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Convection from an isolated heat source in a chamber has been previously studied
numerically, experimentally and analytically. These have not covered long time
spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical
calculations of constant viscosity convection partially fill the gap in the ranges
Ra = 103–106 and Pr = 1, 10, 100, 1000 and ∞. Calculations begin with cold fluid
everywhere and localized hot temperature at the centre of the bottom of a square
two-dimensional chamber. For Ra > 20 000, temperature increases above the hot
bottom and forms a rising plume head. The head has small internal recirculation
and minor outward conduction of heat during ascent. The head approaches the top,
flattens, splits and the two remnants are swept to the sidewalls and diffused away. The
maximum velocity and the top centre heat flux climb to maxima during head ascent
and then adjust toward constant values. Two steady cells are separated by a vertical
thermal conduit. This sequence is followed for every value of Pr number, although
lower Pr convection lags in time. For Ra < 20 000 there is no plume head, and no
streamfunction and heat flux maxima with time. For sufficiently large Ra and all
values of Pr, an oscillation develops at roughly t = 0.2, with the two cells alternately
strengthening and weakening. This changes to a steady flow with two unequal cells
that at roughly t = 0.5 develops a second oscillation.
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1. Introduction
Numerous laboratory experiments, numerical models and analytical studies have

been used to investigate plumes of buoyant fluid rising up through an ambient fluid
(e.g. Chay & Shlien 1986; Davaille & Jaupart 1993; Couliette & Loper 1995; Davaille
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et al. 2011, and references therein). The limit of very viscous ‘Stokes flow’ has
received much attention in efforts to improve knowledge about possible behaviour and
structure of vertical thermally driven plumes within Earth’s mantle (Schubert, Turcotte
& Olson 2001; Suetsugu, Steinberger & Kogiso 2005). Starting with a motionless
viscous fluid and a thinner layer of lighter fluid along the bottom, the bottom layer
develops a gravitational Rayleigh–Taylor instability (Whitehead & Luther 1975) so that
the low-density fluid accumulates in a large spherical blob that ascends to the surface.
The spacing (wavelength) is determined by the kinematic viscosity ratio between the
interior and the thinner layer fluids. Following that ascent, remnant light material
continues to ascend from bottom to top in localized conduits. A steady injection of
lighter fluid at the bottom of a layer of viscous fluid results in the ascent of a similar
large blob of material. In addition, if the injected fluid is the same material with
higher temperature than ambient fluid, the rising hot spherical body conducts heat
outward and thereby incorporates additional host material into the plume head as it
rises (Griffiths 1986). As the material arrives at a top horizontal surface, it spreads
laterally (Olson & Singer 1985). If the fluid source at the bottom stays on, fluid
from the conduit continues to feed fluid to the top. Numerical models more precisely
quantify internal flow and temperature, even though additional features, such as the
presence of bottom, top and lateral boundaries, or conditions more like the Earth’s
mantle, do not lead to any new changes to this sequence (Farnetani & Hofmann 2009;
van Keken, Davaille & Vatteville 2009; Vatteville et al. 2009).

How does such a plume from a local source proceed to final steady flow? This
question prompted our numerical study to calculate flow of a plume for extended
periods of time compared to those in laboratory experiments and numerical work.
Our layout is constructed so that calculations can be conducted over very long
periods of time. The two-dimensional chamber has height equal to width. Convection
is driven by elevated temperature 1T along part of the bottom of this chamber
starting from constant cold temperature. The same cold temperature is set elsewhere
along the bottom and along the top. Conductive heat flow out of the sides is zero.
The calculations continue for up to two thermal diffusive times. Only two relevant
dimensionless numbers exist: the Rayleigh number Ra (a measure of the thermal
forcing), and the Prandtl number Pr (the ratio of kinematic viscosity to thermal
diffusivity). There are also two geometric numbers that are fixed in this study. The
ratio of width to depth of the chamber has a value of 1 and the ratio of the size of the
local hot region on the bottom to width is kept at 0.5. Although this is not the optimal
geometry to compare with possible flows in the Earth’s mantle, it is the simplest one
for a starting point.

The objective of our project is to provide ‘benchmark’ cases for comparison with
the many different flows that have been produced numerically and in the laboratory.
These typically involve more complex fluids, larger chambers, and shorter periods of
time than the two thermal time constant durations here. One question of particular
interest is: ‘Do existing laboratory experiments using fluids with Pr up to 104 behave
like flow for infinite Pr?’ Although we do not study a model of a plume in the Earth’s
mantle, flow with very large Pr is relevant to mantle studies in general since the
mantle has a Pr of ∼1023.

We find that the flow continues to evolve over times of the order of the thermal
diffusive time scale. Therefore, flows can be expected to take even longer to become
steady for more complex geometries such as cases with wider layers, plumes in the
presence of internal heating with strong sinking subduction zones, or for a spherical
shell. All of these must be added to produce a model of the Earth’s mantle.



