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The effect of alongshore wind stress on a buoyancy current’s stability 
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A B S T R A C T   

Buoyancy fronts reach from the surface to the bottom over continental shelves, separating light inshore water 
from denser offshore water, and are known to be responsive to Ekman transport (and associated return flow at 
depth) driven by alongshore winds. The consequent changes in frontal structure are clearly related to changes in 
the gravitational Available Potential Energy (APE), so it is reasonable to expect that these winds will affect the 
eddy field that results from baroclinic instabilities. Idealized numerical experiments and scaling analyses are 
brought to bear on this problem. It is found that several days of wind-driven downwelling (which creates more 
nearly vertical isopycnals) generally leads to an enhancement in the time maximum of volume-averaged Eddy 
Kinetic Energy (EKE). Upwelling-favorable winds (which tend to flatten isopycnals) usually lead to a decrease in 
APE, hence in eddy energy. The exception to this rule occurs when the winds are strong enough that an upwelling 
front forms inshore of the buoyant water, in which case APE and EKE may increase.   

1. Introduction 

Estuarine buoyant outflows generally lead to a relatively fresh cur-
rent over the shelf, flowing alongshore in the direction of free long 
coastal-trapped wave propagation. The offshore boundary of such a 
current often takes the form of a surface-to-bottom front (called a 
“buoyancy front” in the following). These fronts are known to be bar-
oclinically unstable, and they have been studied in a sequence of 
increasingly realistic models over the decades, beginning with linear 
stability calculations (e.g., Flagg and Beardsley, 1978), laboratory ex-
periments (e.g., Griffths and Linden, 1981) and increasingly sophisti-
cated numerical studies that deal with finite amplitudes and an evolving 
eddy field (e.g., Rogers-Cotrone et al., 2008; Zhang and Gawarkiewicz, 
2015; Hetland, 2017; Chen et al., 2019). Quantitative observational 
evidence for baroclinic instabilities in buoyancy currents is not very 
abundant, given the complex ways in which these currents respond to 
winds and other forcings, but Weingartner et al. (1999) do provide such 
information for the shelf north of Siberia. 

There are ample observations demonstrating that alongshore winds 
affect buoyancy currents and their fronts, e.g., off Chesapeake Bay 
(Lentz and Largier, 2006), in the Gulf of Maine (Fong et al., 1997), in the 
Columbia River outflow (Hickey et al., 1998) and off Delaware Bay 
(Sanders and Garvine, 2001). Simple two-dimensional (cross-shelf and 
vertical) coastal models account for many aspects of the wind response. 
(Here, “coastal” is taken to mean that there is a lateral boundary and a 
sloping bottom.) Lentz (2004), for example, shows that an 

upwelling-favorable alongshore wind stress stretches out the front in the 
cross-shelf direction and dilutes the buoyant waters through vertical 
mixing. The net result would be an overall more gently sloping front and 
hence a decrease in gravitational Available Potential Energy (APE, 
which can be thought of as a measure of overall isopycnal tilting). 
Alternatively, Moffat and Lentz (2012) show that 
downwelling-favorable winds lead to a steepening of the front and the 
establishment of separate cross-shelf/vertical circulation cells onshore 
and offshore of the front. The steepening equates to an increase in APE. 
Thus, to the extent that APE is a predictor of Eddy Kinetic Energy (EKE), 
it seems probable that alongshore winds could have a substantial effect 
on the EKE of a baroclinically unstable system. Indeed, Rogers-Cotrone 
et al. (2008) hint that this may be the case by showing that winds affect 
the offshore freshwater eddy flux. 

There exist some interesting contributions concerning the effect of 
along-frontal winds in the open ocean (e.g., Thomas and Lee, 2005; 
Thomas and Taylor, 2010). While these are very useful in terms of un-
derstanding isolated fronts, they do not completely apply to a coastal 
setting for a couple of reasons. Most importantly, the coastal boundary 
means that a two-dimensional configuration must conserve volume by 
having a subsurface cross-shelf flow that is equal and opposite to the 
surface Ekman transport. This deeper flow can create important density 
gradients and, if the water is sufficiently shallow (say 100 m or less in a 
coastal context), this counterflow can be comparable in magnitude to 
the near-surface cross-shelf velocity. Second, in a coastal context, the 
bottom slope is an important factor, especially in terms of how it affects 
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instability, e.g., Blumsack and Gierasch (1972), Hetland (2017). Spe-
cifically, when the isopycnal slope has the opposite sign to the bottom 
slope, linear instabilities grow more slowly and in a narrower wave-
number range than when the bottom is flat. If the isopycnal slope has the 
same sign as the bottom slope, instabilities can grow faster than for a flat 
bottom case, but too strong a slope leads to stability. 

Some aspects of buoyancy frontal instability have been treated 
capably in the literature already, notably Spall and Thomas (2016) who 
concentrate on water mass formation associated with sustained 
wind-driven vertical mixing acting on the eddy field resulting from 
frontal baroclinic instability. In contrast, the present contribution deals 
with the influence of short-lived (several days duration) alongshore 
winds, hence upwelling and downwelling, on frontal stability, hence 
eddy formation itself. As such, multiple idealized numerical model runs 
are executed, and scaling analysis is conducted to characterize the 
wind’s effect on ultimate EKE and on the alongshore eddy scale. 

2. Methodology 

2.1. Calculations 

All calculations presented here make use of the hydrostatic, primitive 
equation ROMS model system (e.g., Haidvogel et al., 2000). Specifically, 
the equations to be solved are 

ut + uux + vuy +wuz − fv= −
1
ρ0

px + (DV uz)z, (2.1a)  

vt + uvx + vvy +wvz + fu= −
1
ρ0

py + (DV vz)z, (2.1b)  

0 = − pz − gρ, (2.1c)  

ux + vy + wz= 0, (2.1d)  

ρt + uρx + vρy +wρz =(BV ρz)z, (2.1e)  

and 

ρ= ρ0[1 − μ(T − T0)] . (2.1f) 

The velocity components (u, v, w) are in the x (offshore), y (along-
shore) and z (vertical) directions respectively. Time is t. The constant 
background density is ρ0 (=1027 kg/m3), while the variable density is ρ. 
Pressure is p, the temperature is T, the Coriolis parameter is f, the ac-
celeration due to gravity is g and the thermal expansion coefficient is μ 
(=1.7 × 10− 4 1/◦C). Subscripted independent variables represent partial 
differentiation. The eddy viscosity DV and eddy diffusivity BV are found 
using the Mellor-Yamada level 2.5 turbulence closure scheme (e.g., 
Wijesekera et al., 2003). The bottom stress τB is linearly proportional to 

near-bottm velocity vB: 

τB = ρ0rvB (2.2)  

where r is a bottom resistance coefficient and bold characters represent 
horizontal vectors. No explicit horizontal mixing or friction is applied. 

