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Abstract

A laboratory model of wintertime cooling over a continenta shelf has
a water surface cooled by air in an anular rotating tanle. A flat shallow
outer "continental shelf' region is next to a conical "continental slope"

bottom and a flat "deep ocean" center. The shelf flow consists of cellular
convection cells descending into a region with very complicated baroclinic
eddies. Extremely pronounced fronts are found at the shelf break and over
the slope. Associated with these are sizable geostrophic currnts along the
shelf and over shelf break contours. Eddies 'are paricularly energetic there.
Cooling rate is compared with temperature difference between "continental
shelf' and "deep ocean". Scaling considerations produce an empirical best

fit formula for temperature difference as a function of cooling rate. This
produces a relatively straight regression line over a wide range of rotation
rates, shelf depths and coolig rates. If this formula is valid for the ocean,
water over continental shelves will be much colder due to constraints
imposed by rotation of the eart than if the fluid were not rotating.

Key words: Cooled shelf, continental shelf, laboratory model, convection
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1. Introduction and Literature Review

The densest water in the ocean is found at the bottom of polar seas. To acquire that

density, surace water expenenced either temperatue decrease thugh cooling or salinity

increase by evaporation or ice formation. Sinkng on a continenta shelf proceeds when

water cooled on the shelf accumulates until pols of dense water get large enough to seek

channels to the bottom. Water flowing away from the region of formation becomes
impeded by fronts with geostrophic flow at nght angles to the pressure gradient. Water

flowing in to replace the outfow of dense water is also infuenced by rotation. The final

flux depends on either bathymetnc channels, Ekman layer trsport, or eddies from cross-

frontal instabilty. Once the dense water crosses the shelf break, it sinks to the bottom

along a density curent on the contienta slope.

Estimates of the rate of flow off the shelf as a function of tempeatu dierence can

be calculated for constant depth shelves using theoretical models of rotating cross-shelf

transport like those of Stommel and Leetmaa (1972), Csanady (1976), and Whitehead

(1981). In these models, the dense fluid is removed from the shelf by seaward flow in the
bottom Ekman layer and replaced by shoreward flow in the top Ekman layer. Estimates of

cross-shelf trsport rates in the above thee studies were made only for a shelf of constat

depth. Unfortnately, the flows themselves are baroclinically unstable for most ocean

circumstaces (Witehead 1981) so the estimates may be unealstic. In a computer moel

by Hsu (pnvate communication) calculations of cross-shelf transport in the Ekman layer

were done for a shelf with sloping bottom. It is not known whether that flow is unstable to

three dimensional distubances. The flux was determined for a few cases. In all cases

some estimate of the rate of transport of the basic states was obtaned. It is not known

whether these rates are overshadowed by transport frm eddies, or limited by dynamcs of

the front at the shelf edge. Another rate limiting process is found on the front at the edge of

the continental shelf. Kilworth (1977) explored the strcture and the downstream
consequences of the front. Models with behavior like the ocean were produced by
adoptig appropriate miing coeffcients.

An expenment and simple theory was conducted by Sugimoto and Whitehead

(1983) for a rotating bay-type of shelf. The ta consisted of a shallow rectangular bay
bordered on thee sides by vertcal walls and on the four by a steep sloping bottom that

connected the bay to a deep offshore basin. The offshore side of the deep basin was a
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metal wall connecte to a thermstatic hot bat. The top surace of the water was in contact

with a Plexiglas lid flushed by cold water, so the entie basin was subjected to surace

cooling. The heat flow law in the limit of fast rotation was thought to be provided by the

geostrophic flow of the curents enterig and leaving the shalow bay. The curents lean on

the sidewalls that stretch across the model continental shelf from coast to offshore.

Expenmental venfcation for the functional form of this law was found but the constant of

proportonality was not fully explaied. A numencal study of a cooled rectagular bay by

Killwort (1974) was compnsed of two layers with changing density. The results were

plausible, but it was not conducted over a large range of parameters so parametrc results

canot be compared with the above theoes.

Studies that ignore rotation apply to smaller estuanne regions. Endoh (1977)

constrcted a model of cooling of a step-like shelf with both salt and thermal forcing and

found the formation of a thermohaline front at the edge of the shelf. Kowalik and
Matthews (1983) conducted a numencal study of a nonrotatig bay type of shelf. They

recovere a velocity magntude of 1 crns and a realistic density distrbution, but there was

no searh though governng parameter space that would allow the results to be applied to

other problems. Broard et al. (1977) and Brocard and Haleman (1980) intended to model

flushing in side ars of cooling lakes. In their theoretical formulation the flushing

mechanism was expressed using a two layer formulation where war surace water
flowed into the cooling lake. It then descended by surace cooling in a mixed region
beyond a singular point where Froude number u/(g'hi)1I2 equaled a given value and

flowed out along the bottom. In this formula, u is velocity of the water onto the cooling

lake, hI is depth of the layer, and g' is grvity" g times density difference between the cold

water and the war water, normalized by average density of the water. The speed of the

flow was lite by turbulent frction. Laboratory expenments were used to venfy the law

relatig heat flux with the temperatu dierence between offshore and the lake. There was

satisfactory agrement between the law and the observations. A specifc formula from ths

law subject to one simplifying assumption is given in section 6 of Whtehead (1993).

