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Abstract The accumulation of frozen liquid around a central passageway of melt as it flows through
a freezing region can make calculations very challenging. To both illustrate and to quantify some of these
challenges from freezing, a model equation is developed. It simplifies the solution of Holmes (2007,
https://gfd.whoi.edu/wp-content/uploads/sites/18/2018/03/MHolmesGFDReport_30151.pdf) for low
Reynolds number single component liquid flow through a long tube that has a wall kept at subfreezing
temperature. This model equation is used in conjunction with three different upstream configurations,
each with parameters expressing their behavior. Analytical and numerical results give the parameters that
have criteria for: the freezing of a compressible upstream reservoir that includes oscillatory behavior; the
freezing of flow fed through a constriction with a large upstream pressure, just like a dripping water faucet
during winter; the evolution of flow in multiple tubes connected by an upstream manifold, where some
tubes end up with full flow and others freeze shut. Numerical runs with 1,000 tubes give a formula for the
spacing between actively flowing (non-frozen) tubes over wide ranges of the two upstream parameters
(flow rate and manifold resistance). Results have implications in various areas in earth science. Some

are: oscillatory and freezing shut criteria for flow of magma from a compressible region, a criterion for
wintertime ice accumulation at natural springs, and the spacing between volcanos.

Plain Language Summary The dynamics of liquid flow in an upstream region are
considered in conjunction with flow through a freezing region. This is because when liquid flows into a
freezing region, the resistance change that arises from the accumulation of solid modifies the upstream
pressure and flow rate in both upstream and freezing regions. This study shows examples of three
different upstream situations with dynamic interaction between upstream and freezing regions. The
interaction leads to complicated results such as oscillations, intense flow channelization in subfreezing
surroundings, and complete freezing shut in some portions of the downstream region. Through the use of
three examples, the fundamental nature of the interaction between upstream and freezing flows helps to
begin to explain the complicated nature of freezing flows in Earth Science.

1. Introduction
1.1. Previous Studies of Solidified Flow Dynamics

As liquid flows into a region with boundary temperature below the solidus temperature, the solid typically
forms near the boundaries leaving one or more melted cores where liquid flows. This is true for both single
and multi-component liquids. With complicated fluids and regions, some of the cores might become tortu-
ous or freeze shut progressively in time. Naturally the conditions separating flow and freezing shut depend
upon the dimensions and geometry of the layout, the relative temperatures of the upstream fluid and the
walls compared to the temperature of solidification and fluid properties (e.g., viscosity, thermal conduc-
tivity, crystal growth rates, liquid composition, and latent heat of solidification) (Epstein & Chueng, 1983;
Gilpin, 1981; Kavanagh et al., 2018; Lock, 1990; Mulligan & Jones, 1976; Richardson 1983, 1985, 1986).
Instead of incorporating aspects of multicomponent composition, the notable feature that is emphasized
here using three different upstream configurations is a dependence upon the nature of the upstream con-
ditions. Although it has been known that upstream pressure and volume flux rates have different effects
on flow (Figure 5 in Epstein & Chueng, 1983; Holmes, 2007; Holmes-Cerfon & Whitehead, 2011), many
studies have not commented on this dependence in both engineering and earth sciences. Instead they ana-
lyze flow into freezing regions by imposing either fixed pressure or fixed volume flux of injection into the
region with little discussion of any flow dynamics that might occur in the upstream region. In engineering
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these include studies of injection molding (Richardson 1983, 1985, 1986), freezing of water (Gilpin, 1981;
Lock, 1990; Mulligan & Jones, 1976; Zerkle & Sunderland, 1968), ventilation (Hirata & Ishihara, 1985; Wei-
gand et al., 1997) and metallurgy (Chadam, et al., 1986; Daccord, 1987). In Earth sciences, examples in-
clude the dynamics and stability of lava and magma tubes (Dragoni et al., 2002; Klingelhofer et al., 1999;
Rubin, 1993; Sakimoto & Gregg, 2001; Sakimoto & Zuber, 1998), glacier drainage (Bjornsson, 1998), and
magma fissure flows (Bruce & Huppert 1989, 1990).

Generally, upstream regions might possess some of their own fluid mechanics in the form of multiple paths,
storage of material with a consequent increase in upstream pressure, a maximum allowed pressure, an al-
teration of flux with pressure or other fluid mechanics. In engineering the injection can come from one or
more pumps or from a reservoir at fixed pressure. In the earth, the source can be magma chambers, mushy
zones, lava lakes or fluids squeezed out by high pressure regions. The fluid flow and pressure distribution in
the upstream regions might change with time or space as the flow resistance in the freezing regions changes
during solidification. This is obvious when pahoehoe develops, as a group of students and colleagues wit-
nessed with me in a lava flow in Hawaii. Each lobe of molten lava broke out and temporarily flowed only to
gradually and increasingly be retarded by an accumulating solidified crust. Meanwhile, the older upstream
crust visibly inflated as lava accumulated there. This greater upstream pressure ultimately ruptured crust at
another location, producing an additional lobe. The result was the accumulation of pahoehoe. The interplay
of solidifying flow with a changing upstream pressure was clearly apparent to all who watched (see two
videos in the Supporting information).

Obviously, freezing must constrict the flow region and increase resistance. The same increase in resistance
occurs if, instead of freezing, the fluid has a viscosity that increases with colder temperature. In that case,
for progressive cooling, a flow becomes focused into narrow channels surrounded by colder, more viscous
sluggish flow. Therefore, the focus into more constricted regions is similar to the focusing by solidifica-
tion. Various geometries that have been studied of fluid flow with temperature-dependent viscosity include:
regular circular slots (Helfrich, 1995; Whitehead & Helfrich, 1991; Wylie, Helfrich, et al., 1999; Wylie &
Lister, 1995); gelatin (Pansino et al., 2019 and citations therein); and cracks (Taisne & Tait, 2011; Taisne
et al., 2011). Therefore, flow with viscosity variation with temperature can also be sensitive to upstream
dynamics.

1.2. A Laboratory Demonstration of Channeling

A laboratory experiment for teaching exhibits transition from wide liquid flow to a flowing channel sur-
rounded by solid. A wax is injected with a positive displacement pump at a constant rate into the center
of a circular slot over a carefully leveled aluminum disk 0.4 m in diameter painted black and kept at a
temperature below the solidus (Figure 1a). The slot (of fixed small thickness approximately 2 mm) is be-
tween a transparent circular polycarbonate lid and the disk. The layout is similar to previous experiments
with paraffin (Whitehead & Helfrich, 1991) and flow of oversaturated water (Kelemen et al., 1995). Both
demonstrate the formation of a channel. The liquid is forced to spread from the center outward over the
cold disk and to make its way to the outer edge. Most of the liquid solidifies, but at least some of it flows
all the way to the edge and spills into a catch basin. The laboratory liquid, 1-hexadecene, is a clear liquid at
room temperature and becomes a white waxy solid at 3.6°C. The cold disk is at —5°C. The volume flux rate
is9.1x 10 m’ "

Figure 1 shows the sequence of liquid flow and solid accumulation. After the pump is started, one frozen
fan of wax accumulates (Figure 1b), followed by a new outbreak of flowing liquid leading to a second fan
(Figure 1c). Then, there are many subsequent cycles of outbreak-fan formation (Figure 1d) so that the se-
quence of fan formation and outbreak ultimately circles around 360°. After 45 min, the total region ends up
being filled with solid. At that point, flowing liquid occupies a comma-shaped region near the center that
was laid down during the fan sequence. The video (in Supporting Information) shows that next, the liquid
forces the lid upward a small amount because the positive displacement pump feeding in the melt at the
center can produce immense pressure when all the material is frozen. A very thin gap between the solid
and lid opens and an axisymmetric flow of melt goes radially outward (Figure 1e). This radial flow is almost
immediately followed by the appearance of one rapidly amplified dark drainage channel extending from the
central hole to the outside rim of the cylinder. The channel becomes progressively darker and wider during
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Figure 1. The evolution to a drainage tube at very small flow rate. Times are (b-e) 5, 15, 30, and 45 min, respectively.
(f) At 50 min the drain tube fully formed.

a five-minute period as the channel melts its way down through the wax all the way to the aluminum disk.
Thereafter, the entire flow occupies this channel of fixed width (Figure 1f). Additional runs have a width of
the final channel proportional to flux rate (C. J. Mills, private communication). Similar results are described
in Kelemen et al. (1995) with ammonium chloride.

1.3. This Study

The purpose of this study is to illustrate the influence on freezing flow by three different upstream regions.
Generally, the flow in freezing regions is difficult to calculate, so to simplify the freezing dynamics, the sim-
plest geometry, tube flow is used along with simplified mathematics. The freezing flow solution in Holm-
es (2007) in a tube is replaced in Section 2 by a model of flow that replaces the complicated calculation of
the thermal fields with analytic functions. The Appendix shows the analysis by Holmes (2007) that leads to
our simple model. Then, three sections show analysis of freezing flow with different upstream configura-
tions. Section 3 analyzes the stability properties of this model when it is fed by an upstream storage chamber
with a free surface in the field of gravity. This is equivalent to a compressible reservoir like the upstream
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condition in Holmes-Cerfon & Whitehead (2011). When performing numerical calculations with the model
equations, freezing shut leads to pressure approaching infinity. There are situations where this causes diffi-
culty that is overcome by either terminating the calculation and setting flow to zero with complete freezing,
or by continuing the calculation and adding another physical process into the model to avoid the large
pressure. We added the physical process of not allowing the radius for the flowing liquid to be smaller than
a “minimum radius.” The flow with this radius is seepage flow that has very tiny volume flux compared to
the other flows in question. This helps mathematically because as flux rate becomes very small, the mini-
mum radius causes the pressure-flux rate curve to bend down and approach zero instead of extending up
to infinity. Thereby, seepage flow allows calculations to continue forever. Numerical calculations produce
oscillations like those with viscosity-temperature variation in the laboratory (Whitehead & Helfrich, 1991).
Section 4 has a second upstream configuration that is like a dripping faucet in freezing weather. The crite-
rion for freezing up/seepage flow is found and explained. Section 5 analyzes flow and freezing up/seepage
flow for multiple tubes (from 2 up to 10*). These are aligned next to each other and fed by a manifold that
connects them together in the upstream region. In these calculations, the minimum radius and consequent
seepage flow avoids pressure in the manifold going to infinity when flow is approaching total freezing,
which produces cross-manifold flow rates going to infinity. The numerical results produce a formula relat-
ing the spacing of active tubes to the parameter expressing a resistance coefficient of each manifold tube
divided by the upstream volume flux rate. Results are applied to some problems in igneous flow.

