 recent analysis by A. Newell, C.
 Lange, and P. Aucoin (19) of the
 initial value problem with a con
 tinuous random spectrum shows that
 the system is driven to a discrete
 spectral spikes?that is, a rather ran
 dom initial condition is definitely
 driven toward a roll solution.

 The mathematical technique and
 the associated experiments have served
 to clarify the processes involved in
 cellular convection. First, Rayleigh
 demonstrated that certain modes will
 liberate enough potential energy to
 overcome friction and thermal con
 ductivity if the temperature gradient

 is sufficiently great. Malkus and
 Veronis showed that these modes will
 grow until nonlinear processes balance
 potential energy liberated by the
 cellular flow, the most important
 effect being that convection will alter
 the mean temperature profile and
 arrest further growth of the distur
 bance. Lastly, Schl?ter et al., Segal,
 and now Newell et al. have shown the
 interplay of various modes and their
 stabilizing influence upon each other.
 These three factors together cause a
 disturbance to grow and create its own
 stable equilibrium and so to generate
 the strikingly periodic and stable
 motion of cellular convection.

 As the reader will remember, B?nard
 observed a hexagonal planform of
 cells rather than rolls. Analysis in
 dicated that the processes generating
 such hexagons were a shade more
 subtle than those associated with
 rolls. Briefly, hexagons are an asym
 metric flow above and below the
 horizontal midplane of the fluid;
 hot, upwelling fluid either ascends as a
 column in the center of the hexagons,
 or it ascends up the sides of the hex
 agons and descends as a cool column.
 It was found that the unmoving fluid
 must have some associated asymmetry
 above and below the horizontal mid
 plane arising either from viscosity
 variation, surface tension, or a non
 uniform density gradient. The role of
 surface tension in B?nard's original
 experiments was noted by Palm (20),
 while Busse (27) explored the role of
 viscosity and all other material prop
 erty variations. Briefly, the hex
 agonal solution was found to be
 associated with a finite amplitude
 instability, which could be expressed
 by the following equation for r, the
 amplitude of hexagons :

 = (Ra " Ra?\ r + Cr2 - r3 ?t \ Rac )
 Here Ra is the Rayleigh number while
 Rac is the critical Rayleigh number,
 i.e. the minimum, in Figure 3. The
 constant C is determined by the
 asymmetry of the hexagons with
 respect to that of the density profile
 of the unmoving fluid. It is evident
 that if (Ra ? Rac)/Rac is negative, the
 plus C solution admits growing r for r
 sufficiently large. The constant C is
 generated because a hexagon is ac
 tually three sets of rolls rotated 120?
 with respect to each other; these three
 rolls interact in a nonlinear triad reso
 nance to generate the finite r. The triad
 resonance is one of the simplest and
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 probably most common nonlinear in
 teractions in multidimensional mathe

 matical physics, and as such plays an im
 portant role in many modern theories.

 In connection with hexagonal flows,
 the triad resonance can be briefly
 viewed as follows: the heat pumped by
 convective motion is proportional to
 the differential operation (U-v)T,
 where U is a velocity vector and T is
 the temperature of the cell. One can
 represent three rolls as el^k'x\ where
 k is a two-vector in the horizontal
 plane and where x is the horizontal
 coordinate such that ki + k2 + k? =
 0 and |ki| = |k2| =| ks|. This can
 only be done if the two-dimensional
 k vectors form the three sides of an
 equilateral triangle, i.e. if the three
 rolls add up to form a hexagonal
 pattern. Now these rolls will form
 a closed solution under the (U-v) T
 operation; that is, if we take U =
 eiikvx)9 T = ei(kr*)9 and multiply,
 we generate a solution proportional
 to ?~t(krx). Likewise, no new har
 monics are generated for all other
 permutations of ki, k2, and k$. Phys
 ically, this means that the ki and k2
 rolls pump heat into the roll and
 keep it going; likewise ki and kz
 pump heat to k2, while k2 and k3
 pump heat into ki. This generates a
 self-perpetuating flow, which mani
 fests itself as a finite-amplitude sub
 critical instability.