This formula is very similar to formulas arsing from a second group of calculations

that ignore frction entiely, but limit the speed of the flow by inerta. The theory used for

. these calculations has many names such as overmxing (Stommel and Farr 1952a,b and

Bryden and Stommel 1984), lock-exchange (Woo 1970) and maximal exchange (Farer

and Ar 1986). Predctions relating heat flux and temperature difference between ~
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offshore and the deep region can also be determed using other studies of two-layer
cntically controlled flows as given for instace by Yih (1980) or Ar (1986). In most
cases there is approximate agreement between the formulas and laboratory results. These

formulas will be used to test the laboratory results, which ar the topic of this repo

2. The Experimental Apparatus

Our objective is to investigate relations between temperatue difference (shelf to

offshore) and heat flux for the laboratory equivalent of ver long continental shelves. It

was desired to eliminate sidewalls from coast to offshore since these were seen by
Sugimoto and Whitehead to support cross-shelf geostrphic curnts. To accomplish this,

an annular geometr was used. A cylindncal tan was fitted with a shallow but wide

polyvinylchlonde (pvc) shelf along its outer penmeter as shown in Fig. 1. The inside
radus of this shelf was 52.7 cm and the outside raus was 80.25 cm. Bordenng the shelf

on the outside was a 25 cm high vertical wal. Bordenng it on the inside was a sloping

conical pvc bottm with a 45 degr slope that descende to a deep flat fiberglass bottom of

radus 25 cm. The horizonta bottoms of the ta were leveled so that depths were level to

better than 2 mm everywhere. The outside of the tank was covered by one inch foam

thermal insulation to retard conductive heat transfer to the room though the walls and

bottom of the tank. The tank was mounted on the two meter turtable at the Coastal
Research Center of Woos Hole Oceanographic Institution. This tutable is capable of
angular rotation spes 2Q =f of 0.008 to 1 s-l.

Streak photographs, dye trajectories and temperatue measurments frm emplaced

temperatu probes constituted the data gathenng activities. Thermstors used were 300

ohm Omega brand precision thermstors that were read diectly on an ohmmeter. The

thermstors were calibrated in baths at 20,25, 30, and 35°C (temperature was measured

with a mercury thermometer calibrated to 0.01 0C) and a fit was made to a third degree

polynomial. The absolute value of the temperature calibration cure differed from the
manufactuer's numbers by up to 0.30C, which exceeds their claim of 0.1 ° accuracy, but

the precision of temperatu differences over a ten degre span was better than 0.1 0C (the

greatest diference used was about 6OC).

The tank was filled with hot tap water (of order 450C) in the morning and the

appartus was left rotatig all day. As the water cooled off (frm sensible and evaporative
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cooling to the room), colder water would accumulate on the shelf rather than at the middle

and a convecvely dnven flow would be set up.

8765432
4

1

3

5
9
6

7

8

Figure 1. Sketch of apparatus and layout of thermstors. The thermstor locations shown

in smal numbers are for the exploratory expenments, and those shown by larger numbers

ar for the final expenments. The gray cover on the top center is Styfoam The ta was

insulated on the sides and bottom.

3. Structure of the Temperature and Flow Field

The purose of this section is to give a qualitative and crde quantitative image of

the temperatu and flow field. A tyical temperature section along a radal line from the

outer wal to the center is shown in Fig. 2. In this experimenta run there was no insulation

on the top surace so surace cooling was constat everywhere. Depth of the water on the

shelf was 10 cm, the rotation rate f=1.oo0 s-l, and the expenment had been running for

about thee hours when the section was taken. One can consult figues showing evolution

of the temperature field in the following sections to see that it is likely that the temperature

field had become quasi-steady after about two hours. The data were acquired by thermstor

readings at eight vertcal lines (stations) at distaces from the outer wall of 0, 10, 20, 30,

35, 40, 60, and 80 cm. Readings were taen at depths of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30

and 35 cm or until the bottom was touched.

Near the center of the tank, Fig. 2 reveals there is a large region of water with

temperatue above 32°C. The temperatue only decreases slightly with depth except for a
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region a few centieters off the bottom where a sharer decrease is found. Temperatue

also grdualy decases as one moves towar the shelf at al levels. Ths central region has

the lowest temperatue grents of anywhere and the isother are bowl-shape. Over the
sloping region, a greater temperatue gradent roughly 10 cm above the slope indicates a

shelf front. Dye was injected at two levels in this region near the break to get a crde

measurement of the speed of the mean along-shelf curents. There is an extremely strong

baroclinic shear, with water flowing toward the viewer at a speed of about 0.1 cm s-l near

the bottom and away from the viewer at a spe of about 0.5 cm s-l at the top. Evidence of

many eddies arund and within this frnt was sen in the dye trjectores. Ths front is one

of the most importt features of both the flow and thermal strctue in the expenment.

