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Buoyancy-Driven Instabilities of Low-Viscosity Zones 
as Models of Magma-Rich Zones 

J. A. WHITEHEAD 

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

The low Reynolds number dynamics of a thin layer of fluid bounded below by a flat horizontal 
boundary and above by a fluid of another viscosity and greater density is reported. Three distinct stages 
of growth were observed. The first stage is a Rayleigh-Taylor instability, in which disturbances of one 
specific wave number grow most rapidly. If e is the ratio of the viscosity of the thick layer to the viscosity 
of the thin layer, fastest growth is for wave number e-•/3. In the second stage, distortion of the interface 
is large, and it is found experimentally that the fluid moves out of the thick layer as circular columns 
surrounded by relatively broad regions of descending material. In the third stage, fully matured struc- 
tures are formed. If the upwelling material has less viscosity than the surrounding material, the structure 
develops a rim syncline and a pronounced overhang and eventually ascends as a spherical pocket of fluid 
fed by a conduit. Two applications to geophysics are given: The first application follows from the fact 
that a melt source must exist in the mantle below mid-ocean ridges. This source can be approximated as 
a cylindrical body with lower viscosity and density compared to the overlying mantle. If the cylinder 
develops a gravitational instability, it will develop regularly spaced vertical protrusions. Estimates of the 
spacing are compared to high-resolution segmentation data, and some constraints on viscosity of the 
mantle below spreading centers are made. These are that viscosity of the mantle is 10 •8e• P, and the 
ratio of this viscosity to the viscosity of the cylinder is less than 100. In the second application, the 
upwelling conduits are measured experimentally and solitary waves are observed. A recently found 
analog with magma rising up through the pores of a viscous crystalline matrix is discussed. 

1. INTRODUCTION 

Volcanic systems are probably the largest chemically differ- 
entiating systems in the upper mantle. In addition to large and 
important chemical changes, they possess large-scale differ- 
ential flow which results in displacements between melt and 
residue of the order of tens to hundreds of kilometers. 

There has been much recent progress concerning the dy- 
namics of these differentiating flows. The microscale initiation 
of melt and the leaching of the melt through a porous grain 
boundary matrix have recently been studied as a problem in 
compaction by Sleep [1974], Stevenson [1980], Fowler [1984], 
McKenzie [1984], Scott and Stevenson [this issue], and Rich- 
ter and McKenzie [1984]. The general result depends on the 
observation that the network of melt is interconnected even 

when the proportion of melt is a few percent or less [Waft and 
Bulau, 1979; Waft, 1980; Cooper and Kohlstedt, 1984]. This 
implies that the process of compaction may dominate the 
early differentiation of melt from the mantle. Compaction is 
the viscous differentiation and buoyant sinking of the crys- 
talline matrix in which the melt is embedded. Since the melt is 

lower in density than the crystals, it is buoyantly squeezed 
upward. 

Whether melt rises by compaction or rises by some other 
method, we know little of the aggregation of the melt and the 
ponding of the melt in reservoirs. One possibility is that 
magma concentrates in solitary waves which have been found 
both analytically and numerically by Scott and Stevenson [this 
issue] and in a laboratory analog [Scott et al., 1986]. How- 
ever, these waves are only set up in a transient problem and 
go away over long time scales for a steady problem. Other 
possibilities are that a variation of resistance to flow with 
depth will lead to a region of high-melt concentration com- 
pared to the overlying mantle. This may occur from a change 
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of the physical properties of either the crystals or the melt 
with depth through chemical or physical alteration. In any 
case, some important process surely concentrates magma at 
spreading centers, at island arcs, at numerous hot spots, and 
at isolated seamounts. Once that happens, a central feature of 
these systems is the huge change from a mantle viscosity of 
10 2øe3 P to magma viscosities of 101 to 108 P. 

The class of archetypical problems summarized here in- 
volves fluid flows where there is a large viscosity variation. 
They are problems in the gravitational stability of viscous 
fluids with large viscosity variations. They have been studied 
by laboratory experiments augmented by theoretical consider- 
ations. 

The experiments described are relatively easy and inexpen- 
sive to do. Readers may want to reconstruct some of these for 
their own benefit or for that of students or colleagues. There is 
no substitute for seeing the real thing, neither photos, movies, 
nor data serve the same purpose. 