586 J. A. Whitehead, A. Cotel, S. Hart, C. Lithgow-Bertelloni and W. Newsome

Following the formulation in § 2, § 3 contains a description of flow at Ra = 106

and Pr = ∞. Surprisingly, this flow becomes periodic in time. Section 4 shows the
increased complexity of flows with increasing Ra over the range 103 < Ra < 106.
Section 5 shows that the motion and temperature fields in the range 1 6 Pr 6∞ have
the same form as for the infinite Pr case. However, flow with smaller Pr takes longer
to develop because of inertia.

2. Formulation
The incompressible Boussinesq equations for this model in Cartesian coordinates

express continuity, momentum, and energy conservation:

∇
′
·u′ = 0, (2.1a)

ρ0
∂u′

∂t′
+ ρ0

(
u′ ·∇′

)
u′ =−∇′p′ + µ∇2u′ + gαρ0Tk, (2.1b)

∂T ′

∂t′
+ u′ ·∇′T ′ = κ∇ ′2T ′, (2.1c)

in which the velocity vector is u′, density is ρ with the average density ρ0, temperature
is T ′, time is t′, viscosity is µ, acceleration of gravity is g, the linear thermal
coefficient of expansion is α, thermal diffusivity is κ , specific heat at constant pressure
is Cp and k is a unit vector in the direction of gravity directed downward in the z′

coordinate direction. The prime denotes dimensional variables of internal temperature,
velocity and location. Initially the temperature everywhere is T0. The fluid is in a
two-dimensional box of size D. Temperature is T0 along top and bottom except at a
strip centred along the bottom, where it is suddenly raised to T0 +1T at time t = 0.

The equations are made dimensionless using a velocity scale κ/D (a common
scaling for cellular convection), temperature scale 1T (dimensionless temperature
is in deviation from T0), and time scale D2/κ , where κ = k/ρ0Cp is thermal
diffusivity, in which k is thermal conductivity. Henceforth all symbols are unprimed
and dimensionless. The heat equation is

∂T

∂t
+ u ·∇T =∇2T. (2.2a)

For two-dimensional Cartesian flow and constant viscosity, the equation for vorticity
ζ = ∂w/∂x− ∂u/∂z is (

1
Pr

(
∂

∂t
+ u ·∇

)
−∇2

)
ζ =−Ra

∂T

∂x
, (2.2b)

and the equation for the streamfunction ψ , where u=−∂ψ/∂z and w= ∂ψ/∂x, is

∇2ψ = ζ. (2.2c)

The dimensionless numbers are Ra = gα1TD3/κν and Pr = ν/κ (kinematic
viscosity is ν = µ/ρ0). Equation (2.2a) is advanced numerically using a standard
leapfrog-trapezoidal scheme for each time step δt (Durran 1999). Then, (2.2b) is
solved in one of two ways: either by a time advance for fixed values of Pr and Ra
using the same leapfrog scheme or by using a standard MATLAB Poisson equation
solver for infinite Pr. Then, to convert vorticity to the streamfunction, (2.2c) is solved
using the MATLAB Poisson solver. The axis z is zero at the bottom and positive
up, and x is zero on the left and positive to the right. Boundary conditions are
set to ψ = ζ = 0 (no volume flux and free-slip) for all x at z = 0, 1 and for all z
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FIGURE 1. (a–c) Temperature (solid) and streamfunction ψ (dotted) contours, and
(d) vorticity ζ when the thermal plume becomes established for Ra = 106 and Pr = ∞
(d) vorticity: (a) t = 0.0006, (b) t = 0.0009, (c,d) t = 0.00124 (when vorticity is greatest).
Isotherm contours are every 0.1, streamfunction contours are every 20, and vorticity contours
are every 2000. The horizontal dashed lines are profile locations for figure 4 and the vertical
dashed line is the vertical profile location for figure 5.

at x = 0, 1 (the bottom, top and sidewalls of the square box). In addition, a zero
normal temperature gradient (zero sideways heat conduction) is imposed, for all z at
x = 0, 1, and T = 0 is set at z = 0, 1 except along a centred segment extending from
1/4< x< 3/4 along the bottom where T = 1. The initial conditions are ψ = ζ = T = 0
in the interior.

3. Results for Ra= 106 and infinite Pr =∞
3.1. The symmetric cell

We first show the flow and temperature evolution for Ra = 106 and Pr = ∞. The
grid size is 128 × 128 and the numerical time step is 10−6. Using these results, § 3.2
compares the same patterns using different grid sizes and time steps.