Over the flat shelf there is a tilt of isotherms like over the slope, but the isotherms are

furer apar. There was a movement of injected dye on the shelf away frm the viewer

with a speed of about 0.05 cm s-l.

Distance from coast (cm)
a
i

8

10
i

1

20
i

Ii

SO
I

60
I

2

70
I

80
I

1
o

10
Depth
(cm)

20

30

Figure 2. A temperature section along a raal line from the coast (left) to the center (nght)

after cooling for about thee hours. Isotherms are shown in intervals of 0.5°C. The top

mixed layer is above the dashed line.

These velocties ar consistent with a therm wind balance using

fÒV -= apaz - p ax' (1)
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where z is the vertical diection, x increases frm left to nght in Fig. 2, and v is positive
away from us. For thè fronta region, using for density p=po(1-aT), where a=2x1O-4C-1

and tang both x and z scales to be 10 cm, we estiate frm Fig. 2 that there is a lateral

temperatu change of 2 degrees over 10 cm in the front region. This gives an along-shelf

velocity change of 0.4 cms over a vertca distace of 10 cm, a value somewhat lower than

our observed velocity change of 0.6 crns between the top of the shelf break and the

bottom. On the shelf a 0.4 degr temperatue change. in 10 cm is reasnable. Ths gives a

predicted vertcal change of velocity of 0.08 cm s.l. Assuming velocity is zero at the

bottom boundar of the shelf, we predct 0.08 crns at the very top of the 10 cm deep
water. Ths is roughly the 0.05 crns estimated frm the dye, which was conveyed up and

down by convection and geostrophic tubulence so that it did not apply to any paricular

depth.

For most runs, the flow was very iregular and characterized by baroclinic eddies

supenmposed on the dnfts estimated above. Stang from offshore, the density curent
descended to the bottom of the ta where it tended to break up into iregular blobs. Above

these blobs was intense cyclonic eddy activity, similar to that descnbed by Whitehead,

Stem, Flied, and Klinger (1990). The cyclones were so strong that dimples were often

easily seen on the top fre surace of the water. On the shelf itself there were two eddy

scales. The larger of the two consisted of circular conical blobs of cold water that has

accumulated from surace cooling. These blobs are surounded by wisps of dye that
tended to move around. It was not possible to identify individual blobs for a long enough

time to see whether they gradually got to the shelf break and fell off the edge before
changing their shape, or whether instead they changed many times before the cold water

found its way to the edge of the break. The second scale was from convection cells. These

consisted of inverted plumes of cold sunace water sinking to the bottom. They are
revealed as white cirular holes in the dye. Although the two scales seemed simlar in size,

for slow rotation rates the barlinic eddy scale was much larger than the convection scale.

The overal pattern of flows is simlar to that descnbe in Sugimoto and Whitehead When

the internal Rossby radius of deformation was as large as the width of the shelf, there

tended to be large barlinic eddies on the shelf. These possessed patches of convection

cells in preferential regions. Around these eddies, sinuous jetlike frnts often appeared to

wander from" th~ inner wall to over the shelf break. They are similar to those seen in

annulus expenments (Fultz 1961, Hide and Mason 1975). The dye revealed that fronts
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(both on the shelf and over the shelf break) generally ~netrated frm sunace to bottom so

the eddies had a strong barotropic component in addition to their baroclinic natu. Only

when rotation was very slow did the edes of dense water appear to be bottom trappe and

surace water top trappe. The measurement of eddy scale was beyond the scope of this

project, so no information is available as to the scale of eddies as a function of the
expenmenta parter.

Streak photographs were taen of sunace flow in expenments with no Styofoam

lid. In the central "deep ocean" region is a cirulation that is rapid and relatively steady.

Standing in the laboratory, we saw that the flow had alost no rotation. Thus in the

rotating fre the flow is anticyclonic. Ths circulation anses beause of the upwellng of

war water in the deep basin since it is being replenished from below by cooled water

from the shelf, and is flowing onto the shelf at the sunace to replace that cooled water.

This very rapld offshore current is undesirable since oceans do not have them (it is a

consequence of the smalness of the deep basin of the appartus). Moreover, cirulation is

clearly assoiate with the bowl shape isother in Fig. 2 since fluid in the deeper regions

of the centr "deep ocean" is less retrogre (beause it is not flowing onto the shelf and

thus is less divergent). These isotherms mae it dicult to decde where the offshore edge

of the front was. There is also a shar lateral shear in the surace region 5 to 15 cm
offshore of the shelf break. At the inshore side of the shear, the flow has considerable

eddy activity, which is alsa seen farer onshore. Over the shelf itself is a much smaller

velocity, which is again retrgrade.