2. OBSERVATION OF A GRAVITATIONALLY UNSTABLE LAYER 

The first problem was stimulated by a lecture on salt domes. 
After the lecture, at the request of W. Chapple and D. Griggs, 
two immiscible viscous fluids were put into a cylindrical glass 
container. The denser fluid was less viscous and filled most of 
the jar. The lighter fluid lay overhead and was greater in 
viscosity. A plate of glass was then slid over the top. 

The next morning the tank was inverted and a gravitational 
instability was observed. The lighter silicone oil floated up as 
a number of narrow columns. These exploratory experiments 
were not sealed, so the thin layer leaked and lost fluid. In 
order to make the experiments reproducible, two rectangular 
tanks were fabricated. Observations are reported by White- 
head and Luther [1975]. The first container was almost com- 
pletely filled with glycerin with a kinematic viscosity of 14 
cm2/s and a density of 1.25 g/cm 2, to which a small amount of 
immiscible silicone oil with a viscosity of 600 cm2/s and a 
density of 0.92 g/cm 3 was added. This formed a 5-mm-thick 
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Fig. 1. A thin layer of silicone oil of viscosity 60,000 cSt protruding into clear glycerin of viscosity of approximately 1400 
cSt. 

layer of very viscous fluid on top of the glycerin. The con- 
tainer was then carefully covered, left overnight, and next day 
was inverted. In about 30 s the layer of viscous oil (which was 
on the bottom of the tank) was observed to develop pro- 
trusions that buoyantly pushed upward through the glycerin 
as long, buoyancy-driven columns. These are shown in the 
series of photographs in Figure 1. It was found that if the 
container was left carefully leveled for a number of days so 
that the oil interface was very flat before inversion, the col- 
umns that developed were spaced quite uniformly throughout 
the tank and were very nearly equal in size, volume, and 
growth rate. The wave number of the columns, defined as 
2nH/L, where L is the distance between columns and H is the 
depth of the thin layer, was 2.5. 

The same experiment was performed in another container 
filled with the same fluids with opposite proportions. Thus the 
only difference with the preceding experiment was that the 
thickness of the layers was reversed. After the container was 
carefully leveled and left for a couple of days, a number of 
protrusions developed shortly after inversion. These pro- 
trusions also arranged themselves quite uniformly throughout 
the tank, but the wave number in this case was much less, 
0.63. Hence the wavelength was much greater than before. The 
finite amplitude behavior of these protrusions was dramati- 
cally different from that of the previous case. The protrusions 
formed large spherical pockets of fluid that gradually devel- 
oped a pronounced overhang to the point where the neck of 
fluid feeding these pockets almost pinched off and left a tiny 
pipe of fluid trailing the main pocket of fluid. The main pocket 
descended through the viscous fluid as almost perfect spheres. 
This sequence is shown in Figure 2. The pictures are inverted 
for clarity. 

The unstable flows proceeded through three distinct physi- 
cal flow stages, which will be described in the next two sec- 
tions. Initially, the surface was nearly flat and small distor- 
tions to the interface grew by a "Rayleigh-Taylor" instability. 
This is an instability in which perturbations to a fluid with a 
density inversion in a field of gravity grow by creating a pres- 
sure field in phase with the velocity perturbations so that the 

velocity is amplified. During this stage the assumption of an 
almost flat surface allows the governing equations to be lin- 
earized. The wavelength of maximum growth rate and the 
exponential time constant of growth have been theoretically 
and numerically predicted for a number of geometries and 
boundary conditions [Rayleigh, 1900; Dobrin, 1941; 
Chandrasekhar, 1955, 1961' Hide, 1955' Dane•, 1964' Selig, 
1965; Ramberg, 1963, 1967a, 1968a, b, c, 1970; Biot, 1966; Biot 
and Ode, 1965; Berner et al., 1972; Whitehead and Luther, 
1975]. Demonstration experiments with putty and other non- 
Newtonian fluids have been extensively photographed and 
compared to geological formations by Nettleton [1934, 1943], 
Parker and McDowell [1955], and Ramberg [1963, 1967b, 
1970]. There was no intercomparison between the laboratory 
experiments and theory due to the unknown rheology of the 
laboratory materials. 