2. A Model of Freezing Pipe Flow
2.1. Previous Solutions

The model is a simplification of one of the simplest examples: a liquid flowing through a pipe held below
the liquid solidus temperature. The mathematical solutions for this configuration were first developed by
Zerkle and Sunderland (1968), Sakimoto and Zuber (1998), and references therein based on separation of
variables with eigenvalues and eigenfunctions by Graetz (1883).

The analysis is valid for Peclet number Pe = ur, / i of order one and Prandtl number Pr >>1, consequently,
Re = ury / v < 1. Here, u is velocity, v is kinematic viscosity, & is thermal diffusivity, and % is tube radius.
The developing flow at the tube entrance is also ignored so Graetz number Gr = ur; / Lx < 1 with L the
tube length. The same limits apply throughout this paper and in addition all fluid properties are constant
and independent of temperature.

Holmes (2007) and subsequently Holmes-Cerfon and Whitehead (2011) calculated the flow in these limits
into a freezing tube with constant viscosity. Accumulation of solid produces a decrease in fluid-solid radius
in the flow direction (Figure 2). The central attribute that leads to instability of these flows is a pressure min-
imum at some value of flux rate with pressure p approaching infinity as volume flux rate approaches the two
limits of 0.cc as in Figure 2c; large flow rate makes large pressure (pipe flow) and tiny flow rate makes tiny
liquid radius and large pressure. The variables in Figures 2b and 2c are dimensionless using the following

1
scales: O = ;nKLq, and P = ( 4 ,wcLz / rg ] p where Q and P are dimensional volume flux rate and pressure.

The lower case letters are theit dimensionless counterparts. The dimensionless radial direction variables are
their counterparts divided by tube radius. The dimensionless coordinate downstream y is distance divided
by tube length. The only other dimensionless number in this situation is T,, = (T_\- - T[]) ! {T,- -T; ) with Ty
the temperature of solidification, 7y the temperature of the tube wall, and T; the temperature of the inflow-
ing liquid.

2.2. The Simplified Model

For this study, we adopt a simplified formula with one curve replacing the curves like those for different T,
in Figure 2c. Instead of an annulus of solid that has a decreasing inner radius in the flow direction, the ra-
dius varies only in time and not along the tube. The dimensionless equivalent of Equation A2 has a balance
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Figure 2. Sketch of the problem and steady flow solutions for a tube with liquid flowing from left to right with wall temperature below the solidus
(Holmes, 2007). (a) Side view of the simplified model of the tube showing radial and along-axis variables. (b) The dimensionless radius of the liquid-solid
interface down the tube & ( ;(} for four different values of dimensionless volume flux rate. Dimensionless scaling is presented in Section 2. (c) Dimensionless
pressure drop p versus volume flux rate q for two values of T,,.

between volume flux g, the radius of the liquid-melt interface a and the pressure drop across the tube p is
independent of the flow direction. It is

@

=
Il
Qb|.¢:;

The dimensionless Stefan condition (see Equation A6) for the evolution of the fluid/solid interface is a
balance between the growth or decay of a solid with latent heat of solidification and the divergence of the
conductive heat flow there (see also Turcotte & Schubert, 2002, p. 162)

oa(t)
P

igﬁwm»Jmmm} B

The time is scaled using#;, = (r[]gL ulC ;:“"(Ti =T ))t where !, is dimensional time, t is dimensionless time,
Ly is latent heat of solidification and C, is specific heat. Equal values of specific heat for solid and liquid
are used for simplicity. Also, E is dimensionless radial heat flow in the solid and I is dimensionless ra-
dial heat flow in the liquid at radius a. With Stefan Number small, the radius a, which is at the melting
temperature, changes at a time scale slower than the thermal conduction timescale so that a steady heat
flow occurs in the solid along the tube as in Holmes (2007) and Holmes-Cerfon and Whitehead (2011). In
the solid, E[a [,‘r,q.t)) =T,/ ln(a[ ;(,q.t) (see Equation A9 in the Appendix) is replaced by a function that
does not vary along the flow direction. The first term in a Taylor series expansion about In{a) produces
E(a) = -T, /(1- a). The relation is best for a close to 1 with the values changing significantly from Equa-
tion A8 asa — 0.2. Finally, the term1 / f-'(r)in front of E is also set to 1. Physically, this means that the heat
flow formula governs the heat flow in cartesian coordinates through a slab over the inside area of the tube
with a liquid-solid radius close to r = 1. It also means that heat flow (cooling of the flowing liquid) is larger
than would have occurred otherwise. Next, for the heat flow balance in the liquid, hot liquid flows in from
the left and leaves at a lower temperature on the right. The greatest possible heat loss is with [ x.q] =q/4
in Equation 1 with the liquid exiting at the solidus temperature. Therefore, Equation 2 is simplified to
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Figure 3. (a) Side view and (b) end view of the simplified model. (c) The pressure-temperature relation for steady flow. The dashed lines are the same as in
Figure 2. The steady balances of Equations 1 and 4 have the solid curve in (c) for T, = 1.

Using the rescaled variables 4’ =

but Equation 3 becomes

(@) T
L — (1) — 5 (1)
(b) A LC
— —> 9
© ¥—= e
C
| L
4q, —> — 4
[
qu —_— > q;

Figure 4. The three upstream configurations. (a) A compressible
upstream, represented here by a reservoir in a field of gravity with a free
surface fed by constant flux rate. (b) A fixed resistance in series with the
tube fed at constant upstream pressure, represented here by an infinite
upstream reservoir with free surface at fixed elevation in a field of gravity.
(c) Multiple tubes connected with a manifold (top view). Each upstream
location is fed by the same flux rate. This example shows a hypothetical
situation with smaller flow rate in the bottom tube.

da__ T .4 3)
dt l—a 4a

P ' . . . .
e p = T andt’ = T,t, Equation 1 is the same form but with primes

n n

da 1 +q_

E_ l-a a

4

As emphasized above, the compelling justification for these simplifica-
tions is pragmatic rather than physical. The approximations are clearly
not rigorous. Our best justification is that Equation 3 has steady flows
that produce a realistic g-p curve that is easily used for stability studies.
The curve using Equations 2 and 3 (Figure 3c) is a small distance to the
left of the curve with T, = 0.1.

The fundamental objective of this study is to use Equation 1 with primes
and Equation 4 to explore the dynamics with the three different upstream
configurations sketched in Figure 4. The first is a compressible storage
reservoir lying upstream of the tube. The second is a fixed resistance in
series with the tube fed by a reservoir at constant pressure. The third has
multiple tubes connected by a manifold.

3. Compressible Upstream

The addition of a compressible upstream reservoir can be considered
to be a model of a magma delivery system in the earth, and possibly to
planets and moons, too. Time-dependence is a fundamental feature of
magma production in the earth irrespective of composition, temperature
and geometry. Many mechanisms can lead to time-variability in a system
with steady forcing such as volatile content and outgassing, brittle behav-
ior, viscosity variation, and crystal settling, but this model produces time
dependence without them. Additional features such as outgassing and
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viscosity variation might be added later to produce highly eruptive cycles with faster time scales (Wylie,
Voight, & Whitehead, 1999).

The simplest upstream condition consists of a reservoir of fluid of dimensional area A with a free surface
that can go up and down (it is essentially a compressible reservoir even though the fluid is incompressible,
see Figure 4a). It is fed by a constant inflow 4., which is divided by 4T, (The prime in the definition of 4
is left out to be consistent with a steady flow notation of the basic flow that is introduced in Section 3.1.)
Fluid flows out of the reservoir and into the tube with volume flux rate g'. The pressure in the upstream
reservoir obeys

d%: T(ta_q’) (5)

S i}
The dimensionless growth rate is 7 = T 8%
8AvkL

timescale (Stefan number S = L, / C, (T; — Ty ) times r; / ) divided by a timescale for emptying an up-

, where, g is acceleration of gravity. It is equal to the previous
stream reservoir of surface area A by viscous flow through the tube.
3.1. Stability with Compressible Upstream

Flow rate, radius, and pressure are expanded in a series expansion for their amplitudes with a steady com-
ponent and a time-dependent component

q=q+ ‘Il(’)
a=a +a1)
P =po+pi1)
The steady solutions from Equation 4 are
o= —2—=g
»
(1-a) ©
thus
4o
9o +1 ™
and from Equation 1
bo= & 8)
a
thus
4
+1
Po :(qo ) 3- ©)
q0

The shape of Equation 9 has the desired form shown in Figure 3c. The asymptotic log-log slope at large 9o
corresponds to simple tube flow independent of T, and is identical to all the solutions where the flow is so

3
rapid thata, = 1. Minimum pressure of Equation 9 is Po=256/27 = 9.48 at g, = 3 with radius @, = T It has

the same value of minimum pressure as approximately T,, = 0.1 (from Figure 5 of Holmes, 2007). The small
asymptotic log-log slope of 3/1 has no counterpart in Holmes-Cerfon and Whitehead (2011).