Some of the above flow may be dnven by ai drg. Consider that drag of ai Da on

the surace of the water at raus r is approximately

Da=J.aOr/de, (2)

where J.a is the viscosity of the ai, Or is the differential speed between the ai and the

water, and de is the Ekan Layer thickness = (vaff)l/2 where Va is the kinematic viscosity

of the air. This equals the Ekman drag on the bottom of the water on the shelf of

magnitude J.wU/dew, where J.w is the viscosity of water, U is the dnt velocity that is to be

calculated, and dew is the thickness of the Ekman layer of the water (vw/f)lf2 where Vw is

the kinematic viscosity of the water. Equating these two lead to the formula

7



U =(PaIa) l/2nr/(pwiiw) 1/2 (3)

Using the values Pa=1.205xl0-3 gm/cm3, iia=1.81xl0-4 gmcm s, Pw=0.998 gm/cm3,

and iiw=10-2 cm2/s (from Appendi I of Batchelor (1967)), this is approximately equal to
0.005 Qr.

Eq. (3) gives dnft velocity of 0.13 cm/s for f=1 s-I and r=50 cm. For all the

observations in this study, this wind dnven velocity is much smaller than the observed

velocities at the frnt near the shelf break. However, it is a litte larger than the magnitude

of the velocity on the shelf, and probably the dnt curent on the shelf is influenced by air

drag.

4. Heat Flow Measurements

To calculate heat flux, use was made of the transieilt nature of the expenment.

Exploratory runs were conducted with thermstor locations shown by small numbers in

Fig. 1, and final runs had locations shown by large numbers. Depth of water on the shelf

was either 5, 10, or 20 cm.

Preliminar measurments of temperatu as a function of time ar shown in Fig. 3.
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Figure 3 a. Centerline temperatures as a function of time for a typical exploratory

expenment. Tn denotes the thermstor locations shown in Fig. 1.
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Figue 3 b. Shelf temperaturs as a function of time for a tyical explorator experiment.

Tn denotes the thermstor locations shown in Fig. 1.

It is clear that afer an initial adjustment penod of one to two hours, the temperatues at the

different locations trck each other closely and show a cooling response that looks like an

exponential cooling cure. In some cases, the cures were so close to exponential that the

time constat could be measured accurately by measurg the slope oftheloganth of 
, 
the

temperature dierence between the water and the room. However, in other cases this did

not work. Since there is no reason to expect that the cures would be exponential, other

techniques were develope to analyze the data

The heat flow (hencefort to be called Hn) from the shelf to the deep basin across

the shelf break was estimated from the data of temperature at location n (hencefort to be

called Tn) versus time using the formula Hn= pcp VaT rJat, where p is density of water, cp

is heat capacity, and V is volume of the basin from the shelf break to the center. Using p =

1 gm/cm3, cp= 1 caV gm °C, V =186,960; 230,585; and 317,835 cm3 for the 5, 10 and

20 cm deep contaners, respectively, and approximating aTn/at= õTn/9oo where õTn is the

change in temperatue in 900 seconds, the forula for heat flow becmes

Hn = Co õT n caVs. (4)
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where the constant Co = 207.73, 256.19, and 353.14 calls °C is defined for the three

depths. This calculation to estiate heat flux was perform on the enti set of readigs of
an individual thermstor for the duration of the expenment. Since the time denvative was

found using the exact differences between sequential readings, the estimates of cooling

versus time were much more iregular than the orginal temperatu records. Thus the heat

flux data were smoothed with a thee point funning mean to restore the smoothness of the

origial temperatue senes as a function of tie.

By considenng thermstor placement carefully and by comparson of results with

other results in which the top lid had bafes, the data were determned with less ambiguity

than the early analyses admitted. Clear lessons were leared about placement of the

thermistors and which thermstor locations to use for a heat flux estimate. For example,

temperatu records of thermstors in locations 1-4 of the preliminar expenments, which

were at the center of the basin and in locations 8 and 9 which were at the coast bottom were

so smooth that cooling could be diectly calculated by finite difference for each time step

with small scatter about a visible trend. Unfortunately thermstors 3 and 4 near the top

center of the ta took approximately 60 to 800 seconds after the expenments began to

come to steady state, so importt data near the beginning of the expenment were lost. In

contrst, other reords such as location 5 near the shelf break were not as smooth ,over tie

(almost certainly due to eddies) so that scatter of estimated cooling rate was great.
However, it was found that smoothed data from location 5 were almost as goo as the data

from the centr thermstors at later ties.

Since Fig. 2 showed that temperature on the shelf at mid-depth extends

continuously frm the center of the ta to the shelf break, it proved to be diffcult to defie

unambiguously a "typical" temperature difference between the shelf fluid and offshore.

This was due to two featues. The first is a large bowl shape to the isotherms in the deep

basin from anticyclonic circulation of the "deep ocean". The second feature is a strong

front at the shelf break. Orginally, it had been thought that location 5 or 9 of the
exploratory placement, which was located diectly over the shelf break, would provide the

measurement of offshore temperature. Unfortunately, both were extremely unsteady for

almost all rotation rates. Sometimes the temperature was almost as cold as at T8 (shelf

bottom next to coast wall). At other times it was as war as offshore. Small injection of

dye indicated that the flow was extremely complicated. For instace the cold events were
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not due to cold eddies of bottom water but rather frm water in a top mixed layer that had

aleay been cooled by surace coling.