Initially, heat conducts up from the bottom (figure 1a). Two buoyancy-driven cells
begin to focus the hot blob toward the centre (figure 1b). The instant t = 0.00124
(figure 1c,d) is significant because the greatest value of vorticity is generated. By that
time, the plume head is fully established (figure 1c,d) with a thermal conduit below it.

Next, at t = 0.0015 (figure 2a,b) the head reaches the top of the tank and
begins to flatten out. Note that even though the temperature pattern is complicated,
the streamfunction pattern consists of two cells smoothly distributed throughout the
chamber as expected for Stokes flow (figure 2a,c,e). When the plume head approaches
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FIGURE 2. (a,c,e) Temperature (solid) and streamfunction ψ (dotted) and (b,d,f ) vorticity
at the times when the thermal plume ascends to the top (a,b), spreads out (c,d), and a
balance between vorticity production from rising and sinking is established (e,f ) for Ra= 106

and Pr =∞: (a,b) t = 0.0015, (c,d) t = 0.0021, (e,f ) t = 0.0035. Isotherms are every 0.1,
streamfunction contours are every 20, and vorticity contours are every 2000 in (b,d) and every
1000 in (f ).

the top, the vorticity has two pairs of extrema (figure 2b). The upper pair is next to
the plume head and the lower pair is next to the conduit. As the plume head with
hot material spreads out under the top lid, the top pair spreads laterally to the walls
and the two pairs of extrema become almost equal in magnitude (figure 2d,f ). After
this, the flow field changes more slowly. The relatively steady flow at this stage has
a hot conduit in the centre and cold boundary layers that slowly strengthen along
both sidewalls. The interior temperature of the counter-rotating cells slowly changes
from being isothermal at T = 0 (figures 1c, 2a,c) to isothermal at T = 0.5 through
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FIGURE 3. Calculations of Sm versus time for different grid sizes for Ra = 106 and Pr =∞.
(a) Early time, when the plume head arrives at the top and spreads out. (b) Time up to 0.04
with expanded resolution of Sm. Square grid sizes are: 32 (dots), 64 (short dashes), 128 (long
heavy dashes) 256 (solid thin line).

plumes that wrap around the core. This is illustrated by the T = 0.4 isotherm that
is still wrapping around at t = 0.01 (figure 2e). The flow approaches the well-known
boundary layer solution for convection cells at large Rayleigh number (Schubert et al.
2001).

3.2. Comparison of different grid sizes and time steps
The evolution in § 3.1 happens with any grid size and time step giving stable
calculations, but quantitative studies require specification of the grid size and time
step needed for acceptable resolution. Here, we compare results with 32, 64, 128
and 256 square grids. The speed of the circulation is particularly useful to determine
vigour of the convection. The velocity field itself is relatively smooth, but this speed
is affected by the heat transported by bottom thermal boundary layer diffusion, which
is strongly improved by smaller grid size, especially at the corner of the temperature
profile along the bottom. Speed is quantified by calculating the maximum value of the
streamfunction Sm, which is defined by

Sm(t)=max (|ψ |) (t). (3.1)

This is plotted as a function of time for calculations using the four grid sizes. At
first, Sm increases with time (figure 3a) as the plume head forms. It takes a maximum
value with the coarsest grid (32) having a maximum much greater than the rest. The
maximum values of Sm for calculations with 64, 128 and 256 grids lie within 2 %
of each other. After the plume head arrives at the top, there is a sudden and rapid
decrease in Sm (figure 3a,b). Then, a period of slow change occurs as the temperature
maxima in the two vortices are swept to the side and down near the walls. All the
curves for different grid sizes are close to parallel, with the finer grid having slightly
smaller Sm. At t = 0.04, the strength of Sm is still approaching a steady value that is
smaller than the maximum value at earlier times. The 256 grid values are a maximum
of 1.2 % different from the 128 grid values during the early time when the plume
head rises and spreads out. The two curves overlap each other in figure 3(b) and are
not distinguishable by eye. This difference is consistent with the fact that total heat
flux into the system depends on grid size because of the temperature jump along the
bottom.
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FIGURE 4. Horizontal profiles of vertical velocity across the tank for Ra = 106 and Pr =∞
at three times. First, the instant of peak vorticity (t = 0.00124, profile location shown in
figure 1c). Second, when the head has arrived at the top and spread out (t = 0.005). Third,
when the head has been conducted away at t = 0.01. (The location of the latter two profiles is
shown in figure 1b).

The vorticity maximum at time t = 0.0024 is also a useful diagnostic value for
grid size. The value of the maximum for a 64 grid is ∼1.8 % higher than for a 128
grid, and that maximum is ∼0.6 % higher than the 256 grid. On the basis that a 256
grid produces only about a 0.6 % correction in vorticity maximum, and only a 1.2 %
correction in Sm, all calculations for the figures and table 1 are made with a 128× 128
grid, unless a different size is stated.