Linear stability equations are written assuming ¢ / ¢,.4, / a@y.p, / py < 1. With the usual power series ex-
pansion, Equation 1 to lowest order is

WHITEHEAD

7 of 25

‘[1202/90/%2] 1 [696500410202/6201°01/3Pdo/10P/ - S10°TT1'8TI ST - 8#SIN-uonmusu[ dydesSouead() ‘A1eiqrT [OHM TEN] A9 pantig



AFrl |
o\ 1%
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Earth Surface 10.1029/2020JF005969

@ = 4dma + dp. (10
Equation 4 is
d gq 1
d—+—g+72 al:%, (11)
T (1-a) 0
and Equation 5 is
d
(5 +m3jp1 = Az poapay. (12)

Substituting Equation 10 in Equation 11, to calculate a growth rate, using ¢, = P;,a; ,and settinga.py ~ e”
Equation 12 becomes

(cr + mé‘) o= 3pag + (17)2 = —4zalp, (13)
1-a,

with roots (using Equations 6 and 9)

1 1
o= 5 3p0a027 zzz(‘;— —_—

1 3 4ray (14)
3 .
(1-a)

(1-a) | (1-q)

2 4
3pgag — @y -

The ﬂox;v is unstable if growth rate o has a positive real part. Because 7 and ¢ are positive, the term

Ara
( o 5 is negative and the term under the radical sign has smaller real magnitude than the term to the
(1-a) J

left of the radical sign. If the term to the left is positive, then positive growth rate exists so the formula for

instability is
r r : |
2 4
/ 3ppag — tag - —— > 0. (15)
‘I (1-ay)
/ p’
1000} 10000 / This indicates that if 7 is sufficiently large there is no instability. In ad-
/ / \ dition, at zero growth rate, the radical term in Equation 14 is imaginary
I and the neutrally stable flow oscillates, although for sufficiently small r
100 | 1009/ | the growing instabilities are overdamped. Equation 15 can be rewritten
/ using Equations 6-9 as
P 0 ‘ 0
ol 10, 1 T<7, = (3 - qu)(qu + 1) q; (16)
or
1 . " 3 . .
0.1 1 10 100 7 = (3= 90)Po(%0 + 1)2 qq. (17)
q
0

Curves for five values of 7. for ranges of 9. are plotted in Figure 5 and the
intersection of the curves with Equation 9 determine the minimum value
of 4. for stable flow for each value of 7. - Positive growth, which leads to

Figure 5. Pressure-flux rate relation for the steady flow (heavy curve,
Equation 9, logarithmic axes) along with small and large asymptotic
slopes for steady flow. Dashed curves are neutral stability Equation 16

for five different values of r. The inset shows a sketch of the curve with a
minimum radius added.

instability and presumably ultimately freezing shut, lies to the left of the
intersection and stability to the right.
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The curve in Figure 5 is similar to the one in Figure 6a of Holmes-Cer-
fon and Whitehead (2011), who used the same upstream condition. First,

q 18 i | ' ] flow is only possible above a specific inflow, here it is for g, > 3. Second,
5 | ) 1 I'I the dashed curves are very similar. Third, the limits are the same too. The
0 = L-—’ﬂ (| | — S— limit 7 = 0 has pressure constant for all time according to Equation 5,
(b) 1 185 1|86 187| 188 18|9 190 .191 192 and the flow is stable only with g, > 3 and unstable otherwise. On the
other hand, the limit  — oo has all flow rates stable. Flow rates equal q,,
a o5 4 ] according to Equation 5 and solutions occupy the entire curve. Therefore,
0 0 50 100 150 200 250 the model equation has flow and stability ranges that are similar, but that
(C% 150 —— . . . . . . . disagree somewhat quantitatively with the results for the complete solu-
7100 | tions in Holmes-Cerfon and Whitehead (2011). This helps to justify the
500 R P | ) L | use of this simple model equation instead of the full solution.
185 186 187 188 189 190 191 192
(d) ,10000 3.2. Numerical Results
4 5000 Equations 1 and 5 are easily integrated ahead in time with forward fi-
0 nite-differencing and Equation 4 is used to calculate a new value of ¢'. The
code validation results are given in the Supporting Information. One ex-
(e) 1 " " " " " " i ample, typical of many is shown in Figure 6. The oscillation amplitude ini-
a os —A tially increases. At t = 191.226, when amplitude becomes sufficiently large,
. . there is an abrupt decrease in radius signifying a collapse toward freezing
0 shut. This starts at the instant when the smallest radius occurs in the cy-
(f) , 10000 cle. Although this figure is typical, some cases can be highly damped with
P 5000

_ perturbations decaying exponentially from the beginning. In all cases the
sudden decrease signifies freezing shut and radius plunges toward zero.

0 50 100 150 200 250 300 350 400

At the freezing stage, the numerical calculation has radius shrinking to
f zero at a finite time (Figure 6b). This is clear from Equation 4 because
pressure remains finite from Equation 5 and therefore using Equation 1

Figure 6. Flux rate, interface radius and pressure, for oscillating flow the formulag' /a = p'a" becomes zero and da / ét' = 1. Therefore, at one
for gu= 1.1, 7 = 100 with 2 minimum radius of 0.05. (a) Flux rate for particular time step the radius jumps to a negative value. In every one of

oscillating flow during a short time interval up to t = 191.226 when the
minimum radius is reached. (b) Radius over a longer time interval from

our early numerical calculations, the calculation failed because Equation 4

the start until after the minimum radius is reached. (c) Pressure during crossed zero. This occurred no matter how small the time step was or no
the same time interval as (a) (d-f) The same records up to the time t =400  matter what the numerical method was for stepping ahead in time. At the
until after the second type of oscillation has developed. freezing time step, there are two options. One is to set the flow value in the

that tube to zero. In this case, before that happens, pressure continued to

build up and the smaller the time step, the greater the pressure increase.
Since a more accurate numerical code experiences a greater spike in pressure before freezing, this option is
clearly unacceptable. The second option is to introduce additional dynamics. I decided to substitute a steady
small minimum radius at every time step where the value of the radius becomes either negative or smaller
than a fixed value. Substituting such a minimum radius always produces a small seepage flow that generates
interesting new behavior without numerical failure. For the example in Figure 6, the minimum radius was
first invoked at t = 191.226. After this, seepage flow continues and Equation 5 leads to a gradual increase in
pressure (Figures 6¢ and 6d) that occurs until flow rate is great enough for the seepage flow to melt back and
open the tube following Equation 4. This in turn causes the flow to become periodic because the minimum
radius adds an additional straight line in the pressure-flux rate curve that extends from zero up to a point
where it intersects Equation 9 as shown in the inset within Figure 5. After intersection, a new limit cycle
oscillation occurs (Figures 6d-6f) with pulses of rapid flow separated by very slow flow. Figure 6f shows that
the upstream pressure during the limit cycle is much greater than the original pressure. Numerous additional
calculations showed us that the new limit cycle occurs throughout a wide range of parameter space.

The period of the limit cycle is not the same as the period of the linear instability. Instead, it depends on
the minimum radius value so that the minimum radius is an additional parameter of the model. All aspects
of this limit cycle are affected by minimum radius value including the time for build-up to the start of
the limit cycle, the value of upstream pressure that is needed before the limit cycle begins, the limit cycle
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Figure 7. (a) Upstream elevation h (pressure) and temperature for
viscous fluid flowing out of a cold tube with compressible upstream. (b)
Trajectory of h in phase space (From Figures 3a and 3b of Whitehead &

Helfrich, 1991).

frequency, and the minimum and maximum values of flow rate and pres-
sure for the limit cycle. The limit cycle involves a melt-back of the solid
when pressure builds up enough to make the seepage flow rapid enough.
Surprisingly, this flow rate is less than the flow rate at the instant of the
beginning of the freezing shut event. This is clearly shown in Figure 6e.
Apparently the flow rate at melt back occurs when the linear flux versus
pressure curve for the minimum radius intersects the far left end of the
curve for steady flow as sketched in the inset in Figure 5. This aspect is
noted also by Helfrich (1995) for flow focusing with temperature-depend-
ent viscosity.

The cycles are similar to oscillations in tube flow with temperature-de-
pendent viscosity and upstream compressibility (Figure 7). There, instead
of a minimum radius and seepage flow, the slow flow produces a cold
very viscous “plug.” This flow has a smooth p-q curve without discon-
tinuous slopes that the cusp from the intersection of a straight line and
Equation 9 has our model, sketched in the inset of Figure 5. Both of them
seem to produce the same behavior. A similar increase in flow resistance
occurs both with supercooled ice that produces crystals (Gilpin, 1981)
and in lava flow situations with crystal accumulation and volatile excre-
tion (Wylie, Voight, & Whitehead, 1999).

4. The Dripping Frozen Faucet
4.1. Formulation

The second upstream condition imposed here has the configuration in
Figure 4b. It is inspired by the very well-known flow of water in pipes
and in natural springs that persists during freezing temperatures. In fact,
a common trick used by homeowners and plumbers to prevent pipe rup-
ture during periods of freezing is to leave a water faucet with a dripping
rate that is quite small for small ranges of subfreezing temperature or
for short durations so that the water in the pipe does not freeze shut.
In another example of a similar process, water continues to flow out of
rock fractures long after air temperatures fall to below freezing, resulting
in large accumulations of ice. These can become hazards in subfreezing
railroad and highway road cuts, with some of them reaching great size.