The limit in which one layer is thin and the other much 
thicker is particularly relevant to the geophysical context here 
and will be reviewed in section 3. Various theoretical predic- 
tions are compared with observations of laboratory experi- 
ments. 

The second stage occurs when the interface becomes distor- 
ted enough to violate the linearizing assumptions of the first 
stage. More complicated physical processes that generally 
have not been identified begin to occur at this stage. A few of 
the things that can happen are enhanced growth rate (superex- 
ponential), nonlinear interactions among the various growing 
modes, and a consequential narrowing of the class of the 
fastest growing modes. A three-dimensional theory with pre- 
dictions that hexagonal planforms would develop first with 
spouts coming out of a thin layer is given by Whitehead and 
Luther [1975], who also give a general criterion for two fluids 
of finite depths. 

In the third stage the interface is greatly distorted, and the 
intrusions have developed a matured structure No known set 
of equations predict the structure of the flow, although two- 
dimensional numerical computations have been made. Unfor- 
tunately, experiments show that the planform is two- 
dimensional, so the flow is three-dimensional. The experiments 
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Fig. 2. A thin layer of glycerin protruding into clear silicone oil. Viscosities are as in Figure 1. These photographs are 
inverted for clarity, so the blobs of glycerin, which are normally descending through the less dense silicone oil appear to be 
rising. 

indicated that the structures are a strong function of the ratios 
of the viscosities of the two fluids. Some cases will be discussed 
in section 4. 

3. RAYLEIGH-TAYLOR INSTABILITIES 

Theory and Sealing 
Discussion here will be limited to the case of a thin layer of 

fluid bounded by a very deep layer, which was theoretically 
analyzed by Selig [1965] and Whitehead and Luther [1975]. 
When the interface between a thin layer of fluid and an overly- 
ing region of denser fluid is slightly distorted, a small pressure 
gradient is created in the horizontal direction. A slow flow will 
thus be created no matter how small the distortion. To a first 
approximation, distortion of the interface arises from vertical 
movements; i.e., r3rl/r3t = w(0), where r/is the interface that was 
originally at z = 0 and w(0) is the vertical velocity at the plane 
z = 0. This flow is completely described theoretically in the 
above citations and will be summarized here. The solution to 
both regions is of the form 

w =f(z)g(x, y)e"' (1) 

where w is the velocity in the z (vertical) direction and f(z) is 
the solution to the equation 

_ 22 (D 2 k ) •f(z) = 0 (2) 

where D is a derivative with respect to z. The function g(x, y) 
satisfies the equation 

v, •a(x, y) = - tc •a(x, y) (3) 

where V• 2 is the Laplacian operator in x and y. Every solu- 
tion with the same value of k has the same growth rate. The 
class of periodic functions that satisfy (3) is infinite, but some 
simple functions are sin (k ß x), cos (k ß x) (where k is a vector 
in some arbitrary horizontal direction), Bessel functions, and 
the sums or differences of such functions. Obviously this lin- 
earized Rayleigh-Taylor analysis is not specific about the x-y 
structure of the flow but can only predict that the flow is 
described by some horizontal wavelength 2n/k. For given 
boundary conditions on f(z), the growth rate n is a function of 
the magnitude of wave number k, and obtaining this depen- 
dence involves solving for the matching conditions at the 
interface. Solutions which neglect inertia are appropriate for 
geological applications, and the following have found n(k) in 
this limit. Selig [1965] found solutions for a single layer pen- 
etrating into an infinite fluid. Ramberg [1968a, b] found solu- 
tions for many layers, and Whitehead and Luther [1975] 
solved equations for a single layer penetrating into an infinite 
fluid for all viscosities. Whitehead and Luther found analytical 
asymptotic approximations for when the viscosity of the thin 
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Fig. 3. Normalized growth rate n"= #2n/0.232 gAph as a func- 
tion of wave number K = 4rch/2, where 2 is the wavelength for the 
case when the thin layer is much less viscous than the deep fluid. 

layer is very large compared to the infinite fluid. The wave 
number of fastest growth, defined by km, is 

k m = (180e)l/5/2h (4) 
where h is the depth of the thin layer, e = #2/#1, and #1 is the 
viscosity of the thin layer, while #2 is the viscosity of the 
infinitely deep layer. Growth rate is 

n = (-gaph/4#l)(1 - 0.443e 4/s) (5) 

where g is the acceleration due to gravity, h is depth of the 
thin layer, and Ap is the density difference between the two 
fluids. Note that in (5), n is proportional almost entirely to #1, 
the large viscosity. 