Time must be small enough to avoid any numerical instability, which is easily
detected as either zigzagging contour plots or numerical collapse of the computation.
For the 128 grid, a time step 5 × 10−6 produces some visible zigzags during the
transient events up to t = 0.04, and a numerical collapse occurs for the larger time step
2 × 10−5. Results in this paper use a time step of 10−6. For comparison, a time step
of 10−7 faithfully reproduces the track for the 128 grid shown in figure 3 except that
the first peak is 1 % smaller, and there is a slight lag in time of the peak. Later, when
the flow is becoming relatively steady at t = 0.04, the tracks for time steps of 10−6 and
10−7 overlap quite precisely, within one part in 4× 10−6.

3.3. Profiles and trajectories
At all times, the streamfunction ψ and the consequent flow field is smooth, as
illustrated by profiles of vertical velocity w at two different levels and at three different
times (figure 4). The solid curve is located at the depth that horizontally intersects
the middle of the plume head at the moment of greatest overall vorticity (this depth
is shown in figure 1c). The upward velocity is concentrated near the centre with a
maximum velocity of ∼2250. The next profile at t = 0.005 is at mid-depth (location
in figure 1b), where the top plume is spreading out. The peak velocity is ∼900, less
than half the velocity during the ascent. After considerably more time (t = 0.01), the
peak velocity of about 1000 is reached, which is slightly larger than the peak velocity
at t = 0.005. By this time, the vertical motion at mid-depth exhibits almost constant
shear.

As the plume head rises to the top, recirculation within the head is measured with
Lagrangian trajectories of particles. The trajectories in figure 5 show the most dramatic
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FIGURE 5. Particle trajectories starting on a line at elevation 0.0178 (left) and 0.14 (right)
at four different times at Ra = 106 and Pr = ∞. The 0.1 isotherms are shown around the
heads at the times indicated. Dashed lines indicate trajectories of particles that are indicated
by larger circles and discussed in the text.

features during plume head formation and ascent at four different times. The outer
extents of the heads are shown by contours of the 0.1 isotherm. This isotherm is not
drawn in the region of the stem below the head to simplify the figure. Particles with
a starting location very near (almost touching) the bottom (elevation = 0.0178) are
shown on the left-hand side of figure 5. They are swept laterally into the head and
ascend in a cluster within the head all the way to the top, rotating by ∼45◦ during
ascent. Then, they spread out horizontally in a region close to the top. The particle
location at the final time depends strongly on each initial position. The particles
starting in the middle of the initial line arrive near the outside of the spreading plume
head (larger grey circle and many smaller open circles). In contrast, the particles
starting at both edges of the initial line (larger white circles with narrow border) both
arrive at the centre of the top. To the right of centre are particles (solid dots with
two large circles) starting eight times higher above the bottom than the particles on
the left (at elevation = 0.14). At t = 0.0012, these particles encircle the outer part of
the plume head. They have been swept there during the formation of the plume head
(figure 1b). At t = 0.0014, shear rearranges the particle pattern around the head. The
pattern resembles a spiralling dye pattern observed by Griffiths (1986), and attributed
to thermal entrainment. After the head spreads out under the top, the particles have
rotated approximately 180◦ clockwise so that the particle that was initially outermost
from the centre (white circle with black border) ends up close to the centre, and the
particle that was initially close to the centre (grey circle with black border) finishes up
near the side. Therefore, we have seen two examples of particle trajectories, one that
folds and the other that rotates.

Vertical profiles of temperature at the exact centre show the ascending plume and
then the slower subsequent adjustment (figure 6). First, the conductive profile forms at
t = 0.0006 and 0.0009. We then see that, sequentially, the rising plume head is fully
formed (t = 0.00012), the head has risen to near the top (t = 0.0015), and it spreads
out (t = 0.0021 and 0.0035). Then, there is a slow change in the rising conduit profile,
probably caused by the gradual change of temperature within the two cells.
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FIGURE 6. Vertical distribution of temperature in the middle of the chamber at various times
(indicated near each curve) for Ra= 106 and Pr =∞.

3.4. Broken symmetry and oscillations

As time continues to time t = 2 (figure 7), the trajectory of Sm approaches almost
a constant value, but then two oscillations sequentially develop. At approximately
t = 0.16 an oscillation is visible and it becomes relatively steady in size (figure 7b,c).
The oscillation comes from a growing perturbation whose amplitude can be traced
back in time all the way to the very tiny truncation amplitude. It violates mirror
symmetry and consists of alternate strengthening and weakening of the two cells. It
also has two frequency components, and at about t = 0.36 the primary period doubles.
Then, a relatively complicated flow mixes the fluid, resulting in a steadier flow with
two cells of unequal size. At about t = 0.5 the second oscillation appears. This
oscillation initially also has two periods that are visible as a slow modulation of the
peak-to peak amplitude (figure 7e). At about t = 0.8 it becomes an oscillation of single
frequency and constant amplitude that continues to t = 2 (figure 7f ). This is strictly
periodic down to the truncation level with no other signal growing.