In spite of the problems with clearly defined temperature difference, data giving

temperature diference and heat flux were easily obtaned. Fig. 4 shows one such set of

measurments.
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Figure 4. Measurments in the prelimiar expents of heat flow (solid dots) at location

4 with time and temperatu difference between locations 8 and 9 (open squars) with tie.

Shelf depth h= 5 cm, f= 1.00 set.

The ary of thermstors was redesigned for the remaiing experients to prouce a

clearer pictue of the temperatur strctue of the large offshore front. Only one thermstor

was retained at the center of the ta at the top nght under the insulating lid. In order to

more clearly resolve the front at the shelf break, thermstors 2-6 were spaced offshore of

the shelf at 2.5 cm depth so that #6 was at the shelf break and each lower numbered one

was 2 cm farther offshore--toward the center of the tank. The new placement of
thermstors is shown in bold numbers in Fig. 1.

The data from these showed that the question of estimating one tyical offshore

temperatue had not yet been resolved. There was a large change in temperature offshore
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of the shelf break compared to temperatu change across the shelf itself. This is shown in

the nine records of temperatue versus time in Fig. 5a and in Fig. 5b for the thermstors

offshore of the shelf at 2.5 cm depth.
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Figue 5. Temperatue versus time for final thermstor placement. a) All 9 thermstors, b)

Thermistors 2 though 6, which lie offshore of the front and maintain close to the same

value in comparson to thermstor 9. Shelf depth h= 5 cm, f= 1.00 s-l.
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Since it is importt to define temperatue difference between shelf and offshore, a

number of possible measurements were considered. Henceforth difference between

location "n" and T9 wil be caled Dn. Fig. 6 shows the difference between T2 thugh T6

and T9 (bottom inner shelf), and it is clear that difference vanes strongly with location.

Which of these pairs gave the most satisfactory measure of temperature difference was

found by companng these values with heat flux.
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Figue 6. Temperatue difference Dn between thermstors 2 though 6 and 9, versus tie.

Shelf depth h= 5 cm, f= 1.00 s-l.

Heat flux was found using Eq. 4 for numerous thermstors in thee runs, two with

f=1.oo0 s.l, and one with f=O.5 s-l. It has aleady been described how the most useful

estiates of heat flux were obtaed frm records where vanabilty of consecutive readgs
was smalL. An ilustration of this is shown in Fig. 7 where heat flux estimates from

locations 2, 4, 5, 6 and 9 are shown. The results for the different thermstors lie on top of

each other and show a small decrease with time. H2, which is obtained using the
thermstor closest to the center of the ta, had the least scatter by a wide margin. H6, from

over the shelf break, has enormous scatter from time vanations. The scatter is grater for

thermstors closer to the shelf break because the records are less steady, clearly due to

baroclinic eddies in the strong front at the break. Mter some companson between the
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assorted records frm the runs, it was felt the best estimates for heat flow were B4 and H9.
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Figure 7. Heat flux estimates for thermstors 2, 4, 5,6, and 9. Symbols for 2,5 and 6

are x, + and. , respectively. The values for B4 and H9, which ar the estimates used in the

main study, are shown as open and close squares, respetively.

The heat flux data were used to decide which thermstor pais gave the best measure

of temperatue difference between the shelf fluid and offshore. To help in visualizing the

featues of vanous thermstor pairs, B4 is shown in Fig. 8 as a function of the values of

Do, thé temperature difference between station n and 9, for new thermstor locations 2

though 6 and for two runs at rotation rates f=l s-l and f=O.5 s-l. The records show that

Do decases with heat flux in a coherent maer. For f= 1.00 s-l, D2 rages from more
than 6°C down to 5°C but for D6 this range is from 20C to 10C. For f= 0.5 s- 1 D2
ranges from 4.50C down to 2.60C, but for D6 ths range is from 1.20C to 0.40C. Based

on this, it was easy to exclude D6 from consideration, but which of the other values of Do

should be used was resolved by expenments with a bafed lid.

The problem of having such a spread in temperature difference arose because of

both the front and the bowl shaped isotherms offshore of the shelf break. How much of

the frnt arse from the large anticyclonic circulation, and how much would be there if the

water offshore were stationar? Attempts were made to eliminate a significant porton of

the offshore circulation and bowl shaped isotherms to see if the front would vanish. To

accomplish this, a lid that had eight flow baffles underneath was made to cover the inner

basin. These bafes were 15 cm deep and'extended from the center to the shelfbreak, but

14
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Figure 8. Heat flux versus temperatue diference for thermstors 2 though 6. Symbols

for thermstor pai ar the sae as in Fig. 6.

they were sloped at their outer edge to remain 5 cm above the shelf slope. This made the

offshore water stagnant (or at least with a velocity smaller than the shelf flushing velocities

studied here) and therefore more like a tyical ocean. The baffles also conducted heat

vertcally so that isothermal water covered the top 15 centieters. They did not, however,

eliminate the frnt over the shelf break which by viue of its persistence even with the

baffles, was found to be a major percentage of the overa shelf to offshore temperature

drop. Fig. 7 shows records of Dn for n=1 through 6 from the baffled expenment. The

first four thermstors have almost identical temperatures. All were in the baffled region.