When the thin layer is lower in viscosity, the results are 
different as shown in Figure 3 for a free slip boundary below 
the thin layer. Wave number of fastest growth is 

and the growth rate is 

k m = 1.44 e- 1/3/h (6a) 

n = 0.232(gAph/#2)e 1/3 (6b) 
Selig [1965, equations (2.11)] has found if the thin layer has a 
no-slip boundary condition that 

and 

k m = 2.15 e-1/3/h (7a) 

n = O. 153(gAph/p2)e 1/3 (7b) 

Equations (6a) and (7a) both have k m • e-1/3. Possibly this 
is a common scaling when e is very large. If so, this scaling 
implies that when the viscosity of the thin layer is very low 
compared to the viscosity of the overlying fluid, the spacing of 
diapiric intrusions will be significantly greater than the thick- 
ness of the original layer. This fact may be of widespread 
application in magma formation problems, since a layer of 
magma or magma-source material should be many orders of 
magnitude lower in viscosity than the overlying material. 

There may be a simple reason for the e-1/3 scaling. Possi- 
bly, it is more efficient for the low-viscosity fluid to flow large 
lateral distances up a gradual slope and to accumulate in 
massive diapirs. These have more buoyancy force with which 
to intrude up into the stiff overlying material than diapirs 
formed by shorter-wavelength instabilities. However, the e-1/3 
is probably not universal. There is experimental evidence (R. 
Kerr, private communication, 1985) that the e -1/3 scaling is 
not found for one geometry. 

Recent Applications of Rayleigh-Taylor Instability to Magma 
Genesis 

The linearized Rayleigh-Taylor instability, when the thin 
layer is low in viscosity, provides a plausible mechanism for a 
horizontal layer of melt to form into a line of magma 
chambers. This idea in the context of island arc volcanism was 
originated by Marsh [1973] and followed up by Marsh and 
Carmichael [1974]. It was applied in detail by March [1979], 
who studied the instability of a ribbonlike or cylindrical body 
(with its axis horizontal) of low-viscosity material. The rib- 
bonlike region was produced in the laboratory by allowing 
black oil or glycerin to rise from a slit in the bottom of a 
container of glycerin. It was convincingly suggested that this 
diapir geneis occurs under island arcs and is the mechanism 
that leads to the formation of the magma chambers for the 
island arc volcanoes. Noting the regular spacing of magmatic 
centers across Iceland, Siggurdsson and Sparks [1978] suggest 
that a similar instability exists at the base of the lithosphere in 
Iceland. 

The global mid-ocean ridge system is the most extensive 
volcanic zone on earth. Regions of normal crust are separated 
by regions of crust-free ocean floor [Whitehead et al., 1985]. 
Thus the volcanism is segmented. Abundant evidence for this 
segmentation is found in magnetic studies of older crust 
[Schouten and Klitgord, 1982, 1983]. The segmentation per- 
sists even if the offset of the transform fault zone is zero 
(Figure 4); hence magma pockets may be responsible for the 
segmentation. Since the source of magma is the underlying 
mantle, the magma must aggregate at some unknown depth 
and ascend to the crust due to its low density compared to the 
parent mantle rock. The melt must pool in crustal magma 
chambers: from whence it periodically erupts to the surface. 