The numerical experiments all begin with a tilting (slope γ) surface- 
to bottom front of width Δx in an ocean with otherwise constant strat-
ification (vertical temperature gradient Γ). Specifically (Fig. 1a), 

T = T1+Γz for x < xF+z/γ (2.3a)  

T = T1+Γz + (T2 − T1)
1
2

{

1 − cos
[

π(x − xF) − z/γ
Δx

]}

for xF+z/γ < x < xF+Δx + z/γ
(2.3b)  

T = T2+Γz for x > xF+Δx + z/γ (2.3c) 

T1 and T2 are the surface temperatures inshore and offshore of the 
front respectively so the frontal temperature contrast ΔT = T1 – T2 > 0. 
The initial cross-shelf velocity is zero, and the initial alongshore velocity 
and sea level elevation are in thermal wind balance with (2.3) such that 
velocity at the bottom is zero (consistent with Chapman and Lentz, 
1994). The water depth h always has the form 

h= h0+αx (2.4)  

for x < 75 km, where h0 = 5 m, and the depth is constant for larger x. 
An alongshore wind stress is imposed during the early part of each 

model run: 

τy
0 =

1
2

[

1 − cos
(

πt
tR

)]

τA for t < tR (2.5a)  

τy
0 = τA for tR < t < t1 (2.5b)  

τy
0 =

1
2

{

1+ cos
[

π(t − t1)

tR

]}

for t1 < t < t1 + tR (2.5c)  

τy
0= 0 for t > t1 + tR . (2.5d) 

The ramp time tR is always 1 day. The effect of this wind stress is 
either to flatten out the front when the winds are upwelling favorable (i. 
e. when τA > 0: Fig. 1b, see Lentz, 2004) or to steepen the front when 
winds are downwelling favorable (i.e., when τA < 0: Fig. 1c, see Moffat 
and Lentz, 2012). 

The model domain is cyclic in the alongshore direction (channel 
length of 128 km), and the grid extends to 100 km offshore. Horizontal 
grid resolution is 0.16 km in both the alongshore and cross-shelf di-
rections, while there are 36 levels in the vertical. At the offshore 
boundary, a no-normal-gradient condition is used for both velocity 

Fig. 1. Cross sections of temperature at t = 6 days, immediately after the wind stress ceases and before there is substantial growth of instabilities. Calculated for runs 
6, 8 and 3. The contour interval is 1 ◦C. a) No wind stress, b) upwelling-favorable wind stress, c) downwelling-favorable wind stress. 
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components, and a radiation condition is used for both free surface 
height and temperature. In addition, temperature at the boundary is 
nudged back to its initial state with a time constant of 10 days. 

A total of 44 numerical experiments were conducted (Table 1). 
Among the properties varied were the strength and direction of the 
alongshore wind stress τA, the initial cross-frontal temperature contrast 
(ΔT), the Coriolis parameter f, the frontal slope γ, the bottom slope α, the 
initial ambient stratification Γ, the frontal width Δx, the offshore loca-
tion of the front xF, and the bottom resistance parameter r. The runs are 
grouped in Table 1 so that within each cluster, the wind stress is the only 
quantity that changes. 

2.2. Diagnostics 

For the purpose of diagnostic calculations, all fields are broken into 
an along-channel mean (denoted by curly brackets: { }) and a deviation 
from it: the eddy component (denoted by a prime: ’). Thus, for variable q 

q={q}(x, z, t) + q′(x, y, z, t) . (2.6) 

The mean kinetic energy per unit mass is then 

mke(x, z, t) =
[
{u}2

+{v}2
]
/2 (2.7a)  

while the eddy kinetic energy per unit mass is 

Table 1 
Description of model runs.  

Run F × 104 α × 103 r × 104 xF Δx γ × 103 ΔT Γ τA t1 EKEM × 103 λ APER × 103 Cρ × 103 Cx × 103 Cz × 103 

1/s m/s km km ◦C ◦C/m N/m2 days m2/s2 km m2/s2 m2/s2 m2/s2 m2/s2 

1 1.0 3.933 5. 20. 8. 5. 2. 0.02 − 0.08 5.0 1.473 23.6 11.55 15.64 1.08 2.52 
2 1.0 3.933 5. 20. 8. 5. 2. 0.02 − 0.06 5.0 1.523 26.8 10.82 9.50 0.47 1.97 
3 1.0 3.933 5. 20. 8. 5. 2. 0.02 − 0.04 5.0 1.708 17.6 9.69 7.43 0.28 1.35 
4 1.0 3.933 5. 20. 8. 5. 2. 0.02 − 0.03 5.0 1.667 21.2 8.92 7.00 − 0.10 0.90 
5 1.0 3.933 5. 20. 8. 5. 2. 0.02 − 0.02 5.0 1.434 19.6 7.94 6.10 − 0.25 0.78 
6 1.0 3.933 5. 20. 8. 5. 2. 0.02 0 5.0 1.408 21.2 5.38 3.31 0.83 0.29 
7 1.0 3.933 5. 20. 8. 5. 2. 0.02 0.02 5.0 1.338 18.4 3.35 1.72 0.35 0.17 
8 1.0 3.933 5. 20. 8. 5. 2. 0.02 0.04 5.0 1.168 17.6 3.66 2.16 − 0.20 0.24                  

9 1.0 3.933 5. 20. 8. 5. 3. 0.02 − 0.04 5.0 2.117 24.8 13.98 11.15 − 0.25 2.66 
10 1.0 3.933 5. 20. 8. 5. 3. 0.02 0 5.0 1.869 26.0 8.70 4.58 2.42 1.26 
11 1.0 3.933 5. 20. 8. 5. 3. 0.02 0.04 5.0 1.886 18.4 4.75 2.48 0.08 0.39                  

12 0.5 3.933 5. 20. 8. 5. 2. 0.02 − 0.04 5.0 1.705 41.6 9.52 10.28 − 0.13 1.14 
13a 0.5 3.933 5. 20. 8. 5. 2. 0.02 0 5.0 1.848 36.8 5.38 2.54 2.66 1.24 
14a 0.5 3.933 5. 20. 8. 5. 2. 0.02 0.04 5.0 0.990 52.0 3.07 − 0.45 0.69 0.14                  

15 1.0 3.933 5. 20. 8. 2.5 2. 0.02 − 0.04 5.0 0.982 17.6 6.63 4.88 0.15 0.96 
16 1.0 3.933 5. 20. 8. 2.5 2. 0.02 0 5.0 0.591 20.8 2.79 1.30 − 0.27 0.04 
17 1.0 3.933 5. 20. 8. 2.5 2. 0.02 0.02 5.0 0.529 21.2 1.70 0.90 − 0.03 0.07                  

18 1.0 3.933 5. 20. 8. 10. 2. 0.02 − 0.04 5.0 2.065 22.4 12.67 10.45 0.62 1.24 
19 1.0 3.933 5. 20. 8. 10. 2. 0.02 0 5.0 1.997 25.2 8.23 4.80 1.88 0.87 
20 1.0 3.933 5. 20. 8. 10. 2. 0.02 0.02 5.0 1.886 20.0 5.95 2.45 0.12 0.21 
21 1.0 3.933 5. 20. 8. 10. 2. 0.02 0.04 5.0 2.160 18.4 4.90 2.62 0.56 0.45                  