Thermstors 5 (2 cm offshore of the break and 0.5 cm inshore of the baffle radius) and 6

(over the break) were cooler than thermstors 1-4 and indicate that there was still a front in

this region.

A furer comparson between baffed and non baffled is shown in figure 9. The
nonbaffled expenments had more spread in temperature, but D4 and Ds have the same

readings.

To compar the observations of the bafed expenments with the expnments where

there was a fully developed front, running mean values of H4 and H9 as a function of the 9

point running mean of D4 and DS were determined for both nonbaffled and baffled
expenments at a rotation rate of f= 0.5 s- i. Fig. 10 shows the results.
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Figue 9. Temperature versus time for (a) baffed expenments and (b) otherwise identical

nonbafed expenments.

The data of heat flow and temperature difference lie almost completely over each

other for both D4 and Ds. All four results appear to follow a linear relation between heat

transfer and temperatu diference, and the results for D4 are alost peectly parel to DS
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but about O.3°C higher. The temperatu diference was not altere by the bafes, and we

therefore conclude that the frnt was not eliminated by stopping the offshore flow.
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Figue 10. Heat flux versus D4 (nght-hand cluster) and DS (left-hand cluster) for the

bafed results (open squares) and nonbaffled results (solid squares). .

To compare quantitatively the baffled and nonbaffled results, the data in Fig. 10

were fit with best fit linear cures. All pais of best fit cures for thermstors 4 and 5 are

close to parel, and the largest disagreement in tempertu difference between bafed and

nonbaffled results is approxiately 5% of the value of the temperatue difference at that

point. Therefore, it was concluded that the elimiation of the offshore front by the baffles

had not altered the dynamcs of the frnt and that the front must be included to link heat

flow with temperatur diference between fluid offshore of the shelf break and fluid on the

shelf.

The close agreement between the baffled expenments and the ones with a strong

offshore front also shows that the effects of the gradual temperature vanation associated

with the bowl-shaped isotherms can be largely neglected. It is safe to utilize only the

records of D4 and DS (mostly for redundancy) to estimate temperatue difference between

the coldest water on the shelf and offshore. At most, those two reords differ by 25%, but

in this study both ar used for companson with heat flow estimates.
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These considerations have allowed measurements of heat trsport and temperatur

difference that can be compared over a wide range of parameters. The preliminar
expenments showed that offshore temperatues must only be recorded outside the shar

frnt at the shelf break, and all measurements were done under an insulated lid so that the

mixed layer did not interfere with the temperatu rerd.

It was desired to obta data over a wide range of rotation rates, so expenments

were conducted for rotation rates of f=l, 0.5, 0.25,.0.125, 0.063, 0.032, 0.016, 0.008

and 0 s-l. Each run lasted for approximately eight hours. Data were recorded every 15

minutes. The records for al nine thermstors were digitize so a view of the cooling in all

the regions could be obtaned

The considerations given above resulted in using data from thermstors in the new

locations 4 and 9 to calculate two values of heat flux, and using the differences between

locations 4 and 9 and 5 and 9 to give two estimates of temperature difference between

"shelf and ocean". Choice of these locations resulted from the recognition that more than

50% of the shelf to offshore temperatue change happened at the offshore front. This was

ilustrated in the temperatu records shown in Fig. 5. This was also ilustrated in Fig. 10,

which shows that the data with a bafed expenment ar alost identical with those without

the bafe. Finally, to elimiate some of the scatter, groups of9 consecutive readings were

averaged. Since every experiment had roughly 28 intervals of 15 minutes each over the

eight hour penod, this yielded thee independent values of temperatue difference and heat

flux for each data strng. Since two measurements were made of heat flux and two of

tempeatu diference, each run resulted in 12 numbers.

The data of heat flux versus for D4 are shown in Figs. 11-14 for all the rotation

rates that were used, and for fluid depths of 5 cm, 10 cm using both baffled and nonbafed

lids, and 20 cm with a non baffled lid. Clearly, temperature differences systematically

increase both with increasing heat flow and with greater rotation rate. Thus the absolute

value of temperature difference depends on position of the thermstor with respect to the

offshore frnt, but the effect is less than 20% as big as that from changing rotation or fluid

depth. Tabulated values ar given in Tables 1-4.
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Table 1. Rotaon rate, temperatue differences (Oe) and heat flux (caVs) for the 5 cm deep

baffled expenments.