A hint of why flow exists with below freezing temperature is found in the limit of large r (Section 3) which
is equivalent to an imposed steady flux rate where flow continues for any value (Epstein & Chueng, 1983;
Holmes, 2007; Holmes-Cerfon & Whitehead, 2011). Therefore, an analysis of this problem that includes
upstream dynamics of the dripping water pipe is useful.

p=L (18)
a

Second, the upstream constriction, representing the valve in a faucet, can be pictured as a tube of radius /¥

and length L;. The dimensionless faucet pressure drop is thus

1 4
, qroL,
Py =—7F 19
/ er 19
The freezing tube and the faucet (either upstream or downstream) are connected in series to a reservoir at
fixed large upstream pressure p', so that

p'+Rq =p,. (20)
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Figure 8. (a) Three results for the pressure drop in the tube. Heavy curve, Equation 9 with decreasing upstream
pressure for the faucet with R = 2. The critical upstream pressure (tangential line) has a value of 14.11 and determines
K.. (b) Log-log plot of some values of R,.

This introduces the faucet resistance scale R = FJL ! r_;L. A value of critical resistance is to be called R,
The steady flow occurs at the intersection of the basic steady flow Equation 9 and the straight line for Equa-
tion 20 (Figure 8a).

4.2. Stability

In general, the straight line has two intersections over a wide range of p,, one intersection at a tangential
point and no intersections over the rest of the range of p,. For stability, Equations 10 and 11 for the small
perturbations are used along with

p +Rg, =0. (21)

T

Setting g,,p, ~ ¢”', and combining Equations 10, 11 and 21 and then and using Equations 6-25 to simplify
the coefficients, the formula for growth rate is

(a0 +17{(3- @)@ +1) - o'}
o= 2 . (22)
‘10{(510*'1) "’R‘IOA‘j1

Because the slope of Equation 9 is

dp, /dq, = (510 - 3)(‘10 + 1)3 /45 (23)

growth rate is simplified to

(qo + 1)3{7dp0 / dgy — R} .
o flo 1)+ |

4

Thisequation hasasimple physical interpretation. Simply start at the zero flux axiswith the line po + Rgy = p,,
whose intersection with Equation 5 in Figure 8a is indicated by the star. As p,, is decreased, Equation 23 first
begins with a positive value making Equation 24 negative, then it goes through zero at ¢, = 3 and becomes
negative. It is not negative enough to change the sign of Equation 24 until dpy / dgy = —R is reached. That
point defines both a critical upstream pressure and critical resistance &, with stable flow occurring all the
way up to this point. At smaller values of p, there is no solution and freezing shut must occur. For a steady
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flow lying on the other branch (to the left of R,), dp, / dq, < —R. so Equation 27 is positive and steady flow
lying there is unstable.

Instability does not necessarily imply freezing. The perturbation p has opposite sign from 4 so that a per-
turbation with greater flux rate will have pressure decrease and tend to follow Equation 9 around to melt-
back and the steady flow. However, a perturbation with negative flux rate will have pressure increase and
follow Equation 9 to smaller flows and thereby tend to freeze shut. Numerical calculations verify the values
in Figure 8b.

Summarizing this section, faucet resistance R is quantified by a virtual radius with freezing shut very sensi-
tive to its value. At sufficiently large values of upstream pressure p, for fixed R, the freezing is prevented by
the same mechanism as with upstream pressure conditions alone. As p, decreases, the portion of pressure
drop through the faucet (Figure 8a) begins to decrease and the pressure drop pp through the tube increases
because a decreases. Finally, p, reaches a value that is small enough for the pressure drop in the tube to
reach to its extremum for that value of R. Up to this point, the flow has been stable and small perturbations
decay in time, but here Equation 24 indicates that the perturbation reaches neutral stability. Below this
upstream pressure, no steady flow is possible and in addition the perturbation grows. This leads to smaller
and smaller flow until presumably freezing occurs. Therefore, every faucet setting, given by a value of R has
a critical value of p,.

For a faucet, its equivalent radius compared to tube radius could be much less than 1072, resulting in
R > 0O(10%. Hence, flow freezes shut when the pressure and flow rate are reduced to the point with a large
negative slope on the left-hand branch, which Figure 8 shows is considerably to the left of the minimum.
Freezing shut also occurs if the initial steady flow is small enough to lie to the left of R..

5. Multiple Tubes

Branching tubes are a model of sheet flow. Holmes (2007), numerically calculated flow in branching
tubes where the source was comprised of a manifold connecting a large number of tubes. The manifold
was simply tubes at the upstream temperature connecting the upstream tubes together. It received
uniform inflow along its entire length. The mathematical solutions were numerically stepped ahead in
time to see the evolution of flows. Fifty identical tubes responded subjected to influx values that were
small enough so that only six or seven active tubes with volume flux rates to the right of the minimum
in Equation 1 resulted with the rest freezing up. The calculations verified the expectation. It was neces-
sary to set to zero the flux of any tubes that were freezing up and letting the pressure distribution along
the manifold be determined by active tubes alone. Helfrich (1995) calculated planer flow with fluid
having viscosity variation. This achieved flow focusing into discrete locations. Both results suggested
that flow focusing is a topic that could be fruitfully quantified over wider ranges of parameters since
only a small number of cases were considered. They motivated this study of multiple tubes connected
by a manifold.

5.1. Two Tubes—Formulation and Analytical Results

Consider two tubes each fed by a source with flux rate g, with their upstream ends connected together by a
“manifold tube” with flow back and forth (Figure 4c). An upstream pressure at the source, although possi-
bly interesting, has not been analyzed yet. The relations corresponding to primed Equation 1 are pressure
pl’ for tube 1, and, using similar notation for the pressure in tube 2, and also for the flux rates and radii of
both tubes.

pl' = ql'/ al®, (25)
Pressure p2' for tube 2
p2' =q2'/ a2* (26)
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The equations corresponding to Equation 4 are

dal 1 ql

- + 4 27
dr 1-al al @n
da2 1 2!
Sl S Ly (28)
dt 1-a2 a2

The manifold tube is kept at the upstream temperature and has different length and radius than the cooled
tubes. Manifold flow resistance is inversely proportional to a resistance coefficient defined as C = La,'f, / L,,,rdL
with &,, the dimensional radius of the manifold tube and L, the physical length of the manifold tube. The
two upstream conditions are

ql'+ q2' = 2q,, 29)
and
q'— q2' = C(pl'- p2'). (30)

Expanding as before, the notation of the previous sections can be used by adding a second subscript for the
ith tube so for example gi' = g;,; + ¢,; and the equivalent equations to Equations 6-18 for steady flows are

Do = (40' + 1)4 / q&,withi =12 31
and
y;
q o s
L ag; (32)
S0
o
Ay = —
o 7o +1 (33)
do1 *+ G0z = 2> (34)
and
o1 =92 = C{Poz - Pm)- (35)

Obviously, two equal flows are possible with o1 = do2 = duwand Po1 = Poz2. Another solution with unequal
but steady flow rates exists because of the intersections of Equation 31 and the straight line Equation 35.

Examples for four values of C are shown in Figure 9. Intersections lie above the minimum ﬂ%q =—Cat
C=q\1(q,+1) (3-q,) (36)

and it is simply the inverse of the slope Equation 23. Some values of C have interesting behavior. First,
the limit of large C is a horizontal straight line with two steady solutions, obviously only valid above the
minimum so that in this limit g, > 3, since otherwise Equation 34 is not satisfied. For finite C, the solution
of Equation 36 involves a fourth order polynomial with unknown analytical solutions. Numerical results
of Equation 36 are easy to calculate by setting ¢, and finding C. For C = 1, for example, the minimum up-
stream flux rate allowing the solution is 4, = 2.25208. (One can also expand the polynomial about the value
9/4 to find a close approximation to this). Therefore, for C = 1 and 4, < 2.25208, there is no intersection so
that the only possibilities are either 401 = gu2 or unsteady flows. Although one might expect that a flow with
small 4. would have a steady pair of rates with gy, = 24, with virtually all of the flow exiting through one
tube and with the other tube almost frozen up, this is impossible because with Equation 9 a small flow pro-
duces an extremely large pressure that is too large to satisfy both Equations 29 and 30 for fixed 4.. Although
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Figure 9. (a) Steady flows for two tubes with four values of C. The thin straight lines satisfy Equation 30. The dashed
curves are at the margins of Equation 44. The short tangential lines show slope at minimum g,. (b-d) Numerical
results. Trajectories with two tubes over time of @i(thick red line), @ (thin red line), ¢’ (thick green line), and ¢, (thin
green line), for three different parameters. (b) 4, = 2, C = 1 with initial flux rate values close together progressing to
seepage flow in one tube and full flow in the other. Inset shows the three branch curve. (c) For 4, = 4, C = 1, with very
different initial flux rates, the two flux rates and both radii progress to equal values. (d) For 4, = 0.01, C = 1 with initial
flux rates close together the flow rates diverge to seepage flow in one tube and full flow in the other.

the minimum radius has not been discussed so far in this section, this “impossible” dilemma is resolved by
adopting the minimum radius that results in one large flow in partnership with one seepage flow. Conse-
quently, the minimum radius is used in all the numerical calculations of multiple tubes.

The range of possible steady flows has been found, but are they stable? The steady flows have equations
governing small time dependent perturbations that are first, the equivalents of Equation 10 for each tube
(i=12)
3 4
q; =4agpopn; +ag b (37

and second the equivalent to Equation 11

day; 1 : .
. 1. ey 1 (38)
dt (1-a.,f o
The conditions in the upstream tube connecting them are
g+ g2 =0, (39
411 =4, =C [Plz —Pu ) (40)
It is convenient to modify Equation 37 using the equivalent of (2.5) to eliminate @,
, 4poil g0 +1)
P 0il 90
i = i‘Ili 7;%# (41)
qoi qui
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Unfortunately, the algebra for two unequal flows is very complicated and is not developed but the analysis
for two equal flows is straightforward. Using Pn = Poz and 401 = 9oz = 4 with Equation 40 to eliminate Po;
and combining with Equation 41 gives

4 pyy (‘101 + 1]

ap —a12)~ (42)
3
C gy + Py

(f]11 —‘112) =

The two equations for Equation 38 with i = 1, 2 are subtracted and Equation 42 is incorporated to become
the relation

3

d(all *alz) N (‘101 +1) 41’01(%}1 +1)2
dr’ 9o1 (C_]qgl + Go1 Por

) (au - alZ): 0. (43)

The growth for this radius difference is positive if the value within the square brackets is negative, which
becomes, after some manipulation a familiar formula

4 (4, +1)
Por > (44)
c(3-4,)
Rewriting this using Equation 31, positive growth for instability requires
¢
C> ———+— (45)

(4. +1)'(3-4)

which has a margin at Equation 36, with selected values shown by dashed curves in Figure 9. Their inter-
section with the steady flow curve (bold) gives values of the critical flow rate and Equation 44 shows that
this occurs exactly at the tangent to the curve. Therefore, for both two tubes with identical flow rates and for
the dripping faucet, a steady flow is stable in the entire range where the upstream volume flux rate is large
enough to satisfy the steady flow equations.