The numerical code has right–left symmetry down to the numerical truncation level
of O(10−16), which is a noise signal. A small growing disturbance is initiated by this
noise. This is visible, for example, as a growing oscillation at the time t = 0.115
prior to the visible onset of the first oscillation (figure 7b). To determine whether
this growing oscillation has exponential growth, note that the exponential growth of
a signal from numerical noise to a size of O(1) takes the time t/τ = ln(1016) ∼= 36.8.
We assume that the characteristic growth time τ arises from the solution of a linear
instability problem. No theory exists to give the value of τ , but the growing amplitude
as seen in figure 7(b) (but with the slow trend in mean amplitude subtracted) is linear
on a semi-log plot. This shows that the growth is exponential, and the measured value
of the growth time is τ = 0.0054.

The growing perturbation shown in figure 7(c) can be triggered earlier than at
t = 0.16 by numerically imposing a disturbance larger than the noise. In that case, the
oscillation appears sooner.

A time series of the vertical temperature gradient at the centre of the top boundary
reveals the dimensionless conductive heat flux delivered by the convection. The heat
flux is called HF and is defined by

HF (t)= N × T(0.5,N − 1, t), (3.2)
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FIGURE 7. The evolution of Sm for different time intervals for Ra = 106 and Pr = ∞.
(a) Over the first 2 time units. (b) A growing very small disturbance. (c) Growth of the first
oscillation. (d) Two cells of uneven size and decay of the first oscillation. (e) The second
oscillation after its start. Note the amplitude vacillation. (f ) The final steady oscillation.

where N is the number of vertical levels starting from the bottom. The scaling used
here dictated that dimensionless heat flow for the conductive state is 1. Therefore, HF
is equivalent to the Nusselt number Nu. However, we will only refer to Nu in the
context of average heat flow, that is to say, (3.2) averaged over some time span.

Time series of HF with two different grid sizes are shown in figure 8. The
approximate shape of the two series is similar, but the oscillation transition time
with the finer grid resolution occurs a little later. Closer inspection of the series (not
shown) reveals that even the shapes of the curves during transition overlie each other.
The value of the oscillation amplitude of HF is about three per cent smaller for the
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FIGURE 8. HF versus time for Ra= 106 and Pr =∞ and two different grid sizes
(a) 64× 64, (b) 128× 128.

128 grid than for the 64 grid. This is consistent with better resolution with a finer grid
of the derivative at the boundary.

Figure 8 shows one other important aspect. Recall that there are four successive flow
types: steady flow with two cells of the same size, the first oscillation, slowly changing
flow with two cells of unequal size, and the second oscillation. Figure 8 shows that Nu
becomes lower for each successive flow type. The dynamical reason for this is unclear.

The oscillations have simple structure. The first oscillation is a cyclic deflection
of the conduit to the right and left, accompanied by strengthening of one cell and
weakening of the other (figure 9). The descending cold conduits at the two sides
alternately strengthen and weaken during the oscillation. Since both the right and left
cells alternately become the strongest, the time series for Sm during much of the
first oscillation has two peaks for each cycle. Therefore, the apparent period from
figure 7(c) is half the period illustrated in figure 9.

A gradual change in size of both cells occurs during the first oscillation, with one
cell slowly becoming larger than the other. Lagrangian material exchange is possible
with two oscillating cells but not for steady flows, leading to volume exchange
between the two cells. Near the end of the first oscillation, Sm from only the stronger
cell dominates the time series, and since that oscillates only once per cycle, the period
doubles in the record shown in figure 7(c). After the first oscillation ends, the flow
has cells with two different sizes. Slowly thereafter, the second oscillation grows from
small amplitude with two cells of different size. After it becomes large enough to
see, the structure of the second oscillation is similar to that for the first oscillation
with a speeding up and slowing down of the circulation (figure 10, visible as a
change in the number of contours with time). Initially it possesses a slow modulation
of the amplitude (figures 7e,f, 8) but the modulation vanishes at approximately
t = 0.8.
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Ra Ams1 Amf 1 Af 1 T11 T12 Ams2 Amf 2 Af 2 T2