f O~ 05- Hi H:2

1.00 5.81 4.82 174
1.00 5.19 4.53 120 107
1. 00 4.81 4.18 83 75
1. 00 5.75 5.27 121
1. 00 4.82 4.19 95 80
1.00 4.51 3.99 71 63
0.500 3.05 2.64 124 119
0.500 2.56 2.30 81 75
0.500 2.43 2.06 53 56
0.500 3.16 2.78 143 134
0.500 2.88 2.52 103 94
0.500 2.70 2.34 78 77
0.250 2.13 1.99 144 127
0.250 1.94 1.74 90 86
0.250 1.89 1.72 71 68
0.125 1.47 1.31 126 110
0.125 1.23 1.06 83 78
0.125 1.20 1.08 62 65
0.063 1.45 1.36 159 140
0.063 1.57 1.46 97 97
0.063 1.67 1.58 65 ' 67
0.032 1.02 0.93 155 145
0.032 0.94 0.84 92 89
0.032 0.93 0.86 69 70
0.016 1.05 1.05 145 134
0.016 0.87 0.87 93 90
0.016 0.85 0.86 71 71
0.008 0.94 0.93 154 156
0.008 0.86 0.85 94 91
0.008 0.74 0.73 68 65
0 0.94 0.93 142 134
0 0.76 0.76 89 87
0 0.66 0.66 66 64
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Table 2. Rotation rate, temperature differences (OC) and heat flux (caVs) for the 10 cm

deep baffled expenments.

f O~ OJ H4 H2

1.00 2.57 1.69 87 94
1.00 2.28 1.36 73 67
1.00 2.22 1.39 55 53
0.500 1.55 1.24 101 95
0.500 1.59 1.14 70 70
0.500 1.50 1.13 55 53
0.250 1.12 1.05 98 100
0.250 0.98 0.83 77 77
0.250 0.93 0.76 62 61
0.125 0.88 0.84 127 115
0.125 0.73 0.67 88 84
0.125 0.66 0.59 63 63
0.063 0.60 0.56 98 96
0.063 0.52 0.49 71 69
0.063 0.52 0.50 58 57
0.032 0.46 0.42 101 100
0.032 0.42 0.41 74 73
0.032 0.35 0.34 55 53
0.016 0.49 0.50 112 109
0.016 0.39 0.38 78 76
0.016 0.36 0.35 59 57
0.008 0.45 0.44 112 108
0.008 0.35 0.35 74 72
0.008 0.30 0.30 58 56
0 0.48 0.46 104 101
0 0.37 0.37 73 71
0 0.32 0.32 55 54
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Table 3. Rotation rate, temperature differences (OC)and heat flux (caVs) for the 10 cm

deep nonbafed expenents.

f O~ 0.s H4 H2

1.00 2.19 1.60 115 109
1.00 2.22 1.47 80 71
1.00 1.99 1.31 57 59
0.500 1.85 1.45 119 115
0.500 1.45 0.98 74 75
0.500 1.22 0.90 56 56
0.250 0.99 0.88 121 116
0.250 0.95 0.80 75 79
0.250 0.86 0.71 63 58
0.125 0.82 0.76 123 112
0.125 0.68 0.60 72 80
0.125 0.73 0.61 64 60
0.063 0.61 0.59 129 127
0.063 0.53 0.50 89 86
0.063 0.52 0.50 62 63
0.032 0.57 0.56 121 120
0.032 0.50 0.45 82 87
0.032 0.36 0.34 64 62
0.016 0.53 0.52 120 121
0.016 0.43 0.42 84 81
0.016 0.36 0.36 61 60
0.008 0.50 ' 0.49 121 121
0.008 0.41 0.41 86 85
0.008 0.37 0.36 66 65
0 0.52 0.52 124 118
0 0.40 0.40 82 79
0 0.33 0.33 60 58
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Table 4. Rotation rate, temperature differences (Oe) and heat flux (caVs) for the 20 cm

deep non bafed expeents.

f 04 05 I4 H2

1.000 0.78 0.75 65 78
1.000 0.81 0.81 46 53
1. 000 0.65 0.60 49 44
0.500 0.59 0.58 83 66
0.500 0.48 0.50 66 61
0.500 0.46 0.45 53 54
0.250 0.41 0.38 70 73
0.250 0.42 0.42 61 61
0.250 0.35 0.34 51 56
0.125 0.33 0.32 75 80
0.125 0.37 0.37 65 68
0.125 0.32 0.32 59 60
0.063 0.31 0.30 75 71
0.063 0.30 0.30 66 70
0.063
0.032 0.32 0.32 74 73
0.032 0.30 0.30 63 63
0.032 0.26 0.26 55 56
0.016 0.32 0.32 85 81
0.016 0.28 0.28 75 73
0.016 0.27 0.27 64 64
0.008 0.30 0.29 92 87
0.008 0.26 0.25 76 76
0.008 0.22 0.22 68 87
0 0.30 0.30 78 75
0 0.27 0.27 65 65
0 0.24 0.25 56 54
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Figue 15. Best fit lines for data shown in Fig. 13b.