5.2. Two Tubes, Numerical Results

The numerical calculation advances the two values of a by one time step using Equations 27 and 28 using
forward finite-difference and then calculates q using these formulas derived from Equations 25, 26, and 30.

1;4 — Q‘qual4 1+ £

K 4 4 2 4 4 c [ (46)
a” +a2 +Ca1 a2

i 2qa2t [, a*

1 4 4 2 4 4L c | (47)
al® +a2” + Cal a2

Then, the new values determine both pressures at the new time. In practice, one tube might begin to freeze
and end up with radius shrinking rapidly toward zero when seepage flow occurs with the minimum radius
(See inset in Figure 9a) as in Section 3. The code is validated (see Supporting Material) by comparing the pa-
rameters for stability of flows with Equation 45. For g, = 2 the instability occurs with C > 16/27 = 0.59259.
To start, the initial flows in the two tubes are specified and the value of critical C is numerically calculat-
ed by trial and error. Results show that stability depends on the initial flow values. Starting with g1’ =1
and ¢2' = 3, instability occurs (up to the fifth decimal) for C > 0.30682; then with g1' = 1.8 and ¢2' = 2.2
C > 0.57826; next, with ¢l' = 1.98 and ¢2' = 2.02, C > 0.59245; and with = 1.998, and =2.002, C > 0.59259.
Therefore, the stability criterion depends ongl’, ¢2'and C. A comparison is also made between stability
prediction Equation 45 and numerical runs with values of minimum radius of 1073, 10~* (the value used
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in subsequent calculations) 107> and even 10™". They all agreed. The value of minimum radius does not
determine stability.

Other numerical results over a wide number of parameters verify the analytic formulas in Section 5.1. The
Matlab code is quite simple and written out in the Supporting material. Figures 9b-9d has examples for
three parameter pairs: one starts with unequal flows that approach balanced flows (panel c); and two cases
start with almost identical flux rates that go unstable to having all the flow in one tube and seepage flow
in the other tube (panels b and d). Finally, in no case have two unequal flows that satisfy the straight line
intersections in Figure 9a remained steady. Flows always evolve to either two equal flows, or to full flow in
one tube and seepage flow in the other.

5.3. Many Tubes—Numerical Results

Numerical calculations are easily formulated for more than two tubes. Each tube radius is advanced in time
based on the radius and flux rate within each tube using equivalents of Equation 27. Then, to calculate flux
rate at the new radius, the Equations 46 and 47 must be replaced. First consider the pressure drop between
tubes i and j

qi - qi' = C(pj' - p). (48)

This, along with the equivalent of Equation 25 for each pair of tubes along the manifold, that are spaced
‘:’ - j| apart becomes

1+—C
ai*f - j| aj4(+'—j|ai4+c)
q' = qi' =ql’ T ) “49)
- C ai k—]‘(aj +C]
@'~
Then, one can use Zj'-'v_] gj' = Ng, to express flux for the i-th tube
N a]4 (|i7 j|az4 + C) B
gi={x ———— <l ng, (s0)

gt (|i— jla +C)

This resets flux rate for each tube after which the cycle is repeated.

To begin a numerical calculation, a fixed value of q,and C is specified and the initial radius for tube num-
ber i is given the flux rate ¢,(0.9995 + 0.0001var(i)) where var(i) is a random integer between 0 and 10
produced with a numerical random number generator. Radii and flux rates in each tube thereafter advance
in time until steady state is reached. Validation of the program (in Supporting Information) was made by
closely following each time step with a 10 tube manifold and checking that each individual tube flow obeys
Equations 25-30.

When instability develops with some tubes having larger flows and others smaller ones, Equation 50
proceeds without interruption even after seepage flow develops. Invoking a minimum radius is essential
since otherwise Equation 50 develops “shrinking denominators” as some radii become very small with a
consequential immense increase in pressure leading to unphysically large manifold flows and numerical
instability.

Figures 10a and 10b shows a typical evolution of flux rate and radius for 101 tubes. The time step is small
enough to allow different wavelengths of a perturbation to test for different growth rates as found with tem-
perature-dependent viscosity (Helfrich, 1995; Wylie & Lister, 1995), but they are the same. All calculations
exhibited no selective wavelength. Instead, the random perturbation profiles of both the flux rates and radii
remain almost perfectly preserved during instability growth. The preservation continues throughout an
“early stage” (up to t = 0.3 in Figure 10). This stage terminates at different times depending on perturbation
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Figure 10. (a) Flux rate and (b) radius at various times starting from random initial conditions (q, = 0.1, C = 1, N = 101). The first two times are during “early
evolution” when the distribution profile is amplified without change of shape. The next two times are during “middle evolution” when the profiles change
because some of the radii become much smaller and each flux rate either grows or decays. The bottom two times are during “final evolution” when flowing and
seepage tubes become fixed. The six flowing tubes end with equal rates and radii with all other flux rates and radii shrunk to negligible size. (c) The number of
actively flowing tubes for 1,000 different runs (q, = 0.05, C = 1, N = 1,000). (d) The spacing of tubes N/# versus q/C"* (log-log) with a legend of symbols for
values of C. (e) (linear) and (f) the number # of flowing tubes (log-log).

size, q, and C. Suddenly, at a time that depends on the parameters (from ¢ = 0.35 to 0.4 in Figure 10), there is
an “intermediate stage” where the profiles and radii have order one variation and they begin to dramatically
change. Some radii and flow rates plunge toward zero and others increase. The evolution of each individual
tube is not understood. For example, a tube radius might first decrease and then increase or vice versa as
the upstream manifold pressure distribution readjusts. Last, Figure 10 shows that a late stage follows and
at t = 2 some tubes approach seepage and others fully flow. Ultimately, all flux rates and radii in the active
tubes become almost exactly equal and all seepage flux rates do too. A cross-manifold flow remains that
distributes fluid from the uniformly spaced sources to the active tubes. In this model, the ends of a manifold
have zero lateral flux rate and this exerts some influence not yet documented or understood. In spite of this,
results are clear. For example, the steady final distribution at ¢t = 2 for g, = 0.1, C = 1 ends with in flow in
six tubes (Figures 10a and 10b). In smaller gq,, only one tube has flow, and this persists even for q, small
enough for seepage flow in the final tube. A sequence with an unchanging distribution in the early stages of
a numerical model with viscosity variation of cylindrical-slab flow seems to be similar to this (Figure 14 of
Helfrich, 1995) ending with one flowing region and where everything else is decaying away.

Our small minimum radius value of 0.0001 that is used for all calculations makes reproducible results that
are subject, of course, to the limits of random initial conditions. The seepage flux rates are very tiny in the
volume flux budget at the end of all calculations. For example, even for an extreme case with 1,000 tubes
where only one tube remains active at the end of the freezing up/seepage flow sequence, more than 99%
goes through the active tube and less than 1% of the imposed flux going through the 999 seeping tubes.

This evolution of small perturbations that evolve to flow that is equal in selected tubes with seepage flow in
the others occurs in all 1,183 numerical runs. The results in Figure 10 are listed in the Supporting Tables. All
runs span wide ranges of g, (107>-100), C (10 ~*-1¢%), and N (2-10,000). Each realization follows the nonlin-
ear evolution ending in a few actively flowing tubes with equal flux rates (Figure 10a) and radii (Figure 10b)
at t = 2. Some effects of the manifold ends exist. A a variation of the spacing away from the center becomes
more than 10% for N > 1,000. With random initial conditions, the final number of active tubes, #, has a
statistical spread in 1,000 realizations. This is shown for one case in Figure 10c. The result is insufficient to
determine whether it is bell shaped, which might not happen because of the nonlinear evolution.
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Figure 11. (a) Radius within each flowing tube after a reasonably steady flow is achieved divided by the scaled
manifold radius. The numbered runs occupy a wide range of g, (Figure 10). (b) Evolution of the contours of tube radius
for a 200 tube manifold with sequentially decreased flow rates for C = 0.0001. The sequential values of # are 97, 67, 5,
and 1.

Although flux rates and pressure of active tubes arrive at one point on the p' — g’ curve, no rule is known
governing the final values. For example, the rate in each tube in Figure 10a is about ¢’ = 1.7, which is be-
low the stability value for two tubes in Figure 9a and thereby lies on the unstable branch. Therefore, the
concept of “some flows grow in the stable branch and others decay on the unstable branch” does not hold.
Helfrich (1995) also reports this for flows with fingering due to temperature-dependent viscosity.

After some searching, a systematic empirical dependence between tube number # (consequently spacing
N/#), and the parameter group q,/C”* was found for wide ranges of C (10%) and q, (1.5 x 10%). All tubes
flow for q,/C"* > 0.55 and flow fills fewer tubes for the remaining 154 runs. The trends in log-log space are
linear, parallel and logarithmically close to linearly proportional to the parameter group q./C' H (Figures 10b
and 10d) in spite of no averaging as in Figure 10c for randomness.