22 1.0 6.6 5. 20. 8. 5. 2. 0.02 − 0.04 5.0 2.371 28.0 8.48 6.87 0.43 1.37 
23 1.0 6.6 5. 20. 8. 5. 2. 0.02 0 5.0 1.658 31.2 4.89 3.34 0.89 0.38 
24 1.0 6.6 5. 20. 8. 5. 2. 0.02 0.04 5.0 0.726 24.8 2.84 1.84 − 0.19 − 0.21                  

25 1.0 3.933 5. 20. 8. 5. 2. 0.01 − 0.04 5.0 1.105 22.0 9.78 7.65 1.01 1.58 
26 1.0 3.933 5. 20. 8. 5. 2. 0.01 0 5.0 1.075 17.6 6.03 3.33 0.75 0.38 
27 1.0 3.933 5. 20. 8. 5. 2. 0.01 0.04 5.0 1.031 15.6 3.12 1.48 0.11 0.13                  

28 1.0 3.933 5. 20. 8. 5. 2. 0.04 − 0.04 5.0 1.842 21.6 9.19 7.78 0.32 1.14 
29 1.0 3.933 5. 20. 8. 5. 2. 0.04 0 5.0 1.271 28.0 4.32 2.80 0.35 0.32 
30 1.0 3.933 5. 20. 8. 5. 2. 0.04 0.04 5.0 1.061 21.2 3.70 2.62 − 0.86 − 0.21                  

31 1.0 3.933 5. 20. 16. 5. 2. 0.02 − 0.04 5.0 2.15 27.6 12.01 10.97 − 0.55 1.45 
32 1.0 3.933 5. 20. 16. 5. 2. 0.02 0 5.0 1.951 27.6 6.20 3.64 0.48 0.02 
33 1.0 3.933 5. 20. 16. 5. 2. 0.02 0.04 5.0 1.522 18.8 3.95 2.26 0.11 0.01                  

34 1.0 3.993 5. 10. 8. 5. 2. 0.02 − 0.04 5.0 0.358 12.8 3.59 2.97 − 0.04 0.45 
35 1.0 3.933 5. 10. 8. 5. 2. 0.02 0 5.0 0.310 14.4 1.75 1.03 0.03 0.08 
36 1.0 3.933 5. 10. 8. 5. 2. 0.02 0.04 5.0 0.379 19.2 2.59 1.39 − 0.13 − 0.11                  

37 1.0 3.933 1. 20. 8. 5. 2. 0.02 − 0.04 5.0 1.317 26.0 9.19 3.41 0.60 0.52 
38 1.0 3.933 1. 20. 8. 5. 2. 0.02 0 5.0 1.325 18.0 5.38 2.26 0.74 0.36 
39 1.0 3.933 1. 20. 8. 5. 2. 0.02 0.04 5.0 1.151 15.6 4.00 1.91 0.02 0.22                  

40 1.0 3.933 20. 20. 8. 5. 2. 0.02 − 0.04 5.0 1.436 21.6 9.80 7.52 − 0.24 1.09 
41 1.0 3.933 20. 20. 8. 5. 2. 0.02 0 5.0 1.188 23.2 5.38 3.38 0.53 0.34 
42 1.0 3.933 20. 20. 8. 5. 2. 0.02 0.04 5.0 1.038 18.4 3.17 1.73 0.02 0.10                  

43 1.0 3.933 5. 24. 8. 5. 2. 0.02 0.02 10.0 1.196 17.2 4.20 2.32 − 0.10 0.15 
44 1.0 3.933 5. 24. 8. 5. 2. 0.02 0 5.0 1.683 28.0 6.82 4.02 0.69 0.41  

a Runs where barotropic instability dominates over baroclinic. Not used to evaluate the scalings of section 4. 
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eke(x, z, t)=
[{

u′2}+
{

v′2}]/2 (2.7b)  

and the potential energy per mass (averaged alongshore) due to the 
density field is 

pe(x, z, t)= {gρz}/ρ0 . (2.7c) 

Note that the form of (2.7c) makes it difficult to define an eddy po-
tential energy unless further approximations are made. In the following, 
the potential energy associated with the free surface displacement is 
ignored, consistent with the rigid lid approximation (i.e., assuming that 
L2f 2/(gH) is small where H and L are representative horizontal and 
vertical length scales, respectively), an assumption that is well justified 
in all of the present model runs. 

These diagnostics are summarized by averaging over the cross- 
sectional area inshore of x = W (where W = 40 km). Thus 

A=

∫W

0

∫0

− h

dzdx (2.8a) 

The area-averaged mean kinetic energy per unit mass is then 

MKE(t)=
1

2A

∫W

0

∫0

− h

(
{u}2

+{v}2
)

dzdx, (2.8b)  

the area-averaged eddy kinetic energy per unit mass is 

EKE(t)=
1
A

∫W

0

∫0

− h

eke dzdx, (2.8c)  

and the area-averaged potential energy per unit mass is 

PE(t)=
1

ρ0A

∫W

0

∫0

− h

{gρz}dzdx . (2.8d) 

The available potential energy APE is estimated by first rearranging 
the three-dimensional density field so that all density surfaces are flat 
while the mass and volume are conserved. This density field’s PE is then 
subtracted from the actual field to get the APE. 

Of great interest are the conversions among the different energy 
pools. For example, the conversion from potential to kinetic energy is 
given by 

CPE→KE= −
g

ρ0A

∫W

0

∫0

− h

({w}{ρ}+{wˊρˊ})dzdx (2.9a)  

where the first, {w}{ρ}, term is due to along-channel uniform changes in 
the average isopycnal slope. It affects MKE but not EKE. The second, 
{w’ρ’}, term involves changes in eddy kinetic energy associated with 
baroclinic instability. A second important conversion is that between 
mean and eddy kinetic energy: 

CMKE→EKE = −
1
A

∫w

0

∫0

− h

({ux}{uˊuˊ} + {vx}{uˊvˊ} + {uz}{uˊwˊ}

+ {vz}{vˊwˊ} )dzdx . (2.9b) 

The first two terms (involving ux and vx) represent barotropic 
instability, i.e., the energy transformation associated with mean hori-
zontal velocity gradients. In practice, the vx term, involving alongshore 
flow, dominates. The last two terms (which vanish if a quasigeostrophic 
approximation is made) are associated with unstable vertical shears, and 
are potentially important near fronts. Finally, the dissipation of eddy 
kinetic energy is given by 

CEKE→DISS =
1
A

∫W

0

∫0

− h

{
u′(DV u′

z

)

z + v′(DV v′
z

)

z

}
dzdx (2.9c)  

In practice, this integral is dominated by contributions from the bottom 
boundary stress and the bottom boundary layer. 

In order to assess the net importance of each conversion, time in-
tegrals of energy conversions were calculated up until the time tM of 
maximum EKE. Specifically, Cρ is the integral of the {w’ρ’}, baroclinic 
instability, portion of (2.9a), Cx is the integral of the {vx}(u’v’}, baro-
tropic instability, portion of (2.9b) and Cz is the integral of the {vz) 
{v’w’}, shear instability, portion of (2.9c). The maximum value of EKE is 
denoted in Table 1 as EKEM. These values are tabulated in Table 1. 