Schouten et al. [1985] have shown that the volcanism is 
regularly spaced in the only oceanic regions where data are 
extensive enough to resolve clearly the bathymetry for many 
segment lengths. The spacing of these centers 1 is systemati- 
cally related to the effective spreading rate Ve, which is the 
magnitude of the vector difference in motion between the two 
plates. The relationship between 1 and Ve as fit by the loga- 
rithmic least squares is 

1 = 18.3re 0'2 7 (8) 
which they postulate is represented by a model of the form 
[Schouten et al., 1985, equation (7)] 

1= Qve 1/3 (9) 
A least squares fit of (9) to their five data points gives Q - 14.4 
km2/3 m.y.•/3 

Whitehead et al. [1985] postulate that a linear region of 
high-melt content exists in the mantle below the ridge where 
melt aggregates from the rising asthenosphere. This region can 
be approximated as a horizontal cylindrical body with rela- 
tively low viscosity and density compared to the overlying 
mantle. Under such circumstances, gravitational instability 
leads to regularly spaced vertical protrusions. 

Some simple experiments show this. A water-glycerin mix- 
ture was quickly injected into glycerin along a horizontal line. 
Although this line will gradually rise because the water- 
glycerin mixture is less dense than the pure glycerin, an insta- 
bility developed as shown in Figure 5 and led to semispherical 
pockets. It is reasonable to expect that a linear region of 
partially molten mantle in the earth will behave in a similar 
manner and will lead to fairly regularly spaced protrusions 
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Fig. $. Instability of a horizontal tube of water-glycerin mixture injected into pure glycerin. 

from which the melt will ascend to form magma chambers at 
spreading ridges. 

An important prediction for magmatic systems is given in 
(6a) and (7a). The wavelength of fastest growth is proportional 
to •/3, so as the viscosity of the thin layer gets small, the 
wavelength gets larger than the depth of the thin layer. 

Calculations by Schouten et al. [1985] used equation (7a) 
(their equation (4)) in conjunction with the growth time 

z = 0.15• gApd (10) 
to generate the relationship between the segmentation spacing 
2• and spreading rate U 

I ( [•l 2 •1/3(•12•2/9U1/3 •,c = • (11) 0.169 
where U is the two-dimensional volumetric production rate of 
the low viscosity and density region. To derive this, the theo- 
retical assumption as first put forward by Howard [1966] was 
used. It is that the boundary layer grows until the growth time 
is less than the time which has elapsed since the growing 
began. If U is proportional to %, which is consistent with the 
fact that oceanic crust thickness is independent of spreading 
rate, equation (11) has the same power law for U as (9) does 
for %. Thus if (9) is equated to (11), constraints on physical 
properties (density difference and viscosity) of the region 
below spreading centers will be generated, subject to the as- 
sumption that the mechanism of the model is correct. These 
constraints lead to •2 = 1018 • 1 p. Consideration of the time 
scale prediction (10) with geological estimates of the time scale 
of 20,000 years of the FAMOUS area lead to the constraint 
•2/fll • 102- 

4. FINITE AMPLInDE E•ECTS 

The linear theory clearly predicts the spacing of intrusions, 
and section 3 outlines a theory based upon one geometry. Any 
detailed finite amplitude evolution of the structure in 
Rayleigh-Taylor instability has continued to defy precise theo- 
retical prediction, although a theory of Whitehead and Luther 
[1975] predicts a hexagonal planform with spouts coming out 
of the thin layer. Figures 1 and 2 clearly show that a later 
structural form exists which appears to be in equilibrium. If 
fluid were continuously injected over some horizontal plane, it 
is logical to suppose that it would continue to flow in that 
form. Definitive experiments to test this have not yet been 
done. 

Fig. 6. Silicone oil of viscosity 60,000 cSt falling through oil of vis- 
cosity 10 cSt. 
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the fluid of greater viscosity. As shown in Figure 2, the jet 
pushes outward into this viscous material, and its nose is sub- 
jected to a gradually increasing normal stress that ultimately 
provides most of the drag equal and opposite to the buoyancy 
force. By the time the jet has made an order one indentation 
into the viscous fluid, most of the material from the layer has 
filled a rather large cavity with a circular horizontal cross 
section. As the pocket of fluid begins to rise, a pronounced rim 
syncline is produced around the cavity and it necks off. In 
Figure 2 there is little fluid left to fill the neck. The bulk of th• 
fluid in the pocket then rises as an almost perfect sphere, 
which is a solution to the flow equation of a fluid with small 
viscosity rising through a fluid of very much larger viscosity 
[Batchelor, 1970]. At the same time, a small pipe or "conduit" 
trailing the spherical cavity brings remaining fluid upward. 

