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Rotating Shocks in a Separated Laboratory Channel Flow*
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ABSTRACT

Laboratory studies of the effects of wall separation on a hydraulic jump in a rotating channel of rectangular
cross section are described. Separation is induced by increasing the rotation rate while maintaining a constant
flow rate through the channel. It is found that separation can occur in the supercritical flow upstream of the
jump but not in the subcritical downstream flow. At high rotation rates the ‘jump’ becomes one of stream
width, rather than depth, and the associated turbulent eddies occur in the vertical plane rather than in the
horizontal plane. Although depth changes occur across the jump, these changes are gradual and wavelike.

A simple shock-joining theory indicates that stationary shocks with separated upstream flow and attached
downstream flow are possible within a certain range of upstream Froude and Burger numbers. This result
supplements a theory due to Nof which indicates that stationary shocks are not possible when both upstream

and downstream flows are separated.

1. Introduction

Interest has recently arisen concerning the possibility
that hydraulic jumps, or some rotationally modified
version thereof, might occur in the lees of certain deep
overflows. For example, observations of the overflow
in the Windward Passage show a region where the iso-
thermal elevation increases abruptly in the downstream
direction suggesting some sort of jump (Nof, 1986).
From a fluid mechanical point of view the question is:
Can some kind of stationary jump (or ‘shock’) exist in
a strongly rotating overflow and, if so, what is its struc-
ture?

Yih et al. (1964), Houghton (1969) and Williams
and Hori (1970) have studied the conditions under
which rotating jumps form in solutions to the single-
layer shallow water equations in a domain containing
no side walls. Jump solutions exhibiting many of the
qualitative features of nonrotating hydraulic jumps
were found, however, the solutions are not directly rel-
evant to oceanic overflows due to the neglect of lateral
boundaries. More recently, Pratt (1983) and Nof (1986)
found rotating jump solutions in channels of rectan-
gular cross section. Pratt’s solution was obtained nu-
merically and an example is shown in Fig. 1. The jump
occurs in the shallow supercritical flow slightly down-
stream of an obstacle and consists of an abrupt increase
in free surface elevation. The jump amplitude decays
away from the left wall (facing downstream) in the
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manner of a Kelvin wave. The decay scale (the Rossby
radius of deformation) is here equal to the channel
width. The solutions by Nof (1986) were obtained an-
alytically under the assumptions: 1) that the jump in
depth occurs on a line perpendicular to the channel
axis, and 2) that the deformation radius is much greater
than the channel width. The solution is similar to that
of Fig. 1, except that the decay in the jump-amplitude
away from the left wall is small. In both cases, one
expects to encounter intense turbulence and vertical
mixing near the region of abrupt depth change (al-
though this turbulence is not explicit in either calcu-
lation).

In both calculations described above, the fluid depth
remains finite across the entire channel width. How-
ever, a close inspection of Fig. 1 reveals that the fluid
depth at the left wall immediately upstream of the jump
is nearly zero. In fact, a sufficient increase in the ro-
tation rate would cause the fluid to separate from the
left wall, leading to the formation of a free streamline
at the left edge of the current and exposing a portion
of the channel bottom. By further increasing the ro-
tation rate, it presumably is possible to cause the stream
to become separated along the entire length of channel.
In this case, Kelvin wave propagation along the left
edge of the stream is obviously impossible. Instead a
wave whose properties are drastically different from
those of the Kelvin wave arises (Stern, 1980; Kubokawa
and Hanawa, 1984a,b). This wave is characterized by
large lateral excursions of the free edge of the stream
and, consequently, by large cross-channel velocities.
(The cross-channel velocity in a Kelvin wave is zero.)
One should therefore expect a dramatic change in the
character of the jump to take place upon separation.
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FIG. 1. Hydraulic jump in a rotating channel from numerical ex-
periment of Pratt (1983). The flow is from right to left and the along-
channel velocity u is geostrophic. Shown in the upper image are the
free surface of the fluid and one of the walls of the rotating channel
(the other wall and the topography are hidden). The lower image
shows the bottom topography.

The implications of this problem are important, for
the bottom flow in sea straits is often banked by rotation
against one of the side walls, the left edge lying in a
region of little or no cross-strait bottom slope. Unfor-
tunately, the numerical method used by Pratt (1983)
becomes unstable when separation occurs, and this in-
teresting problem was not explored.

Also relevant to the problem of flow separation is a
calculation by Nof (1984) showing the conditions under
which shocks can form in a zero potential vorticity
coastal (i.e., no ‘left’ wall) current. The shocks that are
found are characterized by changes in the current depth
and width. Hawever, all such shocks are found to have
a finite propagation speed; no stationary shocks are
possible. The lack of a stationary shock can be moti-
vated using a simple argument based on mass conser-
vation: since the total mass flux in the coastal current
is proportional to the square of the wall depth (see
section 3), a stationary jump in depth cannot conserve
mass.