A representative alongshore wavelength λ is estimated at x = (xF +

Δx), the offshore edge of the initial front, and recorded in Table 1 for the 
time of maximum EKE, t = tM. At this frontal location, the alongshore 
autocovariance function of u is calculated at several depths, and similar 
calculations are done both 2 km farther offshore and closer inshore. All 
of these are depth-weighted and then used to create a single averaged 
covariance function. The first zero crossing of this covariance function is 
taken to be the be approximately one quarter of a typical wavelength λ. 
This is a very reasonable approximation for narrow-band (in wave-
length) processes. 

3. Results 

3.1. Representative evolutions 

Not surprisingly, when there is no wind stress, APE remains constant 
(Fig. 2, upper panel) until perturbations reach a substantial amplitude 
and EKE begins to grow rapidly (Fig. 2, middle panel). In contrast, when 
there are upwelling favorable winds, the cross-shelf circulation flattens 
out isotherms initially (Fig. 1b), and this is expressed as a decrease in 
APE (Fig. 2, upper panel). APE then recovers partially and remains 
nearly constant until, again, EKE reaches a substantial amplitude (Fig. 2, 
middle panel). In contrast, downwelling favorable winds steepen the 
temperature front (Fig. 1c), hence increase APE (Fig. 2, top panel). 
Again, APE declines as EKE (Fig. 2, middle) grows. In all cases, EKE 
peaks after a few tens of days, and APE decreases nearly monotonically 
with time after EKE reaches finite amplitude (Fig. 2, top two panels). In 
downwelling cases, there is typically a brief period (t = 3–10 days for 
run 8) early in the model run where near-surface (e.g., Thomas and 
Taylor 2010) and near-bottom (e.g., Allen and Newberger, 1998) slanted 
in (x, z) roll structures having wavelengths of O(1 km) develop. These 
are especially apparent in cross-shelf velocity where the amplitudes are 
about 0.05 m/s. These features are taken to represent the results of 
symmetric instability, and they are quickly eliminated at the front and 
inshore as three-dimensional instabilities grow. At later times, weak 
(about 0.01 m/s in u) cells in the bottom boundary layer still exist 
offshore of the front. In contrast to many instability problems (e.g., 
Brink, 2016) where the representative alongshore wavelength λ tends to 
increase with EKE, there are at most weak temporal trends of this sort in 
the present context (Fig. 2, lowest panel). Note that the length scale 
estimates for times earlier than about 25 days in the upwelling (τA > 0) 
case should not be taken too seriously because for earlier times, eke 
levels are very low and disturbances then are confined within about 10 
km of the coast. 

At the time of maximum EKE (Fig. 3), eke is largest at the surface and 
near the initial offshore location of the front, again consistent with 
Zhang and Gawarkiewicz (2015), but somewhat surprisingly because 
the wind affects the frontal location well before EKE approaches a 
maximum. Also, as expected when baroclinic instability is dominant, the 
mean isotherms are all flattened relative to conditions before substantial 
instability (compare Fig. 1 with Fig. 3). 

Time series of the energy conversions (Fig. 4) demonstrate that the 
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most important terms, in all three runs, are those representing baroclinic 
instability (Eqn. (2.9a): solid curves) and dissipation (Eqn. (2.9c): dash- 
dot curves). For each case, the vertical shear instability (the {vz} term in 

eqn. (2.9b): dotted curve) makes a modest contribution to the growing 
instability. The barotropic instability term in (2.9b) typically has an 
instantaneous magnitude (not shown) similar to the other conversions, 

Fig. 2. Time series of APE (upper panel), EKE (middle panel) and representative alongshore wavelength (lower panel) for runs with no alongshore wind stress (run 
6), upwelling-favorable wind stress (run 8, τ > 0) and with downwelling favorable wind stress (run 3, τ < 0). These are the same runs as in Fig. 1. The shaded area in 
the first panel represents the period during which the alongshore wind stress is non-zero. Length scales are evaluated at x = (xF + Δx). 

Fig. 3. Eddy kinetic energy, eke (colors) and along-channel averaged temperature (white contours) at t = tM, the time of maximum EKE, for runs with no alongshore 
wind stress (run 6, τA = 0), upwelling-favorable wind stress (run 8, τA > 0) and with downwelling-favorable wind stress (run 3, τA < 0). These are the same runs as in 
Figs. 1 and 2. The contour interval for temperature is 1 ◦C. The eke maxima occur at the surface 30, 26 and 28 km from shore when tM = 69, 54 and 28 days, 
respectively for the three panels. 
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but it varies substantially temporally in sign such that it usually makes 
little net integrated contribution (Table 1). 

These findings are very representative of the other runs carried out as 
part of this study. In no model run does the eddy growth eliminate the 
initial front, although it becomes very contorted by the eddy field, and, 
in the upwelling case, it becomes somewhat more diffuse. Specifically, in 
Fig. 5, the case with downwelling (run 3) consistently shows a very 
sharp transition from red to blue, a 2◦ jump, but with upwelling (run 8), 
the frontal boundary is clearly more gradual (i.e., there are more in-
termediate colors, such as light blue or yellow, present). 

Invariably, over all the runs reported here, the time history of APE 
follows one of the three patterns represented in Fig. 6. When there is no 
wind stress, APE remains effectively constant at its initial value until the 
growing instabilities begin to erode the APE pool. In this case, a good 
measure of the APE available for a growing instability is the initial value, 
APE0. When there is an upwelling favorable wind stress, APE is initially 
reduced and then rebounds to a nearly constant level until eddies reach 
finite amplitude. The rebound is associated with wind-driven alongshore 
flow driving a short-lived upslope dense water transport in the bottom 
boundary layer. In this case, the APE available for eddy growth is rep-
resented by the relatively constant plateau value, APEP. Finally, when 
there is a downwelling-favorable wind stress, the front steepens and APE 

increases to a temporal maximum, APEM, and then decreases as EKE 
reaches finite amplitude. This diversity of trajectories motivates the 
definition of a single APE value, the “relevant APE”, APER, which is 
simply APE0 when τA = 0, APEP when τA > 0 and APEM when τA < 0. 

3.2. General trends 

Invariably, EKE never reaches appreciable values until after the wind 
stress ceases (e.g., Fig. 2). The model results, in all but 2 out of 44 cases, 
show that the baroclinic instability process dominates EKE growth 
(Table 1: Cρ, Cx, Cz). Specifically, the baroclinic conversion Cρ is usually 
the largest, often by an order of magnitude. The two cases, 13 and 14, 
where this is not true are dominated by barotropic instability Cx, and are 
excluded from all further considerations. Both of these runs have a 
smaller f (0.5 × 10− 4 1/s) and thus have stronger shears for a given 
frontal thermal structure compared with examples where f is larger. 
Thus, it seems likely that barotropic instability (which leads to larger 
spatial scales: see λ for runs 12–14 compared to runs 3–8) will be rela-
tively more effective at low latitudes than baroclinic instability. In 25 
out of the remaining 42 cases, vertical shear instability Cz is the second 
largest contributor, while second place is taken by barotropic instability 
in 17 cases. Barotropic instability’s role is rather inconsistent, however, 

Fig. 4. Time series of energy conversions for runs with no alongshore wind stress (run 6, τA = 0: upper panel), upwelling-favorable wind stress (run 8, τA > 0: central 
panel) and with downwelling favorable wind stress (run 3, τA < 0: lower panel). These are the same runs as in Figs. 1–3. The shaded area represents the time during 
which the wind stress is nonzero. The “vertical shear” conversion is associated with {vz} in (2.9b). Note that the vertical scale varies from panel to panel. 
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because it represents a net sink of EKE (Cx < 0) in 14 of the 42 cases. The 
vertical shear conversion is only an EKE sink in 3 cases. All considered, 
for the collection of runs presented here, it is reasonable to say that 
baroclinic instability is the dominant mechanism. 