Since C is defined to be proportional to a, C"* will be called the “scaled manifold radius.” The linear trends

in Figures 10d and 10f have slopes proportional to (qu /C ”4) ] and active tube spacing N/# is linearly
proportional to scaled manifold radius. To quantify the results further it is useful to note that each volume
flux rate is simply q = Nq./#. All radii are also equal so that the radius « for steady flow in each active tube
is readily calculated using Equation 7. The ratios of this radius compared to the scaled manifold radius
a/C"* for the points shown in Figure 10 are shown in Figure 11a. The ratios are not constant, but they all
are clearly of order one. For € < 1the ratio @ / C "% has considerable variation of a little over 2 with a total
range from 0.3 to 0.68. For C = 100, the mean ratio is 0.225 with a standard deviation of 0.003. For C = 10,
the mean ratio is 0.082 with standard deviation 0.0088. Therefore, to a first approximation the radius within
a flowing tube is linearly proportional to the scaled manifold radius ' with a proportionality constant
(Figure 11a) that is order one.

The number of flowing tubes is not only statistical, but it is also influenced by history. Figure 11b shows
contours of radius for all active tubes with g, set to four progressively lower values and it is a good illus-
tration of the evolution of active tubes. When this run is continued with the opposite sequential increases
up in g, there is hysteresis with no increase in the number of active tubes. This hysteresis is explained by
considering that for flow in a single tube, the total flux rate is 0.04 X 200 = 8 making an upstream pressure
of about 12 (see Figure 5). This pressure makes only a tiny seepage flux rate of 1.2 x 10" but the seepage
flux rate needed for the straight line of seepage flow to intersect Equation 9 exceeds 1.
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In summary of this section, the model curve in Figure 5 causes problems by building up huge pressure in
the manifold. This produces instability characterized by immense flows back and forth. The imposition of
a minimum radius (Figure 5 inset) removes this difficulty. Consequently, the numerical calculations work
well at documenting evolution for N < 1,000. For q,/C”* < 0.55 both the spacing between active tubes and
the value of the active tube radius depends primarily on the scaled manifold radius C"* divided by g, For
growth from random noise, the relation between q, and # has statistical results that cluster around a central
peak.

6. Discussion

A simple model is used to analyze a number of flows with three different upstream conditions. Explicit
formulas for stability and other aspects of each flow lead to insight into the dynamics of freezing for each of
them. For a compressible upstream chamber, the two limits of imposed upstream pressure for small 7 and
constant flux rate for large ; are recovered. There is a range where instabilities oscillate similar to Holm-
es-Cerfon and Whitehead (2011). For the frozen water faucet configuration, freezing shut occurs when
the pressure change with volume flux rate of the flow equals slope of the curve as shown in Figure 8. For
branching tubes, Equation 25 indicates that freezing shut of one of a pair of tubes occurs if the inverse of
the resistance coefficient between the two tubes upstream is greater than the tangential slope as in Figure 9.
For all three configurations, numerical calculation for this model with finite time steps does not extend all
the way to perfect freezing unless a special numerical addition is implemented to remove high pressures for
very small flow. A minimum radius is used to allow numerical integration to proceed to final flows.

The compressible model is intended to be the simplest possible model of a time-dependent magma delivery
system, although no specific application is in mind. It omits variations in volatiles and viscosity, but it has
these three important elements:

1. There is a single reservoir driven by a steady influx of material. The reservoir accumulates pressure to
drive the melt upward through the colder surface of the earth. The reservoir in this model is linearly
compressible, but that compressibility is meant to replace all the effects of buoyancy force driven by the
density difference between magma and rock as well as the excess pressure from the elastic surroundings
as magma accumulates under the region.

2. There is a permanent pathway to the surface, represented here by a simple cold tube with the added fea-
ture that it allows seepage flow. The pathway in our model represents a variety of natural pathways that
guide magma ascent. There are cracks from stress in the elastic plate (abundantly observed seismically),
the presence of brittle and weak material that develops cracks easily, and preheated aseismic pathways.

3. The melt can solidify along the tube. There are no volatiles, flow is one-dimensional low Re flow with
composition and viscosity constant. Many magmatic systems (especially lavas) have laminar flow as
used here (Dragoni et al., 2002; Klingelhofer et al., 1999; Rubin, 1993; Sakimoto & Gregg, 2001; Saki-
moto & Zuber, 1998). Most important, the model eruption cannot happen unless the outflow is rapid
enough to melt back the solid sheath of the tube (like the classic melt-back of a fissure as in Bruce &
Huppert, 1989).

The dynamics of the spacing of active multiple tubes and the relation between spacing and the scaled man-
ifold radius C~"*over a wide range of the values of C is obviously caused by the relatively close correlation
between active flowing tube radius and scaled manifold radius. There is a small influence on spacing by the
actual value of C. One might expect that these relations will not be the same for temperature-dependent
viscosity laminar flow.

Although flow and freezing shut with true solidification differs from flow with viscosity variation, we found
that invoking a minimum radius makes solidifying flows very similar to flow of fluids with large temper-
ature-dependent viscosity. For example, when our minimum radius is inserted, there is a branch of the
pressure curve that bends down to zero as flow approaches zero (Figure 5 inset), just like flows with temper-
ature-dependent viscosity (Helfrich, 1995; Whitehead & Helfrich, 1991; Wylie, Helfrich, et al., 1999; Wylie
& Lister, 1995). Possibly the model of Wylie and Lister (1995) with a step change in viscosity is the closest
equivalent to our solidification model, although their equations do not include a latent heat of fusion. In
any case, the flow with variable viscosity inherently has a cold plug flow limit that is similar to seepage flow
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so that our new results seem to apply to such problems. A systematic investigation of hysteresis might be
more usefully conducted with viscosity variation.

A minimum radius in both Sections 3 and 5 is fundamental if one wants to avoid the discontinuity of freez-
ing shut. For Section 3, the flow rate-pressure curve must have two extrema as in the inset of Figure 5. In
that way, two intersections are stable and the third middle one is not, so oscillations can occur. In Section 5,
the minimum radius prevents excessively large pressures that are associated with very small flow rates and
vanishing radii.

Perhaps other physical processes such as temperature depending viscosity or temperature dependent terms
in the heat equation can be invoked numerically instead of a minimum radius for solidifying flows in a
future study. In any event, the need to invoke a minimum radius makes the results with large viscosity var-
iation and with solidification very similar so future projects might simply use one or the other, depending
on which is most convenient. In addition, some numerical results in Section 3 clearly apply to flow with
viscosity variation and this should also be true for Section 5.

There are innumerable interesting extensions. One can combine these upstream conditions to flows with
both viscosity variation and solidification, or have a slightly porous solid, or incorporate non-Newtonian
flows like those reviewed by Kavanagh et al. (2018), or make a model of sedimentation problems or extend
this approach to more complex flow geometry. It is not difficult to imagine the occurrence of very compli-
cated or even truly chaotic flows. With enough complications, even realistic random-appearing patterns
(Klein, 1982) could probably be generated. It is hoped, however, that the interesting behavior of these mod-
els with relatively simple flow situations can start to explain some of the elaborate piles of material that are
encountered in igneous, frozen and depositional structures in the earth.

For small Stefan number (St = C, {T,- - T_,-) ! L, < 1), the analysis of Holmes (2007) holds and there is
some hope that those (and these) calculations might tie into natural situations. The values seem promising
for many problems involving water, ice and magma. For water in a glacier, C,, / L, = 0.0125 and a typical
temperature difference between an intrusive liquid and the solidus of a few degrees has small St. This also
might be true for some glacial drainage situations, although generally the value of Reynolds number and
frictional heat generation would be great enough to suggest revisions of Equations A2 and A3. The revisions
for turbulent transport of momentum and heat might alter the trend of pressure drop toward infinity at the
approach of zero volume flux. The existing solutions (Holmes, 2007; Zerkle & Sunderland, 1968) seem to
approach small Re in that limit. Although we can guess that flow should become laminar as glacial flows
approach very low flux rate, a full study is still well-warranted. For magma, C , / L ; = 0.0025, and a magma
temperature one or two hundred degrees above solidus has small St. This temperature difference is typical
of most eruptions (values from Turcotte & Schubert, 2002). Volcanic eruptions producing hot water moving
through tubular channels in ice do not fit the small St criterion.

What might these results imply for the spacing of outflows in nature? Let us try first to look at the formation
of vents along a volcanic fissure. The number of tubes for N = 1,000 in Figure 10 is roughly fit by the relation

# = 800g,C " (51)

Make a model of a fissure composed of 10’ tubes spaced L ,,= 10 m apart feeding melt up from a shallow res-
ervoir at a depth L = 1,000 m below the surface. A total fluxof Q =1 m’sis evenly distributed at 1,000 m
depth and therefore the flux per tube is Q = 0.001 m%™". Using ¢, = Q / RZK'LT,, along with magma thermal
diffusivity ¥ = 5 x 10”’m?* s, and T, = 10, gives 4« = 0.020. As a first guess, equating the radius of the
manifold tube to the tube going up to the surface so that r, = r,, and C = L/L, then Equation 51 gives that
#=16/10"? =5 tubes that are active over the 10 km extent so there is a vent every 2 km. With greater depth
of the fissure and everything else the same, then g, is smaller and there are fewer active tubes with wider
vent spacing. These distances are plausible and given the great differences between this simple model and
complex reality, the test seems to be promising.