It was not obvious how to analyze the data furer. An example of an attempt to fit

to power laws (without useful results) is shown in Fig. 15. Slopes were found for all data

but there was wide scatter between values of slope and the information was of limited

value. However, there were some clear trends. First, at rotation rates of roughly 0.032

and less the heat flux as a function of temperatue difference approached a log-log power

law of 3/2. Second, the fastest rotation rates had a clearly grater power law, possibly up

to a power of 3, although scatter is great. These trends were visible both with 10 cm and

20 em expenments.

A better view was found by first noting that all results had heat flow of
approximately 100 caVs for the first tie intervaL. Assuming that these results have fixed

heat flow, temperatue difernce at the first tie interval can be plotted as a function of f.

An example is shown in Fig. 16. It ilustrates the effect of rotation on the temperatue

difference for fixed heat flow. At low and zero rates of rotation as shown to the left,

temperature difference has a constant value that is unaffected by rotation. For

approximately bO.l s- i, temperature difference increases with f. At the largest value, the

slope of temperatue difference with f gets close to 1 on a log-log plot.
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Figue 16. Temperature difference versus rotauon rate for expenments with heat flux of

approximately 100 caVs and 10 cm depth. The trangles identify nonbaffled expenmenta

data, the squares indicate baffled data, and the x shows the middle heat flux reading from

the nonbaffled expenment. (a) Close-up of the result in log-log space. (b) The same data

compar to a line with a slope of 1.

Inspection of all the data in Figs. 11-14 revealed that there was consistency with the

notion that temperature difference is inversely proportonal to depth h, proportonal to heat
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flux to the 2/3 power for low rotation, to the 1/3 power law for fast rotation and may be

approaching a power law of fl for fast rotation. Motivated by this, a test was developed to

determe whether heat flux data can be use to prect a temperatu dierence (hencefort

caled DTh) by the relation

ci (HnW) C2 f (Hnl/3)DTh = h + h . (5)

Theoretical justification for the values of the two exponents in Eq. (5) will be discussed in

the next section. Values of CI were found by least squares fit for each individual senes of

runs with the sa depth, so that the th values of temperatue at zero rotation agre with

DTh. Values of CI were 0.186 for both D4 and Ds with 5 cm depth, 0.18 for both D4 and

DS for the baffled cases with 10 cm depth, 0.21 for D4 and 0.22 for DS for the nonbaffled

cases with 10 cm depth, and 0.08 for both D4 and DS with 20 cm depth. Note that the

values for the first six cases are close to 0.2. In contrast, the expnment with 20 cm depth

had a signifcantly different constant of c2=O.08. However, for that depth the ratio of

width to depth is 1.5, which is smalL. Moreover, most of the runs were in the rapidly

rotating limit, so we believe the coefficient value of 0.08 is less well established than the

others. The value c2=5 fits al data nicely.

Using Eq. (5), values of DTh were calculated using cl=0.2, c2=5, and values of

Hn, f and h for each run. These are plotted against D4 and DS in Fig. 17a and as log-log

plots in 17b and c. All reveal a linear relation between the predction and measurment, so

there is surpnsingly close agreement between eq. 6 and the measured temperature
difference. The correlation coeffcients are more than 0.99, and the slope of the log-log

best fit is within 1% of 1.0. In Fig. 17b the two values of D4 and Ds are visible as two

elongated trnds in the data that are offset by less than 20% over a range of more than a

factor of ten. This implies that the choice of the exact loction of the thermstor offshore of

the frnt is not central to this companson, since the offset is small compared to the span of

the enti results. Fig. 17c shows only the D4 data but each depth has different symbols.

It reveals that the 5 and 10 cm results lie along the same line and show considerable

overlap, but the 20 cm runs have slightly bigger values of DTh.
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To demonstrate that each of the terms in Eq. (5) is insufficient alone, Fig. 18 shows

the values of each of the two term (along with their sum) in companson with the measured

value of temperatu. This calculation is done for the 10 cm deep experiments. It is clear

that neither term alone has satisfactory companson with the measured data over the entie

rage of rotation rates.
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predcte temperatu difference. The data shown as smal retagles use the rotation term

C2 f Hn 113/h for precte temperature diference. The sum of these two terms corresponds

to equation (6) and is shown as open squars. These are included in the data shown in Fig.

17. All data from the 10 cm deep experiments were used for ths figue.

Eq. (5) almost collapses the data to a line over the entie range of rotation rates, for
all thee values of h used, and over a range of a factor of two for heat flux. The data with

depths of 5 and 10 cm form the best trnd that lends strng confirtion to Eq. 5. The data

for 20 cm overlap the left-hand end of the data set but alone would not be consistent with a

slope of 1. Although the value of the constat ci for 20 cm was less than hal the value for

the other depths, this fit was not strongly affected for ci over most of the range.
Therefore, in view of the wide range of rotation rates, depths, and heat fluxes, and the

small aspect ratio for the 20 cm data, it seems that Eq. 6 agrees with the data quite well.

This is the principal result of the experiment.

,......
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