There is a vague tendency for EKEM (i.e., the time maximum of EKE) 
to decrease as τA increases from negative to positive values (i.e., from 
downwelling to upwelling: Fig. 7, upper panel), and it appears that 
doubling the application time for the wind stress with constant τA is 
equivalent to doubling the wind stress (runs 8 vs. 43 in Table 1). The 
relevant APE (Fig. 7, lower panel), on the other hand, shows a more 
pronounced, but still not completely consistent, tendency to decrease 
with increasing τA, consistent with upwelling flattening temperature 
surfaces and downwelling steepening them (Fig. 1). The two run se-
quences where relevant APE increases for positive τA (runs 1–8 and 

34–36) both appear to represent cases where upwelling removes the 
initial buoyancy current’s water offshore, and deeper, upwelled water 
approaches the surface near the coast (e.g., Fig. 3, middle panel and 
Fig. 5, right panel). 

In some cases, the dependence of EKEM on parameters is relatively 
clearcut. For example, EKEM increases as the frontal thickness Δx, tem-
perature contrast ΔT or slope γ increases (Fig. 8a, c, 8d). The de-
pendencies on ΔT and on γ seem especially intuitive because they reflect 
directly on the strength of the front and its current shear. Further, the 
instability is more energetic as the front’s distance from the coast xF 
increases (Fig. 8b), a finding consistent with Hetland (2017). This 
dependence on xF is rationalized by the scalings in section 4.2.1, which 
show that the pool of APE increases with the front’s distance from the 
coast. 

In other cases, the parameter dependence is less straightforward. For 
example (Fig. 9a), smaller f leads to stronger instabilities when τA =

0 (dropped run 13 vs. 6), but the opposite occurs when τA > 0 (dropped 
run 14 vs. 8). Further, when τA < 0 (run 12 vs. 3), EKEM remains 
essentially unchanged when f changes. The τA = 0 result is under-
standable in light of the thermal wind relation: smaller f leads to larger 
shears, hence a stronger role for barotropic instability. However the 
results with τA ∕= 0 apparently reflect the further role f plays beyond 
determining the shear across a given front. For example, the cross-shelf 
Ekman transport and the depth over which it occurs (hence the Ekman 
velocity: transport divided by depth) both depend on f, and these in turn 
determine the degree to which winds reshape the front (Section 4), 
hence its APE. 

When τA ≤ 0, EKEM increases as the bottom slope α increases 
(Fig. 9b), but it decreases when τA > 0. This finding for τA ≤ 0 is perhaps 
unexpected, given the quasigeostrophic linear stability growth rates of 
Blumsack and Gierasch (1972) which suggests weaker instability for 
larger bottom slopes. Of course, finite amplitude parameter de-
pendencies do not need to agree with linearized solutions, nor do qua-
sigeostrophic (weak frontal slope) findings obviously carry over either. 
Indeed, scalings (e.g., Section 4.2, below) rationalize the τA ≤ 0 result 
because a steeper bottom implies a greater APE. EKEM is not overly 
sensitive to variations in ambient stratification Γ (Fig. 9c) or in bottom 
frictional coefficient r (Fig. 9d), and what dependencies there are 
sometimes are nonmonotonic and inconsistent among wind cases. The 
absence of a strong frictional dependence is somewhat startling, given 
the clear importance of dissipation in the EKE evolution (Fig. 4). On the 
other hand, a weak frictional dependence would seem consistent with 
both the eke distribution (Fig. 3) and Empirical Orthogonal Function 
calculations executed near the eke maximum [i.e., at x = (xF + Δx): not 
shown]: both of these measures show that velocity fluctuations (hence, 
likely, stress fluctuations) are very weak near the bottom. These calcu-
lations show that, at least for the present parameter range, the degree of 
eddy surface-intensification does not depend noticeably on bottom 
friction. This contrasts with models of eddies driven by surface cooling 
over the shelf, where the degree of surface intensification clearly de-
pends on bottom friction (e.g., Pringle, 2001; Brink, 2017), especially 
when r is small. The role of bottom friction is discussed further in section 
5, below. 

4. Scalings 

4.1. Introduction 

At this point, it is useful to encapsulate the model results in terms of 
scalings. These serve more than one function. Primarily, the scalings 
represent convenient formulae that can potentially be applied to real- 
world conditions and so predict the scales or degree of instability. If 
these predictions compare well to observations, it bodes well for the 
applicability of the model results. If the scalings do not serve well vs. 
observations, information may be gained about what is missing from the 
current formulation. Further, in some cases, the argument leading up to 

Fig. 5. Sea surface temperature at the time of maximum Eddy Kinetic Energy 
for runs 3 (downwelling favorable winds, τA < 0: left panel) and 8 (upwelling 
favorable winds, τA > 0: right panel). The two runs are identical except for the 
sign of the wind forcing. The temperature ranges from 14◦ (dark red) to 16◦

(deep blue). 

Fig. 6. Time series of APE for runs 3, 6 and 8 (reproducing the plots of Fig. 2a) 
giving definitions of initial APE (APE0: relevant for runs where there is no wind 
stress to modify APE), maximum APE (APEM: relevant for runs with 
downwelling-favorable, τA < 0, wind stress), and the APE plateau (APEP: rele-
vant for runs where upwelling-favorable winds, τA > 0, decrease APE). 
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a scaling can provide some insight into the underlying dynamics. 
One might expect that the eddy kinetic energy (represented by EKEM) 

of a baroclinically unstable system would be well correlated with the 

available potential energy (represented by APER). Indeed, this is the 
case: the correlation is 0.87, 0.89 and 0.72 for τA = 0 (12 runs), >0 (14 
runs) and <0 (16 runs), respectively. Thus, it is reasonable to 

Fig. 7. Maximum spatially averaged EKE (i.e., EKEM) as a function of wind stress amplitude τA (upper panel) and relevant APE (i.e., APER) as a function of wind stress 
amplitude τA (lower panel). Each line represents a set of runs that are identical except for the wind stress amplitude. In both panels, the heaviest line represents the 
grouping of runs 1–8. 