This structure looks very much like some of the simpler salt 

Fig. 7. A conduit of silicone oil with viscosity 10 cSt rising 
through oil with viscosity 60,000 cSt. The conduit was initiated by a 
spherical cavity. 

The properties of individual structures can be observed by 
steadily injecting fluid from a local source. First, the case 
where the upwelling fluid is much more viscous than the fluid 
being penetrated with be reviewed (Figure 1). This may be the 
case for rhyolitic intrusions into more basaltic melts. The force 
balance is between forces due to pressures generated by den- 
sity differences and forces due to viscous deformation in the 
upwelling fluid. 

The matured jet is an upside down version of a viscous fluid 
being poured from a spout, like syrup being poured from a 
pitcher. A steady viscous jet is shown in Figure 6 in which 
silicone oil, with a viscosity of 60,000 cSt, drops through sili- 
cone oil with a viscosity of 10 cSt. The similarity between the 
structures in Figures 1 and 6 is obvious. 

The theoretical equation governing the flow of the jet is 

pV C•2W/C•Z 2 -- c•p/c•Z 
where p = gApz and w is velocity in the direction of gravity z. 
This integrates to w = (gAp/2pv) z2+ Az + B. Far down- 
stream, but not farther than the viscous buoyancy boundary 
layer length (gAp/pv2) 1/3, continuity can be used so that the 
radius of the spout is 

r = c/z (12) 

where c is a constant. 

There is little tendency for a very viscous dome to develop a 
plumelike structure with rim synclines that neck off. The nose 
of the dome can experience a small amount of local widening, 
which is produced as the dome pushes its way upward 
through the lower-viscosity material. In the experiments this 
dome has been seen to be approximately twice as wide as the 
viscous pipe that follows it. 

When the upwelling fluid is much less viscous than the fluid 
being penetrated, the structure evolves along a very different 
sequence. As before, significant impediment is associated with Fig. 8. A conduit with two fluids of almost the same viscosity. 
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Fig. 9. The wavy walls of two conduits with large Reynolds number of the interior fluid. 

domes. It has been suggested that in the case of salt domes the 
upwelling salt necks off because the source strata of salt is 
depleted. We believe that this is not the case and that necking 
is a universal feature of flows where the upwelling fluid is 
much lower in density. Figure 7 shows water being fed at a 
steady rate into a denser corn syrup with a viscosity of 1.2 
x l0 s cSt. A pocket of fluid forms at the spout and grows 

until it attains a diameter great enough to buoyantly rise more 
rapidly than the rate of growth of the radius. The cavity of 
fluid then rises away, leaving the neck. The neck grows verti- 
cally into what we have previously called a conduit or small 
pipe that continues to feed the parent cavity. 

If the flow from the source were to be completely stopped, a 
neck consisting of small amounts of the lower-viscosity fluid 
trapped by friction remains long after the initial starting 
plume has passed. If the flow is reinitiated before this neck 
completely diffuses away, the old neck offers a path of least 
resistance so that the fluid travels up the old neck faster than 
the initial dome with a nonspherical shape. 

Motor oil with a viscosity of 3.2 cm•/s and a density of 0.86 
and silicone oil with a viscosity of 3.7 cm2/s and a density of 
0.96 have also been used to study the flow that results when 
viscosities are nearly equal. These two fluids are not miscible 
but appear to have low interfacial tension. The nose of the 
resulting spout developed a flow resembling a vortex ring, as 
is shown in Figure 8. This flow entrained surrounding fluid 
and is particularly interesting because it exhibited entrainment 
at a Reynolds number of approximately 2. 