Let us try a second example—the general problem of magma focusing at mid-ocean spreading centers.
Pretend that there is a manifold consisting of a continuous mushy zone along a 1,000 km long ridge with
vertical tubes each spaced 1 km apart that might bring melt up to the surface. To pick flux rate, we need to
produce a flux that generates an oceanic crust thickness of 7 km with a ridge with a moderate spreading
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rate of 0.1 my™" (=3.2 x 107° m s™"). This gives a flux rate per tube spaced over the 1 km width covered by
each tube of approximately 0.022 m’s™. Using a value of L = 30 km, (a minimum value for the depth), the
same values of thermal diffusivity and T, as above, then the dimensionless value of flux rate is q, = 0.0149.
There is little knowledge of what the equivalent for r,,would be for either mushy zones or magma chambers
under the ocean floor, so for a crude start use C = 1 (Note that a new model with a porous manifold is quite
feasible.) This gives 12 active tubes for the ridge, equivalent to spacing of 83 km. This exceeds the spacing
that is more typically 20-40 km for moderate rate mid-ocean spreading centers. Note also that this calcula-
tion implies that spacing is inversely proportional to flux rate so that with the present parameters ultraslow
spreading centers might have spacings over 100 km and the fastest might have spacing less than 50 km.

These results help explain why magma cannot rise up everywhere in fissures and along spreading centers.
There are presumably ranges of parameters where volcanic intrusions might even freeze shut. Note that the
volume flux rate used here is equal to 0.7 km’/y for the 1,000 km ridge, which reduces to a volume flux rate
for each of the 12 tubes of 0.058 km?/y. This value is in the middle of the range of active volcanos in White
et al. (2006) although they suggest other dynamics for governing the size of the volcanos. There are many
other suggested dynamical factors governing the spacing of volcanos. To name a very few, there is Ray-
leigh-Taylor buoyancy that involves viscosity of the mushy zone (Schouten et al., 1985), there are combined
buoyant, tectonic and mantle-forced flows (Magde & Sparks, 1997), and there is even deeper mantle flow
(VanderBeek et al., 2016 and references therein). Results of this simple model suggest that lateral migration
in the mushy zone with rising modulated by localized freezing dynamics might also be important and these
dynamics can be added to the existing list.

7. Conclusions

A simple model is developed for liquid flowing into a freezing tube. This is used in conjunction with three
different configurations of upstream flow to find parameters for instability leading to freezing.

The three configurations and their stability parameters are:

* An upstream reservoir of finite size is fed steadily so pressure can change with upstream surface eleva-

78Sk

8AvkL’

* A throttled upstream (the freezing water pipe problem) is fed by a steady upstream pressure. It has the
faucet resistance scale R = rchf / r;' L.

* An upstream manifold is steadily fed by constant flow and it empties through two or more tubes so pres-

ol LT

* Approaching very small values of each of these parameters produces freezing for an upstream flow less
than three. Approaching very large values of each parameter has no freezing.

» Numerical runs frequently have a difficulty when freezing is approached that is removed by allowing a

tion. This has the dimensionless storage rater =

sure can change within the manifold. This has the manifold flow resistance parameter C = L&

minimum radius in the tube. Then, runs successfully occur over all time with all values of the parameters.
*  With multiple tubes, the active tube spacing is proportional to C 1 q. with the others seeping. Therefore,
an active tube adopts a resistance that is proportional to the cross manifold resistance.

Appendix A: Solution for Freezing Flow Through a Tube

The solution in Holmes-Cerfon and Whitehead is based on Holmes (2007). The development is briefly re-
viewed here. A liquid at temperature T; flows into a tube with a radius r, and length L whose wall is kept at
temperature Tj. The liquid's coefficients for thermal conductivity, specific heat, density, viscosity, and latent
heat of fusion are all constant. The coordinate system has x in the tube's axis direction starting at the tube
entrance and r in the radial direction. Axisymmetric flow and temperature are assumed. The equation of
motion is

[i i v]a =-VP + W2 (A1)
aty
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where it is velocity vector, P is pressure, and dimensional time is #;. (Elsewhere in this paper, ¢t denotes di-
mensionless time.) If 7, < Ts where Tis the freezing (solidus) temperature, then liquid fills the tube up to
the interface radius r = a(\ t d) and solid exists from there to r = 1.

We look in the limits with Peclet number £¢ = ury / k of order one and Pr >> 1. Therefore, here we take
K/ 1y for a velocity scale, r, for a length scale and r[,z / x for a time scale. Consequently, the left hand side
of Equation Al is multiplied by PF' and to the lowest approximation it is zero so the flow is laminar
(Stokes flow) (Re = ury [ v << 1) and turbulence is not present. We also take the limit where the tube is long
(r/L << 1) and thereby approximate the flow as one dimensional flow along the tube axis with no deriv-
atives of velocity in the axis direction. The velocity profile is parabolic. We will use another scaling that is
consistent with the above later, and use dimensional equations for the next two steps. The volume flux rate
Q and pressure (P) gradient along the tube are found by integrating the velocity over the radial coordinate r
from the center to the solid surface to produce the simple relation

a__ w0

dx apa’ (x, ‘, ) (A2)
Temperature T obeys the relation

E+L2~VT:1<V2T (A3)

8ld

where xis thermal diffusivity. Using the scalings for velocity, time and aspect ratio mentioned after Equa-
tion Al, heat is swept down the tube by convection and conducted in a radial direction. Furthermore, we
take Graetz number Gr = ury / Lx < 1so the entrance region with thermal development is short compared
to the length of the tube. Temperature field within the solid is called T, and is assumed to evolve slowly
enough for thermal conduction to be steady. Therefore, we investigate results when 0 / oy < k / 7. Heat
flow in the solid is steady-state and radial so the solution is

T, -T r

T, =—0 "5 | T..

CpTo na(x,td)Jrs (A4)
a(x,td)

In the liquid, temperature T is advected along-stream and diffused across-stream.

LT _xofor s
ox rorl or)

T
This has boundary conditions T= T; at r =a(x.;), T= T;at r = x = 0, and " = (0 at r = 0. Equations A2,

A4 and A5 are independent of time and the mathematical solutions are known (Epstein & Chueng, 1983;
Holmes, 2007; Holmes-Cerfon & Whitehead, 2011; Sakimoto & Zuber, 1998). However, in addition, any cal-
culation that starts away from the steady balances follows the Stefan equation (Turcotte & Schubert, 2002).

1L, 0 (x,zd )_ | on

c, oy or

oT

- (A6)
b= aferg) O L ale bg)

Where 7, is temperature in the solid, Ly is the latent heat of fusion from liquid to solid, and the liquid and
solid have the same values of both specific heat €, and k. We also use the limit for Stefan number St =
c,(T - Tg] / Ly <1 in which the change in radius varies slowly enough for the steady flows of Equa-
tions A2-A4 to have a parametric evolution of e(x.l;) for use in conjunction with Equation A6.
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Before showing the curves for the steady results, new non-dimensional forms are adopted that are consist-
ent with the scales and the arguments given above, but also incorporate Equation AS. The new scales are:

4 ;rn’f r

4

= (rOZLH 1Cox (T, - Ty ]]t,x =Ly.a= ga(r.t) 0= %m«Lq, and P =
Ty

The dimensionless form of Equation A2 is integrated along the entire tube to

A =)= )

a(z1)

so that it represents the pressure at the inlet given that pressure at the exit is set to zero. Next, Equation A5 is

) ) e )]

al x.t)

The dimensionless conductive heat flow at the interface within the solid is found taking the radial derivative
of Equation A4 at r = a and scaling it.

-1,
Hdz41) " hnalza4) (A9)

The temperature difference parameter is 7, = {Z"S - TU] / (T,- - ?;-) (This sign and the sign in front of the
right hand side of Equation A8 are both opposite to the usage involving the same symbol in Holmes-Cerfon
& Whitehead, 2011). Finally, the conductive heat flow from the liquid onto the interface is found using
calculated profiles of / ( X q). To calculate I, the solution for liquid temperature ¢ uses the eigenvalues and
eigenfunctions from Graetz (1883) as discussed further in Holmes (2007) and Holmes-Cerfon and White-
head (2011). The results uniformly show that the radius of the solid surface decreases in the downstream
distance (Figure 2c), and for steady flow, the scaling dictates that for given values of Q and & the dimension-
al distance downstream from the origin scales like ¥ / g. This geometric independence from T, means the
four interface profiles in Figure 2c are all versions of the same curve. The pressure drop across the tube is
a function of volume flux rate g with a minimum value over the entire range, and p approaches infinity at
the limits ¢ — 0,00,

List of Symbols

A Dimensional surface area of a reservoir of fluid

c Le, | L,y Dimensionless manifold resistance coefficient between neighboring tubes
Cp, Specific heat

E Dimensionless radial heat flux in the solid at the liquid-solid interface
Gr Graetz number

I Dimensionless radial heat flux in the liquid at the liquid-solid interface
L Tube length (along-axis length scale)

L Faucet equivalent tube length

Ly Latent heat of solidification

L, The dimensional length of a manifold tube between neighboring tubes
N number of tubes in a manifold

P Dimensional pressure difference down the tube

Pe Peclet number

Pr Prandtl number

Q Dimensional volume flux rate through the tube

R Faucet resistance scale

R. Critical value of R

Re Reynolds number
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Stefan number L/C,(T; — T)

Temperature in the liquid

Temperature of fluid at inlet

Dimensionless temperature difference constant, (T — 7y/T; — Ty)
Temperature at the outer radius

Temperature of solidification

dimensionless radius of the solid-liquid interface

Acceleration of gravity

Thermal conductivity

NHENNNNaY

T

. . 4
Dimensionless pressure Pry /4 #KLZ
Dimensionless pressure tube 1
Dimensionless pressure tube 2

T T T ¥® o9
RO

=z

Dimensionless faucet pressure drop q’r{fo / er
Dimensionless flux 2Q/xzL

Dimensionless flux upstream 2Q, /x7L

Radial coordinate

T Tube radius, (radial length scale)

t Dimensionless time

ty Dimensional time

Fluid velocity in tube axis direction

Fluid velocity

Dimensional coordinate along the axis of the tube
Dimensional radius of solid-liquid interface in the tube
Dimensional radius of the manifold tube
Thermal diffusivity k/oCp

Dynamic viscosity

Kinematic viscosity p/p

Density

~

= Q
=

R =

3

IR S <N

Compressible upstream time constant ?rgS;f]{' /1 8Avk L,
Critical

Exponential growth rate

Dimensionless coordinate along axis x/L

a o

=

Additional Notation
A prime denotes a renormalized value (see Equations 3 and 4).
A single subscript has 0 for steady flow and 1 for time-dependent flow.