Fig. 8. Sensitivity of time-maximum EKE to model parameters. a) frontal width Δx (runs 6, 8, 3, 32, 33, 31), b) distance of the front from the coast x0 (runs 6, 8, 3, 35, 
36, 34), c) temperature contrast across the front ΔT (runs 6, 8, 3, 10, 11, 9), d) frontal slope γ (runs 6, 8, 3, 16, 17, 15, 19, 20). 
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concentrate on APER as a starting point in developing a scaling for EKEM. 
Further, one might expect that the efficiency of transfer from PE to EKE 
might depend, among other parameters, on bottom slope α, ambient 
stratification Γ, the Coriolis parameter f and/or bottom friction r. Some 
empirical exploration leads to the finding that an efficient estimate for 
EKEM estimate is 

< EKEM>=
a(1 + cs)nAPER

1 + bR
(4.1a)  

where the angle brackets represent a scaling approximation and 

R=
r

fH
,H = h0 + α(xF +Δx) (4.1b, c)  

and the slope Burger number is 

s=
αN
f

=
α
̅̅̅̅̅̅̅̅̅
gμΓ

√

f
(4.1.d) 

(N being the buoyancy frequency). The coefficients in (4.1a) are 
found by minimizing the error of the fit so that (a, n, c, b) = (0.086, 1, 8, 
0), (0.49, − 1, 2, 0), (0.11, 1, 2, 0.2) for τA = 0, >0 and < 0, respectively. 
The correlations of the fits are (0.95, 0.89, 0.83). Frictional corrections 
(b ∕= 0) yield only minor (a few %) improvements to the fit for τA ≥ 0, 
and are thus neglected under those conditions. The stated values of n, c 
and b yield fits that are (40, 4, 26)% better than would be the case with c 
and b = 0. Presumably, the c correction reflects the efficiency with which 
APE can be converted to EKE. This s dependency is a good reminder that 
EKEM depends on more than simply APER, and so the greater scatter in 
the EKEM vs. τA plot (compared with the APER vs. τA plot: Fig. 7) is not 
unexpected. 

4.2. Available potential energy 

4.2.1. With no wind stress 
APER is easiest to estimate for the case with τA = 0, since it is simply 

the initial APE which only involves an unperturbed front (Fig. 10). The 
approach is to estimate the potential energy anomaly inshore of x = W 
that is associated with the front (i.e., how different is the PE per unit 
mass inshore of the front relative to offshore?). For a domain infinite in 
x, if all isotherms are adiabatically flattened, the waters inshore of the 
front are stretched out near the surface to be an infinitesimally thin layer 
at the surface (z = 0) and thus not contributing to the adjusted PE. Thus, 
the initial PE anomaly (relative to flat isopycnals), averaged over the 
total mass inshore of W becomes APE0. Because the background thermal 
stratification Γ is uniform everywhere, it creates no anomaly and so is 

Fig. 9. Sensitivity of time-maximum EKE to model parameters. a) Coriolis parameter f (runs 6, 8, 3, 13, 14, 12), (The “x” symbol denotes runs where baroclinic 
instability was not dominant.) b) Bottom slope α (runs 6, 8, 3, 23, 24, 22), c) Ambient temperature stratification Γ (runs 26, 27, 25, 6, 8, 3, 29, 30, 28), d) Bottom 
frictional parameter r (38, 39, 37, 6, 8, 3, 41, 42, 40). 

Fig. 10. Schematic used in estimating APER (=APE0) when no wind stress has 
been applied. 
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irrelevant to this calculation. For simplicity, the continuous horizontal 
temperature variation described by (2.3) is collapsed to a sharp interface 
(located at the center of the actual front) which intersects the surface at 
x0 = xF + Δx/2. Given that the interfacial slope is γ, the location where 
the front encounters the bottom is 

xB =
γ

α + γ
x0 (4.2a)  

and the depth there (neglecting h0 henceforth) is 

hB=αxB . (4.2b) 

The cross-sectional area inshore of the front is 

AF =
1
2
hBx0 (4.2c)  

and the average pe anomaly (relative to z = 0) for the triangular area 
inshore of the front is 

− gΔρhB / 3 (4.3)  

with 

Δρ= − ρ0μΔT  

Thus, the PE anomaly per unit mass inshore of x = W is 

< APE0> = −
gΔρhBAF

3ρ0AW
=

gμΔT(αγx0)
2

6(α + γ)2AW
(4.4a)  

and the area inshore of x = W is 

AW =
1
2

αW2 . (4.4b) 

For the 12 runs with no wind forcing, the scaling (4.4a) is related to 
the actual APE0 as  

APE0 = η0<APE0> (4.5) 

where η0 = 0.42 and the correlation of the fit is 0.92. 

4.2.2. With upwelling (positive) wind stress 
When upwelling occurs, it is assumed that the front is distorted by 

surface Ekman transport in the manner described by Lentz (2004): 
(Fig. 11). In this case, the volume of water inshore of the front advected 
offshore has a (x, z) cross-sectional area (shown by shading in Fig. 11) of 

AF =

∫ ∞

0

τy
0

ρ0f
dt=UEt1 =

τA

ρ0f
t1 (4.6) 

Further, assume that there is slab-like flow in a surface boundary 
layer of thickness 

δ=
Du∗
̅̅̅̅̅̅
Nf

√ (4.7)  

where D is taken to be 1.0 in the following: where u* is the friction 
velocity. Thus, after the wind ceases, the offshore edge of the extrusion is 
at  

x = x1 = UEt1/δ + x0.                                                                   (4.8) 

Meanwhile (neglecting changes to upper ocean density due to mixed 
layer deepening), the total volume of lighter water inshore of x = x1 is 
conserved, so the inshore wedge (inshore of x = x2) contracts as the 
extrusion grows. So, the area of the reduced nearshore wedge (denoted 
as unshaded upper-layer water in Fig. 11) is 

AA =
1
2

αx2
0 − UEt1 =

1
2

αxAx2 . (4.9)  

Thus, the cross-sectional area of the extrusion is (x1 – x2)δ = UEt1. 
Adding up the PE anomaly in the extrusion and in the wedge, the final 
APE per unit mass averaged over the area inshore of x = W amounts to 

< APEP> = gΔρ
[

1
6
α2x3

A +
1
2
δ2(x1 − x2)

]/

(ρ0AW) .

= gΔρ
[

1
6

α2x3
A +

1
2

D2u2
∗

Nf
(x1 − x2)

]/

(ρ0AW) (4.10) 

The expression (4.10) is derived under the assumption that the 
offshore transport is not sufficient to cause the light water pool to 
separate entirely from the coast. Specifically, there is an assumption that 

(t1 + tR)< tS =
AF

UE
=

ρ0x0hBf
2τA

(4.11)  

where tS is the approximate time to separation. It is also assumed that 
the extrusion does not carry too far offshore, i.e. that x1 < W. This 
second assumption is readily addressed by adjusting the extruded area in 
(4.10). It should be noted that, in this parameter range, upwelling al-
ways leads to a decreased APER relative to the case with no winds 
because, overall, the isopycnals are flattened out. 