5. THEORY OF Low-VISCOSITY DOMES AND CONDUITS 

Whitehead and Luther [1975] and Marsh [1979] have used 
the Stokes approximation for a sphere to describe the rate of 
ascent v of the pocket of radius a, density p + Ap, and vis- 
cosity /• in a fluid of density p and viscosity /•. [Batchelor, 
1970, pp. 236-238]: 

"= 3 • LZ (13) 
which, for • • << •2, reduces to 

v = •(a 2gAp/p2) (14) 

Note that our subscript convention is the reverse of Marsh's. 
If a source feeds fluid at a constant rate Q and if originally 

the sphere is small enough that da/dt • v, it will continue to 
stay near the source and grow at the rate 

da/dt = Q/4•a 2 (15) 

The sphere can be expected to rise away from the source after 
v has become equal to da/dt. The radius a• at this time can be 
determined by equating (14) and (15): 

a• = (3Q.•/4•.ap) TM (•6) 

B. D. Marsh (private communication, 1985) has pointed out 
that in many cases in the earth, Q is fed by a pipe of radius a 
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Fig. 10. Two solitary waves imposed on a conduit. They collide like solitons. Time between frames is 5 s. 

and angle 0. With Q = •rApya 4 sin 0/8l• [Marsh, 1979, equa- 
tion (7)], 

-- = (17) 
a l•17 

This fundamental relationship between the size and viscosity 
of a diapir and its source geometry and viscosity was dis- 
covered by Marsh [1979]. The time it takes to form this 
sphere is given by 4•rao3/3Q, which is 

3 3 t s -- [4•rv 2 /3Q(yAp) (18) 

These equations will be useful if the surrounding region of 
magma accumulation is Newtonian and viscous. Many sug- 
gested mechanisms for upward magma migration involve a 
brittle, nonfluid region. To see if numbers from the above 
theories make any sense at all, let us take some parameters for 
a very periodic volcanic event, the outbreak of new islands 

along the Hawaiian-Emperor chain which has been operating 
more or less regularly at a rate of one island per million years 
for at least 80 m.y. We use v = 1022 cm2/s as a surrounding 
mantle viscosity from Fennoscandia uplift [Peltier, 1976], 
Q = 10 6 cm3/s [Whitehead and Luther, 1975], and q*= 100 
cm/s-2. With these numbers, 

ts = 4.1 x 1013 S • 1 m.y. 

This is the approximate period of new islands in the chain. If 
the viscosity under Hawaii is guessed to be significantly 
smaller because of the well-known large thickness of the low- 
velocity zone, v - 10 20 and ts = 30,000 years. This is the erup- 
tive period of individual volcanoes, and it suggests that such a 
mechanism, operating in the mantle below the plates, is crude- 
ly consistent with the parameters of the Hawaiian chain. 

After the dome escapes upward from the depth of lava accu- 
mulation, a conduit of fluid follows it. Again, assuming that 
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Fig. 11. A packet of solitary waves in a conduit. 

lava has much lower viscosity than the host fluid, the equation 
of laminar pipe flow is valid in the conduit; this equation is 

1 
w = • gAp(ro 2 -- r 2) 

4/•1 

where ro is the outside radius of the conduit and r is the 
distance from the center. Mass flux is found by integration to 
be 

Q = (n/81a•)gApro '• (19) 

and (19) can bc inverted to give ro as a function of Q: 

ro = TM (20) 
Reynolds number Re of the flow in the conduit is 

Re = wro/v , = 0.S0 k v--•J (21) 

Such conduits or pipes have now been studied in various 
geological contexts. In one set of laboratory and theoretical 
studies [Skilbeck and Whitehead, 1978; Whitehead, 1982], the 
stability of conduits to tilting was investigated. In mind was a 
model of the effect of subplate shear on hot spots. An outcome 
of the study was to postulate the formation of discrete islands 
in island chains such as the Hawaiian-Emperor seamount 
chain and to suggest a new method by which the variation of 
shear with depth in the mantle could be inferred. Laboratory 
conduits were made by injecting oil below a more viscous and 
denser oil. At first, the growing chamber of lower-viscosity 
fluid formed near the injector, but when the chamber got suf- 
ficiently large, it rose as a buoyant spheroid. Behind this 
trailed the vertical cylindrical conduit through which fluid 
could continue to rise to the surface as long as the source 
continued. In some experiments, the conduit and host fluid 
have been rotated laterally [Skilbeck and Whitehead, i978], 
while in others the more viscous fluid was sheared laterally 
[Whitehead, 1982]. In both cases, the conduit was gradually 
rotated to a more horizontal position, and when the conduit 
was tilted to more than 60 ø with the vertical, it began to go 
unstable by developing bumps which ultimately initiated a 
new chamber which rose to a new spot. The possibility that 
this mechanism operates under the Pacific plate was raised. If 
shear under the Pacific plate has to tilt buoyant mantle 
plumes to as much as 60 ø to form the relatively regular island 
chains associated with hot spots, most of the shear would be 
found in a zone with a vertical extent of less than 200 km. 