 If one solves for the heat transfer of
 hexagons as a function of the temper
 ature difference of the unstable layer,
 a curve is generated as in Figure 7,
 the dip in the temperature difference
 being a manifestation of the finite
 amplitude behavior of the hexagons
 driven by the triad resonance.

 Large Rayleigh numbers
 Cellular rolls are therefore a simple,
 yet realizable, example of infinitesimal
 instability while hexagonal cells are
 a simple example of finite-amplitude
 instability. These solutions are gen
 erally valid if (Ra ? Rac)/Rac is
 small?that is, the procedure gen
 erates a valid solution for experiments
 slightly above the critical Rayleigh
 number. There is an entire spectrum
 of greater Rayleigh numbers in which
 other interesting processes occur and
 which are well served by the inter
 esting analyses done close to the
 critical Rayleigh number.

 The evolution of ideas on large Ray

 1 .

 Heat tramferred

 Figure 7. Heat transfer curve of hexagonal
 convection compared to the heat transfer of
 rolls. The physically observed pattern will
 follow the trajectory which maximizes heat
 flux, and thus the heat flux curve has a dip

 accompanying the hexagons and then a dis
 crete change in angle where hexagons break
 down into rolls. Theory indicates a small
 overlap between the regimes where hexagons
 and rolls are stable.

 leigh number flows began in the
 middle thirties when a number of
 engineering problems stimulated in
 terest in the heat transferred by the
 convective motion, and a variety of
 experiments were performed that
 showed the change in the transfer of
 heat as one went to higher and higher
 Rayleigh numbers. The parameter
 that measures the heat transfer is
 generally called a Nusselt number, and
 basically it is a measure of the balance
 between convection and conduction
 of a fluid. When the fluid is motionless
 the Nusselt number is one, and when
 the fluid is highly convecting the
 number is large compared to one.

 In 1954 the heat transfer observations
 were greatly refined by W. V. R.
 Malkus (22). In a paper presented in
 the Proceedings of the Royal Society
 he reported that, as the Rayleigh
 number was progressively increased,
 the slope of the Nusselt number
 curve changed at discrete points
 (Fig 8). In a subsequent paper (23) he
 suggested that at each change in the
 slope the fluid was going to a greater
 and greater degree of chaos or dis
 order. These findings were directed
 in a very strong sense toward the hope

 Rayleigh expressed in his original
 paper?that fluids might fall from
 equilibrium in an ordered way. It
 appeared that the cellular convection
 undergoes a series of discrete tran
 sitions to more complicated flow as

 the Rayleigh number is increased.
 After several years, the experiments
 showing the transitions were done by
 others, for instance Willis and Dear
 dorff (24) at Boulder, Colorado, and
 although some of the points at which
 the slopes change have been debated,
 the basic findings were confirmed.

 These experimental studies have stim
 ulated theoretical models of the high
 Rayleigh number convection. In all
 cases except one, the models have
 relied upon ?ne or more assumptions.

 Malkus presented a theory concur
 rently with his experimental report of
 slope transitions which in essence
 envisioned each eigenmode of the
 Rayleigh stability equation as supply
 ing a separate transfer of heat. This
 led to the asymptotic behavior in the
 limit of large Ra of Nu ? Ral/3. Re
 cently, direct numerical solutions of
 the Malkus equation by Catton (25)
 have led to very good agreement with
 experiments. Similar models by Spiegel
 (26) and Herring (27) have led to the
 same result.

 A model of convection by Robinson
 (28) which examines the dynamics of a
 roll in the limit of large Ra also leads
 to an Ral,z law. The question of
 whether this roll is stable has not
 been completely analyzed, although
 there is experimental and theoretical
 evidence that it is not. Kraichnan
 (30), using mixing length theory, and
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 Figure 8. One curve of Malkus' data of heat transfer of cellular flow showing the change
 in slope of heat transfer.

 Howard (31), using estimates of the
 time it takes blobs to break away
 buoyantly from the boundary, have
 also arrived at an/fa1/3law. Kraichnan,
 however, predicts that shear tur
 bulence will ultimately generate an
 Ra112 law for very large Ra. Many of
 the models differ in details of the fluid

 motion, but it is quite apparent that
 the various methods of dealing with
 the "turbulent motion" are useful.