Once the lighter inshore water has separated entirely from the coast, 
the APE evolves as in an upwelling front as described by Brink (2016), 
except that the wind application time is now roughly (t1-tS) and that the 
cross-frontal density contrast is now roughly (ΔT + Γhf/2) where hf is 
the water depth at the final location of the upwelling front at the inshore 
edge of the removed buoyant water (see Brink, 2016, but apply the time 
since surfacing rather than the time since wind onset). Of the present run 
collection, this fully upwelling situation occurs, and this correction ap-
plies, only for run 36, so there is little basis for evaluating its accuracy. 
With the added APE associated with the upwelling front, it becomes 
possible for APER to increase after upwelling (as indeed happens: for run 
36 where APEP is greater than the initial APE), in contrast to the situa-
tion where the buoyant waters do not separate from the coast. 

For the 14 runs with positive wind forcing, the scaling for upwelling 
is related to the actual APEP as  

APEP = ηP<APEP> (4.12) 

where ηP = 0.58 and the correlation of the fit is 0.90. Fig. 11. Schematic used in estimating APER (=APEP) after a positive wind 
stress has been applied. The dashed line indicates the original position of the 
front (as in Fig. 7), before the wind stress is applied. 
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4.2.3. With downwelling (negative) wind stress 
If the time-integrated alongshore wind stress is not too strong, the 

APER is estimated by assuming that the effect of the onshore Ekman 
transport is simply to increase the frontal slope while keeping the vol-
ume of nearshore light water constant. Thus, the shaded area in Fig. 12a 
equals UEt1 and the areas of the two triangles in that figure have to 
match in order to conserve mass. Thus 

− UEt1= − zP(x0 − x1) / 2 (4.13a)  

and, conserving the volume inshore of the front, 

x1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

hBx0
α + γ′

αγ′

√

(4.13b)  

where hB is the initial depth where the front intercepts the bottom 
(Fig. 10). Further, using 

zP=γ(xP − x0)=γ′(xP − x1), (4.13c)  

leads to 

x0 +
zP

γ
=

γx0 − γ′x1

γ − γ′ (4.13d)  

where γ’ (which is calculated using 4.13a-d) is the front’s slope after the 
wind ceases. The adjusted front intersects the bottom at z = -hA where 

hA =
αγ′x1

α + γ′ . (4.13e)  

Thus, as in section 4.2.1, the average ape anomaly inshore of the front is  

-gΔρhA/3                                                                                  (4.14a) 

and the estimated area-averaged APE is then 

< APED> = −
gΔρhAAF

3ρ0AW
=

gμΔT(αγ′x1)
2

6(α + γ′)2AW
. (4.14b) 

This formulation is viable only up to the point where the front be-
comes vertical, i.e. so long as 

UEt1 ≤UEtV =
γ
2

(

x0 −

̅̅̅̅̅̅̅̅̅
hBx0

α

√ )2

(4.15)  

where tV is the time it takes for the front to become vertical. The water 
depth at the adjusted frontal location is then hA = αx1. Thus, at time t =
tV, when the front is vertical, 

< APED>=
gμΔTα2x0

6(α + γ)AW
. (4.16) 

In all 16 model runs with downwelling favorable (negative) wind 
stress, tV is exceeded. 

After the front becomes vertical, it is assumed that near-surface 
waters downwell offshore of the initial (now vertical) front at x = x1 
into the region between x1 and x2 (the lightly shaded area in Fig. 12b). 
Thus, the temperature contrast between the homogeneous downwelled 
water (temperature T2) and the ambient stratified water is proportional 
to Γhf where hf (= αx2) is the depth at the outer front. The cross-sectional 
area of this downwelled water is then 

UE(t1 − tV) ≅
1
2
(x2 − x1)

(
hf + hA

)
. (4.17a) 

It is then straightforward to estimate the APE per unit mass associ-
ated with the downwelled (lightly shaded) water by saying that the 
average ape in the downwelled region is 

gμΓ
(
hf + hA

)2
/2 . (4.17b) 

All told, the ape associated with downwelling offshore of the front is 
added to that associated with the front having become vertical (eqn. 
(4.16): the dark shared area in Fig. 12b) to obtain a final estimate 
<APEM>. 

< APEM> = <APED> +
gμΓ

(
hf + hA

)2UE(t1 − tV)

2AW
. (4.18)  

For the 16 runs with negative wind forcing, this scaling for downwelling 
conditions is related to the actual APEM as  

APEM = ηM<APEM> (4.19) 

where ηM = 0.66 and the correlation of the fit is 0.92. 

4.2.4. Applying the APER scalings 
Comparing the APER scalings directly with EKEM, the correlations are 

(0.95, 0.87, 0.81) for τA = 0, >0 and < 0 respectively. This is to be 
compared with correlations of EKEM with actual APER (section 4.1) of 
(0.87, 0.89, 0.72). Using the formulation (4.1a), but with the scalings for 

Fig. 12. Schematics used in estimating APER (=APEM) after a downwelliing 
favorable wind stress has been applied. a) when winds are weak enough that 
the adjusted front is not vertical. b) when winds are strong enough that the 
front becomes vertical and continued downwelling occurs offshore of the front. 
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APER yields empirical coefficients (a, n, c, b) = (0.61, 1, 3, 0), (0.17, − 1, 
2, 0), (0.063, 1, 4, 0) for the three wind ranges. The correlations asso-
ciated with these fits are (0.98, 0.88, 0.91). In all cases, the s corrections 
reduce the error of the fit substantially, although the R corrections do 
not yield substantial improvements in any case. All told, the APER 
scalings appear to be rather successful, agreeing well with computed 
values and yielding fits for EKEM that are substantially better than fitting 
with actual APER both when τA = 0 and τA < 0 (lower error by 44 and 
28%), and comparable (about 2% worse) when τA > 0. Why a scaling 
would appear to be more successful than the actual APER is not obvious. 

The scalings are not perfect, of course. In particular, there are three 
cases (Fig. 7, upper panel, Table 1) where EKEM increases with 
increasing positive τA (run sequences 10–11, 20–21 and 35–36, having 
larger ΔT, γ and smaller xF, respectively relative to runs 1–8). In each 
case, the calculated EKEM for the largest τA is larger than that for the next 
smallest τA, but the scalings predict a continued decrease in EKEM with 
increasing τA. In the first and third instances, the failings are not large (7 
× 10− 5 m2/s2 or smaller) and so are probably near the noise level. The 
discrepancy is more pronounced (3 × 10− 4 m2/s2) for runs 20–21 and 
occurs even though APE declines with τA. It thus appears that, while the 
scalings for EKEM are successful in most cases, they are less successful 
with a strongly sloping initial front. 

4.3. Alongshore wavelength 

There are a number of possibilities for scaling the alongshore 
wavelength at the time of maximum EKE. These include an internal 
Rossby radius based on the interior stratification 

λRR =
NH

f
, (4.20a) 

a Rossby radius based on the frontal density difference 

λF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g μΔTH

√

f
, (4.20b) 

an inertial length scale 

λI =

̅̅̅̅̅̅̅̅̅̅̅̅̅
EKEM

√

f
, (4.20c)  

and a topographic Rhines (1977) scale 

λRh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EKEM

√

βT

√

(4.20d)  

where βT is a topographic beta 

βT =
f α
H

. (4.20e) 

Simply correlating these scales with the wavelength λ estimated from 
the models (Table 1) yields, for each of (4.20 a-d), correlations of 0.73 or 
better when τA < 0. However, when τA ≥ 0, clearly the best correlation 
(0.68 for τA > 0 and 0.88 for τA = 0) occurs with λRR (4.20a). Because the 
Rossby radius scaling is the only one that works tolerably well for all 
three wind cases, it is used in the following. 