An important second feature of conduits are disturbances 
that the walls develop. According to Huppert et al. [1986], as 
the Reynolds number of the flow in the conduit becomes 
greater than ~10, the waves develop an axisymmetric, 
upwai'd propagating wave. This results in the mixing coef- 
ficient between the conduit and the surrounding fluid being 
enhanced. At progressively greater Re the waviness and 
mixing become greater. Two such examples are shown in 
Figure 9. 

The waves that lie on an otherwise laminar conduit, i.e., 
Re < 10 are particularly interesting. Waves have been im- 
posed upon the conduit by imposing a gradual change in mass 
flux into the bottom by Scott et al. [1986]. An immediate 
conclusion one forms if one pulses the mass flux, so that the 
flux increases and then decreases, is that solitary waves can 
form. Figure 10 shows two solitary waves that were produced 
in this way in a tank of corn syrup. In the case of the first 
solitary wave, we increased the source strength for 5 s. In the 
case of the second solitary wave which was larger than the 
first, the source was increased much more strongly for five 
seconds. The larger wave traveled faster than the smaller one 
and caught up with it. Then there was a collision between the 
two waves, at which time there was fluid exchanged from the 
larger to the smaller one. Subsequently, the larger one which 
was now on the top broke away from the smaller one. Since 
the waves approximately preserved their amplitude after col- 
lision, they collide like solitons. 

It is also possible to make a group of waves that disperse. 
Figure 11 shows such a packet, which was generated by uni- 
formly raising the source vessel at approximately 5 cm/s from 
an initial height equal to the free surface of the syrup to a final 
height 1 m above the free surface of the syrup. After this the 
flow was stopped. The leading solitary wave was initially a 
slight amount larger than the ones trailing it, but as time 
progressed, the leading wave grew even larger, probably be- 
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cause the conduit through which it traveled was very tiny, 
whereas the pinch between the lead wave and the second one 
admitted a flux of material upward to the lead wave. It rapidly 
got bigger and accelerated. The second grew also but acceler- 
ated less rapidly because fluid was bled to the lead wave 
above, even though the second wave got some fluid fed up 
from below as well. The third grew less rapidly and so on. 
Thus the string of waves (Figure 11) gradually dispersed and 
traveled upward, not only because of the initial size distri- 
bution, but because the wave-wave interaction caused the lead 
wave to grow. Such a wave train would also be expected if the 
solitary waves are solitons, since one would expect that the 
initial conditions would be represented as a cluster of solitons 
which would gradually disperse so that the fastest (largest) 
solition would take the lead, the second fastest would follow 
and so forth. 

The dispersion properties of waves and some exact solu- 
tions have recently been published by Olson and Christensen 
[1986]. Recently, and as a direct result of thoughts which 
originated at this meeting, Scott et al. [1986] reported that 
this system is analogous to a number of recently discussed 
compaction models of melt rising through a viscous deform- 
able matrix. In this analog, the syrup rising through the con- 
duit represents melt, the outer viscous flux represents the 
matrix and the radius of the conduit represents the porosity of 
the matrix. The governing conduit equations are shown by 
Scott et al. [1986], and are, in our notation (where r o is now a 
time and space varying conduit radius), the equation of pres- 
sure in the outer (very viscous) fluid 

c3r o 
p= pg + 2#• 8t (22) 

where p is density of the outer fluid; continuity: 
•Q • 
8z - 8t z•rø: (23) 

and the balance between buoyancy pressure and volumetric 
flow in the conduit 

•rrø• ISP ] Q = • •zz + (p - Ap)t7 (24) 
Equation (22) is substituted into (24) and (23) to get 

Q=• •7Ap+#2• z•-•o 2• (25) 
Equations (23) and (25) are the same as those which govern 
the rise of melt through a viscous matrix [Scott and Stevenson, 
this issue]. 
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