Multiple tube notation: If any of the four subscripts: 1, 2, i or j is attached to ¢, @ or p', it denotes the tube
number for multiple tubes. The functions in the stability analysis sections for many tubes have two sub-
scripts. The first indicates steady (0) or time-dependent (1) and the second indicates the tube number.

Data Availability Statement

Data were not used, nor created for this research. MATLAB codes of the calculations and results are listed
in Supporting-information.

References

Bjornsson, H. (1998). Hydrological characteristics of the drainage system beneath a surging glacier. Nature, 395, 771-774. https://doi.
org/10.1038/27384

Bruce, P. M., & Huppert, H. E. (1989). Thermal control of basaltic fissure eruptions. Nature, 342, 665-667. https://doi.org/10.1038/342665a0

Bruce, P. M. & Huppert, H. E. (1990). Solidification and melting in dykes by the laminar flow of basaltic magma. In M. P. Ryan (Ed.),
Magma transport and storage (pp. 87-102). Wiley.

WHITEHEAD

24 of 25

‘[1202/90/%2] 1 [696500410202/6201°01/4Pdo/10p/ - S10°TT1'8TI ST - 8#SIN-uonmusu[ dydesSouead() ‘A1eiqr] [OHM TEN] A9 pantig



A2 |
o\~ 1%
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Earth Surface 10.1029/2020JF005969

Chadam, J., Hoff, D., Merino, E., Ortoleva, P., & Sen, A. (1986). Reactive Infiltration Instabilities. IMA Journal of Applied Mathematics, 36,
207-221. https://doi.org/10.1093/imamat/36.3.207

Daccord, G. (1987). Chemical dissolution of a porous medium by a reactive fluid. Physical Review Letters, 58, 479-482. https://doi.
org/10.1103/physrevlett.58.479

Dragoni, M., D'Onza, F., & Tallarico, A. (2002). Temperature distribution inside and around a lava tube. Journal of Volcanology and Geo-
thermal Research, 115, 43-51. https://doi.org/10.1016/s0377-0273(01)00308-0

Epstein, M., & Cheung, F. B. (1983). Complex freezing-melting interfaces in fluid flow. Annual Review of Fluid Mechanics, 15, 293-319.
https://doi.org/10.1146/annurev.fl.15.010183.001453

Gilpin, R. R. (1981). Modes of ice formation and flow blockage that occur while filling a cold pipe. Cold Regions Science and Technology,
5(2), 163-171. https://doi.org/10.1016/0165-232X(81)90051-3

Graetz, L (1883). Uber die Wirmeleitungsfihigkeit von Fliissigkeiten. Annalen der Physik und Chemie, 18, 79.

Helfrich, K. R. (1995). Thermo-viscous fingering of flow in a thin gap: a model of magma flow in dikes and fissures. Journal of Fluid Me-
chanics, 305, 219-238. https://doi.org/10.1017/s0022112095004605

Hirata, T., & Ishihara, M. (1985). Freeze-off conditions of a pipe containing a flow of water. International Journal of Heat and Mass Trans-
fer, 28, 331-337. https://doi.org/10.1016/0017-9310(85)90066-3

Holmes-Cerfon, M. C., & Whitehead, J. A. (2011). Instability and freezing in a solidifying melt conduit. Physica D: Nonlinear Phenomena,
240, 131-139. https://doi.org/10.1016/j.physd.2010.10.009

Holmes, M. (2007). Length and shape of a lava tube. In Woods hole oceanographic institution geophysical fluid dynamics program proceed-
ings. Retrieved from https://gfd.whoi.edu/wp-content/uploads/sites/18/2018/03/MHolmesGFDReport_30151.pdf

Kavanagh, J. L., Engwell, S. L., & Martin, S. A. (2018). A review of laboratory and numerical modelling in volcanology. Solid Earth, 9,
531-571. https://doi.org/10.5194/se-9-531-2018

Kelemen, P. B., Whitehead, J. A., Aharonov, E., & Jordahl, K. A. (1995). Experiments on flow focusing in soluble porous media, with appli-
cations to melt extraction from the mantle. Journal of Geophysical Research, 100, 475-496. https://doi.org/10.1029/94jb02544

Klein, F. W. (1982). Patterns of historical eruptions at Hawaiian volcanos. Journal of Volcanology and Geothermal Research, 12, 1-35.

Klingelhofer, F., Hort, M., Kumpel, H. J., & Schmincke, H. U. (1999), Constraints on the formation of submarine lava flows from numerical
model calculations. Journal of Volcanology and Geothermal Research, 92, 215-229.

Lock, G. S. H. (1990). The growth and decay of ice (p. 450). Cambridge University Press.

Magde, L. S., & Sparks, D. W. (1997). Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow
spreading ridges. Journal of Geophysical Research, 102, 20571-20583. https://doi.org/10.1029/97jb01278

Mulligan, J. C., & Jones, D. D. (1976). Experiments on heat transfer and pressure drop in a horizontal tube with internal solidification.
International Journal of Heat and Mass Transfer, 19, 213-219. https://doi.org/10.1016/0017-9310(76)90115-0

Pansino, S., Emadzadeh, A., & Taisne, B. (2019). Dike channelization and solidification: Time scale controls on the geome-
try and placement of magma migration pathways. Journal of Geophysical Research: Solid Earth, 124, 9580-9599. https://doi.
0rg/10.1029/2019JB01819110.1029/2019jb018191

Richardson, S. M. (1983). Injection moulding of thermoplastics: Freezing during mould filling. Rheologica Acta, 22, 223-236. https://doi.
0rg/10.1007/bf01332374

Richardson, S. M. (1985). Injection moulding of thermoplastics. I. Freezing-off at gates. Rheologica Acta, 24, 497-508. https://doi.
0rg/10.1007/bf01462497

Richardson, S. M. (1986). Injection moulding of thermoplastics: Freezing of variable-viscosity fluids. Rheologica Acta, 25, 372-379. https://
doi.org/10.1007/b£f01331508

Rubin, A. M. (1993). On the thermal viability of dikes leaving magma chambers. Geophysical Research Letters, 20, 257-260. https://doi.
0rg/10.1029/92GL02783

Sakimoto, S. E. H., & Gregg, T. K. P. (2001). Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows.
Journal of Geophysical Research, 106, 8629-8644. https://doi.org/10.1029/2000jb900384

Sakimoto, S. E. H., & Zuber, M. T. (1998). Flow and convective cooling in lava tubes. Journal of Geophysical Research, 103, 27465-27487.
https://doi.org/10.1029/97jb03108

Schouten, H., Klitgord, K. D., & Whitehead, J. A. (1985). Segmentation of mid-ocean ridges. Nature, 317, 225-229.

Taisne, B., & Tait, S. (2011). Effect of solidification on a propagating dike. Journal of Geophysical Research, 116, B01206. https://doi.
org/10.1029/2009JB007058

Taisne, B., Tait, S., & Jaupart, C. (2011). Conditions for the arrest of a vertical propagating dyke. Bulletin of Volcanology, 73, 191-204.
https://doi.org/10.1007/s00445-010-0440-1

Turcotte, D. L., & Schubert, G. (2002). Geodynamics (p. 482). Cambridge University Press.

VanderBeek, B. P., Toomey, D. R., Hooft, E. E. E., & Wilcock, W. S. D. (2016). Segmentation of mid-ocean ridges attributed to oblique mantle
divergence. Nature Geoscience, 9, 636-642. https://doi.org/10.1038/nge02745

Weigand, B., Braun, J., Neumann, S. O., & Rinck, K. J. (1997). Freezing in forced convection flows inside ducts: A review. Heat and Mass
Transfer, 32, 341-351. https://doi.org/10.1007/s002310050131

Whitehead, J. A., & Helfrich, K. R. (1991). Instability of flow with temperature-dependent viscosity: A model of magma dynamics. Journal
of Geophysical Research, 96, 4145-4155. https://doi.org/10.1029/90jb02342

White, S. M., Crisp, J. A., & Spera, F. J. (2006). Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosys-
tems, 7, Q03010. https://doi.org/10.1029/2005GC001002

Wylie, J. J., Helfrich, K. R., Dade, B, Lister, J. R., & Salzig, J. F. (1999). Flow localization in fissure eruptions. Bulletin of Volcanology, 60,
432-440. https://doi.org/10.1007/s004450050243

Wylie, J. J., & Lister, J. R. (1995). The effects of temperature-dependent viscosity on flow in a cooled channel with application to basaltic
fissure eruptions. Journal of Fluid Mechanics, 305, 239-261. https://doi.org/10.1017/s0022112095004617

Wylie, J. J., Voight, B., & Whitehead, J. A. (1999). Instability of magma flow from volatile-dependent viscosity. Science, 285, 1883-1885.
https://doi.org/10.1126/science.285.5435.1883

Zerkle, R. D., & Sunderland, J. E. (1968). The effect of liquid solidification in a tube upon laminar-flow heat transfer and pressure drop.
Journal of Heat Transfer ASME Series C, 90, 183-189. https://doi.org/10.1115/1.3597471

WHITEHEAD

25 of 25

‘[1202/90/42] ¥ [6965004£020T/6T01°01/4Pd/10p/ - S10°TTI'8TISTI - 8#SIN-uonmnsuy srydesSourao( ‘Arexqr] JIOHM TAIN] 4q pajutig