A somewhat better parametrization is found empirically to be 

< λ>=
m

1 + ds
NH

f
, (4.21)  

where (m, d) = (4.9, 2), (4.6, 3), (4.0, 1) for τA = 0, >0 and < 0, 
respectively. The improvement in the fit obtained by allowing d ∕= 0 is 
rather modest, however: 11–16% error reduction, depending on the 
case. For comparison, Zhang and Gawarkiewicz (2015), treating only 
cases with τA = 0, use the same functional form (4.21) (although they 
define s somewhat differently) and obtain d = 2.7. 

An interesting aspect of the scaling (4.21) is that the result depends 

only on the initial conditions, and is independent of the properties of the 
eddy field. This contrasts with other types of instability over the shelf (e. 
g., with wind driving in the absence of an initial buoyancy current front: 
Brink, 2016) where the alongshore length scale of the eddy field is 
related to the Eddy Kinetic Energy (as is the cases for scales 4.20c, d). 
This point is addressed in the following section. 

5. Discussion and conclusions 

The central physical mechanism treated here is relatively straight-
forward. An upwelling-favorable wind stress leads to offshore Ekman 
transport and a general flattening of the frontal isopycnals. This flat-
tening translates into a decrease in the APE that in turn leads to 
decreased EKE. If the winds are applied long enough, however, a new, 
additional upwelling front forms inshore of the exported buoyant water 
(as discussed in conjunction with eqn. (4.11)), and the APE (hence EKE) 
can ultimately increase with τA. On the other hand, a downwelling 
favorable wind stress tends to make the frontal density surfaces more 
nearly vertical, thus increasing the APE. Once the initial front becomes 
vertical, a new downwelling front develops just offshore (as sketched in 
Fig. 12), continuing the APE increase. Thus one might expect EKE to 
increase in the presence of downwelling-favorable winds, as generally 
occurs (Fig. 7). Although the model runs are long compared with, say, 
individual wind events, at least some effects of winds on frontal insta-
bility become obvious within 10–20 days (Fig. 4), so it is not unrea-
sonable believe that the present results are relevant to real oceanic 
conditions. As suggested by Fig. 7, the relation between APE and EKE is 
hardly ironclad. Indeed, the success of (4.1) demonstrates that this is not 
a one-to-one relationship: other factors (such as bottom slope or Coriolis 
parameter) affect the efficiency with which eddies are generated for a 
given APE arrangement. 

One peculiarity of the EKEM scalings is the absence of any depen-
dence on bottom friction (section 4.2.4), even though near-bottom 
dissipation clearly plays a major role in the evolution of the eddy field 
(Fig. 4). It seems likely that this apparent inconsistency can be 
accounted for as follows. During eddy evolution, bottom friction acts, 
through a stratified spindown process, to eliminate eke at depth. This 
would occur over a vertical scale (St. Maurice and Veronis, 1975) of Lz =

f/(Nk) (where k = λ/(2π) is a horizontal wavenumber and λ the along-
shore wavelength) and over a time scale of Tf = f/(kNr). For the present 
selection of runs, Lz is 35–86 m (always less than the water depth at x =
xF + Δx) and Tf = 0.3–8 days. This decay time scale is short enough that 
eddy energy at depth will be largely destroyed during the roughly 
20–150 day time tM it takes for EKE to reach its maximum value. That is 
to say that there is plenty of time for frictional dissipation to assure a 
surface-intensified eddy field. The surviving eddy field, being out of 
contact with the bottom, is not subject to spindown. Thus, while bottom 
friction is presumably important for creating the observed eddy field 
structure, it does not govern the amplitude of the remaining eddies so 
long as dissipation is strong enough to spin down the deeper waters 
before t = tM. 

An intriguing aspect of these calculations is the confirmation that the 
typical alongshore length scale of the resulting eddies is closely related 
to a simple internal Rossby radius of deformation (4.20a, 4.21), a result 
previously stated by Zhang and Gawarkiewicz (2015). Other studies of 
evolved eddies over the shelf find that the length scale at the time of 
maximum EKE is strongly affected by the eddy amplitude, e.g., an in-
ertial scale (4.20c: Brink 2016) or a topographic Rhines scale (4.20d: 
Brink, 2017). The present result appears to be consistent with the water 
column’s overall stratification at the location of the initial front’s surface 
intersection (which is the approximate location of the spatial maximum 
EKE) being only modestly modified by the surface-intensified eddy field. 
The applicability of λRR is presumably associated with the Rossby radius 
at the front (the scale expected for initial, linearized baroclinic insta-
bility) being larger than the Rhines scale λRh at any time. Indeed, λRR 
exceeds λRh for every model run carried out, typically by a factor of 
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about 2 or more. This scale discrepancy then suggests that there should 
be no tendency for the eddy field to evolve to larger scales. 

Most of the model runs in Table 1 derive their EKE from energy ex-
changes dominated by baroclinic instability. The two cases (13 and 14) 
where this is not true are dominated by barotropic instability and 
involve an unusually small Coriolis parameter. For the range of pa-
rameters used here, both shear and barotropic instabilities can be sec-
ondary contributors or they can act to increase MKE. While the vertical 
shear mechanism almost always contributes to eddy growth, the lateral 
shear mechanism (barotropic instability) is less consistent in sign. In-
spection of Table 1 does not lead to any obvious pattern as to the sense of 
these contributions. Nor is it obvious how seriously we should take these 
secondary terms. There is clearly more that could be done on these eddy 
processes that lead to the offshore mixing of buoyancy currents. 

At this point, it is desirable to compare the present results to existing 
observations or model simulations. However, there do not appear to be 
any observational studies that relate changes in Eddy Kinetic Energy in a 
buoyancy current to wind stresses (although Weingartner et al., 1999, 
do give an example of a baroclinically unstable buoyancy current 
without considering winds). This absence of observational evidence is 
perhaps not surprising because of the many factors that affect buoyancy 
current structure and variability. Amongst simulation numerical models, 
the situation is similar. One very interesting comparison, however, is 
provided by Magaldi et al. (2010) who treat the Western Adriatic Cur-
rent with realistic topography but idealized winds. Their qualitative 
result is the opposite to the present findings: downwelling leads to 
weaker eddy variability than does upwelling. Some caution is required, 
however, because their relevant model runs are relatively short (15 
days) and because their irregular topography can potentially generate 
coastal-trapped lee waves (e.g., Zhang and Lentz, 2017), hence 
enhanced alongshore variability, during upwelling but not during 
downwelling. At this point, it is difficult to evaluate the alternative 
possibilities. Clearly, there is scope for more investigations. 
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