1000 0.30
1750 0.58
1800 0.60
1825 0.61 2.39
1875 0.63 2.54
2000 0.68 2.89
2125 0.74 3.21
2500 0.92 4.04
5000 2.45 7.91
6250 3.21 9.40
6875 3.56 10.08
7200 3.74 10.43
7238 3.76
7275 3.78
7350 3.83
7500 3.91
104 5.14
2.5× 104 10.46
5× 104 16.67
5.63×104 18.00
5.8× 104 18.37
5.94×104 18.64 26.43
6.25×104 19.28 27.57
7.5× 104 21.70 31.80
105 26.13 39.41
2× 105 40.77 63.08
3× 105 52.84 81.94
4× 105 63.50 98.30
5× 105 73.21 113.1
5.25×105 75.52 116.6
5.38×105 76.67 Brief Brief 0.00213 0.00435 118.3
5.5× 105 77.80 92.35 36.9 0.00208 0.0043 120.2
6× 105 82.24 99.75 46.75 0.00201 0.00409 126.7
7× 105 90.71 114.3 66.05 0.00185 0.00374 139.9 141.5 67.3 0.00320
8× 105 98.78 128.3 82.60 0.00172 0.00348 151.8 157.0 107.2 0.00300
9× 105 106.5 140.7 101.2 0.00161 0.00325 163.2 172.0 140.3 0.00282
106 113.9 152.5 115.0 0.00152 0.00305 173.5 185.8 169.5 0.00269

TABLE 1. Amplitudes and frequencies of Sm for Pr =∞. T11 is the period during the
early stages of the first oscillation in the time interval when the amplitude is reasonably
well defined and becoming steady (figure 7c). Ams1 is the time average of Sm. Amf 1 is the
amplitude halfway between the peaks of the cycle and Af 1 is amplitude of the oscillation
(peak to peak). This evolves and finally gives way to cyclic flow with roughly twice
the period T12 (figure 7d). Ams2 is the (relatively) steady value of Sm between the two
oscillations (also in figure 7d) or the time average if an oscillation is present. Amf 2 is the
amplitude halfway between the peaks of the second oscillation cycle, and Af 2 is amplitude
of the oscillation (peak to peak). T2 is the period of the second oscillation (figure 7e).

4. Results for 103 < Ra< 106

Sequential runs over time, for many values of Ra, starting from Ra = 1000 reveal
the successive emergence of many of the features described in § 3. To quantify these
results, the amplitudes of symmetric or asymmetric, and steady or oscillating flows and
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FIGURE 9. Temperature (solid) and streamfunction (dotted) for the first oscillation, for
Ra = 106 and Pr = ∞: (a) t = 0.1805, (b) t = 0.1810, (c) t = 0.1815, (d) t = 0.1820,
(e) t = 0.1825, (f ) t = 0.1830, (g) t = 0.1835, (h) t = 0.1840, (i) t = 0.1845. Shown are
every 0.1 isotherm and every 20 streamfunction contours.

the frequencies of any oscillations are taken from plots for Sm versus time. The results
are listed in table 1.

Starting at Ra = 1000 there is no plume head during the formation period in
the temperature field and no peaks with time in either Sm or HF. The flow and
temperature field is right–left symmetric and there is no oscillation. At Ra = 1825,
there is a transition to a flow that is off-centre with one large and one small cell
producing an asymmetric temperature field. This is most easily triggered by a non-
symmetric perturbation after the symmetric flow becomes steady. This perturbation is
not absolutely necessary, however. If one waits long enough, the background numerical
noise produces the transition, but the growth is so slow that the transition does not
occur by t = 2.

Before continuing the description of the sequences in table 1, the flow at Ra= 6000
is shown if some detail (figure 11) because it illustrates the typical behaviour for
low Ra. After a run begins, the flow and temperature fields approach values that
appear to be steady (figure 11a,b). At a time depending upon the type of perturbation
imposed on the flow, the flow is changes to the asymmetric flow (figure 11c). The
transient plume during both the start of the original plume and during transition to the
unsymmetric one produces a peak in the value of Sm (figure 11d). This peak is found



Numerical calculations of 2D large Prandtl number convection in a box 597

(d )(b) (c)(a)

(g) (h)( f )(e)

FIGURE 10. Temperature (solid) and streamfunction (dotted) for the second oscillation,
for Ra = 106 and Pr = ∞: (a) t = 1.0035, (b) t = 1.0040, (c) t = 1.0045, (d) t = 1.0050,
(e) t = 1.0055, (f ) t = 1.0060, (g) t = 1.0065, (h) t = 1.0070. Shown are every 0.1 isotherm
and every 20 streamfunction contours.

in the range 6000 6 Ra 6 1.1 × 104 but there is no accompanying peak in HF. Then,
for Ra> 11 000± 550 there is a peak in HF during initial plume setup too.

Continuing with the sequence shown in the table 1, for Ra < 1812.5 ± 12.5 the
flow remains symmetric and steady and we have mentioned that there is no peak in
HF or Sm. At Ra = 1825 the flow begins as a symmetric flow, but it changes to a
non-symmetric steady flow. This transition continues until the run with Ra = 7200. In
the range 7238 ± 18 < Ra < 5.8 × 104 ± 6500 the transition does not occur and a
triggered perturbation decays with time, leaving the symmetric steady flow in place.
Then the unsymmetric flow reappears at Ra= 5.94× 104. The first oscillation is found
during the transition from the symmetric to the non-symmetric steady flow in the
range 5.315× 105 ± 6000 < Ra < 6.5 × 105 ± 4 × 104. Above the top value, and up
to Ra= 106, both the first and second oscillations are found. The period of any of the
oscillations lies within the circulation time, which, since each cell has approximately a
width of 1/4, is roughly equal to 1/4Sm.