 An exciting approach has emerged in
 the past score of years in which a
 mathematically rigorous upper bound
 is calculated for the Nusselt number.
 First done by Howard (32), ex
 tension of this idea by Busse (33) has
 led to the relation Nu ? Ra112. It is
 reasonable to expect that further
 development of this method will
 result in a new and very powerful
 tool in analyzing turbulent flows.

 Experiments have been conducted to
 observe the properties of cellular
 convection at higher Rayleigh num
 bers. Somerscales (34, 35) has con
 ducted a variety of experiments mea
 suring various features of the flows
 and temperature fields as predicted
 by the theories, as have Deardorff and
 Willis (36). They have not found
 complete agreement with any one
 theory, but have usually noted some
 features of each.

 More recently the attempt to find the

 qualitative change in the roll be
 havior at the first transition reported
 by Malkus and predicted by the
 numerical calculations of Busse, shown
 in Figure 5, has been done by R.
 Krishnamurti (37) at The Florida
 State University, Tallahassee, and
 some experiments have been sub
 sequently done by F. Busse and the
 author (38) at the University of
 California, Los Angeles. Krishnamurti
 found that indeed the slope did change
 at a value of Ra = 12 Ra , and that
 the roll pattern broke into some kind of
 three-dimensional flow. At UCLA
 photographs of the convective cells
 show new rolls appearing at right
 angles to the original rolls and existing
 in a stable manner concurrently with
 the original rolls, as shown in Figure
 9. We have suggested that the new
 pattern be called "bimodal flow."
 This seems to be the next equilibrium
 state that persists up to some other
 transition point at a high Rayleigh
 number. Bimodal flow also commences
 in hexagons, as shown in Figure 10.

 Krishnamurti (39) has also seen the
 next transition; it appears to be the
 emergence of an oscillating flow which
 first commences in one or two spots
 and gradually spreads over more of
 the area as the Rayleigh number in
 creases. Another transition has been
 reported by Krishnamurti at a Ray
 leigh number of 120,000, at which
 time a second harmonic of the oscil

 Figure 9. Pictures of biharmonic flow in
 which two sets of rolls co-exist at right angles.
 Rayleigh number from top to bottom is
 10,000, 25,000, and 35,000.

 lation becomes apparent in addition
 to the first. Our own experiments
 show that the oscillations occur in
 the bimodal flows, where rolls fit
 together poorly. These flows rapidly
 become more energetic and important
 at Rayleigh numbers above 50,000.
 By inducing flawless bimodal rolls in
 our experimental apparatus, the tran
 sition to oscillating flows can be
 delayed to Rayleigh numbers in
 excess of 200,000, above which the
 pattern begins to oscillate in a
 spatially homogeneous way.

 All of these descriptions are consistent
 with the ideas originally sketched by
 Malkus, and one might hope that by
 studying these transitions it would be
 possible to begin to find methods of
 expressing the emergence of more
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 Figure 10. The emergence of biharmonic flow
 in hexagonal convection. Rayleigh number
 for the top is 5,000; that of the bottom is
 30,000. Depth of the fluid in the larger Ray
 leigh number experiment is twice that of
 the smaller.

 complicated flows. The years ahead
 offer excitement as the physics of these
 higher transitions is uncovered. Par
 ticularly intriguing are the powerful
 new upper bounding techniques, which
 have already been shown by Busse to
 possess the same qualitative features
 of discrete transitions observed ex
 perimentally. The true potential of
 these new techniques has yet to be
 fully explored.

 We note that turbulent flow can be
 described as non-unique, non-steady,
 and non-reproducible, and already
 cellular convection has been found to
 be both non-unique and non-steady.
 It is reasonable to expect that the
 further transitions will contain yet
 more features of turbulent flows. We
 close by noting the irony of the fact
 that this fruitful work was originally
 stimulated by the beautiful surface ten
 sion-driven experiments of B?nard?
 which involved a different phenom
 enon !
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