5. Effects of varying Pr

A finite value of Pr adds inertia to the momentum equations and, of course, inertia
is relatively larger for smaller Pr. That means that as the thermal pattern rises into
the interior from the bottom, the circulation must accelerate toward the exact balance
between buoyancy and friction that inherently exists for infinite Pr. Although it is
tempting to picture finite Pr effects as arising for smaller viscosity, it seems better
to picture in one’s mind that the circulation sets up more slowly with smaller Pr.
There is smaller acceleration because of the larger inertia. Results for the time interval
shown in figures 1 and 2 for Ra = 106 at four values of Pr plus the infinite Pr
case (figure 12) dramatically show the sluggish nature of lower Pr flow along with
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FIGURE 11. Results for Ra = 6000. (a–c) The temperature and streamfunction fields at
different times. (a,b) Times t = 0.06 (a) and t = 0.3 (b). Isotherms are plotted for every 0.1
and streamfunction contours for every 1. (c) Time t = 0.6. A perturbation T(0.2, 0.5)= 1 was
imposed on one grid point, and the flow changed to the non-symmetric flow shown here at
t = 2.0. Streamfunction contours are plotted for every 2. (d) Sm and HF versus time.

a number of other features. First, the results for Pr = 1000 and infinity are identical
to the eye throughout the entire sequence. Second, the formation of the plume head
is slower for smaller Pr. Third, the form of the plume head is somewhat different for
smaller Pr, with vorticity more concentrated at the side of the plume head resulting
in the two vortices of opposite sign being further apart. The plume head rises a little
faster than the two vortices. This leads to greater dipole separation as the head ascends
to the top. For example, the dipole in the plume head for Pr = 1 at t = 0.0050 is
further apart than the dipole for larger Pr. Although there is only small recirculation
in the plume head and the vertical velocity near the head does not completely reverse
in sign, parts of the plume rise more rapidly than others, and so there is a small
amount of recirculation in the wake far away from the head itself. Such flows might
be productively studied further. Fourth, as time gets to ∼0.01 the flow begins to settle
to steady flow and the effects of Pr are beginning to be small. For example, the flows
for Pr = 100 and 1000 are almost identical to the infinite one. By t = 0.1 (not shown)
flows with all Pr are almost identical.

Examination of the streamfunction peaks for different value of Pr gives insight into
the effects of Pr. First, the peaks are very similar for both Pr = 1000 and infinity
(figure 13). Second, for infinite Pr the peak in heat flux with time is present only for
Ra > 11 000, (±5 %) and the peak in streamfunction is present only for Ra > 6000.
For comparison, runs with Pr = 1 have a peak in heat flux only for Ra > 9500, and
a peak in streamfunction only for Ra > 5500. Since these corresponding values are
not too different, it is safe to conclude that the transition to flows with peaks is only
weakly dependent on Pr.

The oscillations reported in § 3 are also present with finite Pr, and the basic
behaviour appears to be the same as for infinite Pr. As Ra is increased from a
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(a)
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(c)
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0.0027 0.0050 0.0100

FIGURE 12. Sections of isotherms and streamfunction contours for runs with Ra = 106

at times t = 0.0012, 0.0027, 0.0050 and 0.0100 (left to right) for values of (a) Pr = 1,
(b) Pr = 10, (c) Pr = 100, (d) Pr = 1000 and (e) Pr = ∞. Isotherms are every 0.1 and
streamfunction contours are every 20.

value with steady flow, the oscillation onset seems to be relatively sluggish compared
to infinite Pr and the oscillation period is longer. A quantitative study of oscillation
amplitude and frequency versus Ra and Pr is not complete.
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FIGURE 13. Evolution of Sm for Ra= 106 for Pr =∞ (solid) and Pr = 1000 (dashed) as the
plume head forms, rises, and spreads out along the top.

6. Discussion and summary
There are many estimates of the time required for deep plume formation and ascent

in the Earth’s mantle. Although our model is very simplified with constant viscosity,
two dimensions, a square cross-section, only one width for the hot bottom, and free-
slip sidewalls, these estimates of response time and velocities are still useful to inspect,
even though the numbers would change with different geometrical parameters. A
depth of 3000 km, and thermal conductivity of κ = 10−6 m2 s−1 yields a thermal
diffusive time scale d2/κ of 285 billion years (By). For Ra = 106 and Pr =∞, the
initial plume formation in figure 1 takes ∼0.001, which is equal to 285 million years
(My). Estimating that the initial layer thickness follows

√
t, this gives a local value

Ra = 31.6 at onset of motion. The error function solution for thickness at this time
is smaller than the measured thickness in figure 1 due to small motions that the fluid
has already developed at this time. Thus, the onset of motion here does not support
a common assumption that the localized value of Ra is approximately 103 and close
to critical (Schubert et al. 2001), a result supported by experimental observations
and theory (Chay & Shlien 1986; Davaille & Jaupart 1993; Couliette & Loper 1995;
Davaille et al. 2011) for convection over a uniformly heated bottom. Since the plumes
studied here are from localized temperature, they apparently grow more quickly than
plumes from smoother bottom temperature. Dimensionless time to rise to the top
(figure 2) is 0.0004 units or 114 My and rise time for a particle of upwelling material
following the plume head within the stem is about twice that or 228 My. It is not
a surprise that these are somewhat longer than Earth values estimated from plume
velocities in chambers that are very much greater than plume head diameter, e.g.
15–28 My (Richards, Duncan & Courtillot 1989).

Although some Rayleigh–Bénard laboratory experiments show independence of Pr
for the emergence of oscillations (Krishnamurti 1970), other studies (Busse 1972;
Busse & Whitehead 1974) associate such oscillations only to finite Pr effects so they
incorporate the acceleration terms in the Navier–Stokes equations. The question of
whether uniform viscosity convection at extremely large Pr, such as in the mantle
of the Earth, can oscillate has remained open. Our results clearly show oscillations
with truly infinite Pr, at least over a localized bottom temperature source in a box.
Therefore, the first and second oscillations (figures 7–10) might exist in the mantle
since finite amplitude effects can trigger them. The periods given in table 1, ranging
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from 0.00152 to 0.00435 time scale units, (=0.433 to 1.2 By) are shorter than the
Earth’s age. Therefore, further studies with larger Ra and other geometries would
clarify whether the new oscillations seen here are relevant for the Earth.

To summarize our results, there is a transient plume head for Ra > 6000–11 000
consisting of a blob of hot fluid swept upward by a smooth velocity field. It has
a small amount of internal circulation and it conducts relatively little heat outward
during the rise from bottom to top except for the range 6000 < Ra < 11 000. These
results verify results for axisymmetric flow by Griffiths (1986) with the absence of a
plume head and no recirculation at small Ra. The material following the plume upward
does not flow into the head as it does in transient turbulent high Reynolds number
plumes (Turner 1962) and in injected experiments with large viscosity variation
(Whitehead & Luther 1975; Griffiths & Campbell 1990). The head flattens and is
dissipated away upon contact with the top lid as in Olson & Singer (1985) and then
a steady thermal conduit conveys fluid up from the bottom to the top at the centre
of the cell (Farnetani & Hofmann 2009; van Keken et al. 2009). For large Ra, both
the top central heat flux HF and streamfunction Sm plotted with time have a distinct
maximum as the plume rises and spreads out and then HF and Sm approach steady
values. This sequence agrees with numerical calculations of the evolution of cellular
convection for Ra = 106, Pr = 7 and 20 in a box three times wider than the depth
(Hier-Majumder et al. 2002). In contrast to that study, our calculations produce no
velocity boundary layer. In addition, our oscillation of the flow is not found in other
studies over shorter periods of time or with different chamber sizes. The oscillating
flow changes to a steady flow and then a second oscillation emerges. Previous
experiments that report oscillations in high Pr convection by Krishnamurti 1970 and
Busse and Whitehead 1974 might be related, but those experimental geometries differ
significantly from ours.

These studies provide evidence that laboratory experiments with Pr = 1000 can be
expected to have behaviour very close to the infinite case. Even for Pr = 100, the
flow and temperature only vary by up to 3 % from infinite Pr convection. The largest
effect of Pr is that small Pr convection has temperature and velocity lagging in time
compared to larger Pr during the early transient portions of the flow. After that, the
lag vanishes and the flow is independent of Pr. The balance between buoyancy and
friction shown by (2.2b) is established even for the oscillations.

The results suggest a number of possible new directions. First, the oscillations
have apparently not been analytically or experimentally investigated yet. Second,
these calculations do not seem to approach the similarity solutions involving velocity
boundary layers that are so well known for plumes, thermals, and conduits in semi-
infinite regions (Turner 1962; Vatteville et al. 2009). A project to reconcile such
calculations and similarity solutions would be useful. Third, we have calculated all the
essential results using only a grid of 64 × 64 and a time step of 10−5 (although the
results presented here used a 128× 128 grid and time step of 10−6). Such calculations
have less precision, but they are much faster computations that are useful for student
projects and educational demonstrations.
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