What then happens to the jump in Fig. 1 if the ro-
tation rate is increased? To investigate this intriguing
question, a simple laboratory experiment was per-
formed at the Woods Hole Oceanographic Institution’s
hydrodynamics laboratory. The experiments were car-
ried out using a long tank of rectangular cross section
(see Fig. 2) mounted on a turntable. A nonrotating
planar hydraulic jump is first produced in the lee of
the. bottom-mounted obstacle by pumping fluid
through the tank at a fixed flow rate. The tank is then
rotated at various rates (with the flow rate kept con-
stant) and the effects of rotation on the jump are ob-
served, most notably that of separation.
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There are several possible separation-induced
changes in jump structure that are of interest. Provided
that some coherent transition between the supercritical
and subcritical flow persists, what is the orientation of
the associated turbulent eddies relative to the nonro-
tating case? Second, is a ‘free’ jump in which both the
subcritical and supercritical end states are separated
possible for sufficiently large rotation rates? Finally,
can a shock-joining theory be devised which describes
the jumps that occur?

2. Apparatus and setup

Sketched in Fig. 2 is the design of the 250 cm long
and 20 cm wide glass channel and recirculation system.
After being fed into one end of the channel, water passes
beneath a sluice gate, through a screen, and into a rel-
atively deep reservoir located upstream of a large ob-
stacle. By forcing the fluid through the screen slowly
and at a uniform depth, one hopes to homogenize the
vorticity and thus create a reservoir containing uniform
potential vorticity fluid. From the reservoir, the water
flows over the obstacle, becoming supercritical on its
downstream face, and experiences a hydraulic jump.
The position of the jump varies from 5 cm upstream
to 5 cm downstream of the downstream edge of the
obstacle and is controlled by adding or deleting water
from the system. An increase in system volume causes
the jump to move closer to the sill and the jump am-
plitude to decrease. For cases in which the jump lies
downstream of the obstacle a slight (<4°) tilt is given
to the tank for the purpose of stabilizing the position
of the jump. At the left end of the tank far downstream
from the jump, water is withdrawn uniformly across
the width of the tank. The water is then fed through a
flow meter and recirculated by means of a 2.5 hp, 500
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FiG. 2. Design of rotating channel and recirculation system.
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ml s™! pump. As in other hydraulics experiments, some
forcing mechanism is required downstream of the ob-
stacle to produce a jump. The forcing may be due to
a second obstacle or bottom friction; here it is due to
the end wall. The means of fluid introduction and
withdrawal, the tank tilt, and the position of the ob-
stacle relative to the back wall are occasionally varied
to insure that these conditions are not influencing the
interior flow.

Once a jump is established, the system is spun up
to a fixed angular speed, f/2 using the Woods Hole 2

meter diameter turntable. Rotation rates of up to f -

= 2.5 sec”! were used. A more detailed description of
this turntable is given by Whitehead (1985). Measure-
ments of rotation-induced deformations of the free
surface are made using a point gauge, and streamline
patterns and approximate surface velocities are ob-
tained using time-lapse photographs of surface floats.
In the description of these observations, the coordinate
system shown in Fig. 3 will be referred to, with x and
y denoting the downstream and cross-stream directions.
The walls at y = W and y = 0 will be called the left
and right walls, respectively, as an observer facing
downstream would see. Also the terms ‘jump’ and
‘shock’ will be used interchangeably to describe any
abrupt transition in fluid depth, velocity, etc. occurring
in the downstream direction.

3. Scale analysis

The qualitative features of the classical planar hy-
draulic jump depend upon gravity g and the depth and
velocity scales H; and U, of the flow immediately up-
stream of the jump. The only dimensionless number
which can be formed from these scales is the Froude

number:
=U,/(gH)'? 3.1)

and many of the gross features of the jump can be
related to Fy, as discussed by Chow (1959, p. 395). For
1.0 < F; < 1.7, the free surface within the jump is
undular and smooth and the change in depth occurs
over a distance that is large compared to the fluid depth.
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The present experiment concentrates on the case F;
> 1.7 for which the nonrotating jump is a true ‘shock’,
i.e., the depth change occurs over a distance compa-
rable to the depth of the subcritical flow.

Rotation leads to the addition of a time scale f !
and (at least) one lateral length scale. The latter is cho-
sen as the stream width w;, which may or may not be
equal to the channel width W. In summary, there are
now at least five dimensional quantities which char-
acterize the approaching flow: U;, H,, g, fand w,. The
subscript 1 denotes values taken immediately upstream
of the jump, and the overbar indicates a typical value
over a given cross-section. From these, it is possible to
form three independent dimensionless numbers of
which one, H,/w;, remains small (<0.15) in all exper-
iments. The other two are a generalized Froude num-
ber:

Fl = Ul/(gﬁl)lﬂ (3.2)
and a Burger number:
n= Wtf/(gﬁl)m- (3.3)

If the along-channel velocity is approximately geo-
strophic at section 1, ; = —gf ~'dh,/dy, then the flow
rate Q = [;"* uhdy can be expressed as

Q=gf {(hi-—hi)hi-+ h)/2 3.4)

where A, and 4, are the depths on the left and right
edges of the current (facing downstream). Since Q
should scale with U, H, w,, it is natural to set

=(hi-+hi)/2 (3.5)

U, =g(fw1) (= — hy4). (3.6)

IfQ, f, gand h,_ are known, then £, can be computed
from (3.4). The parameters F, and r, can therefore be
computed by measuring the single flow variable, A,_.
If the flow is separated before the jump, 4,. = 0 and
hi— is given directly by (3.4). Furthermore, the geo-
strophic relation suggests that U, should scale with
ghi-/ fw\ (=2gH,/ fw,), implying
Firy 37N
A ‘free’ jump (for which both end states are separated)
would then be described by a single parameter, F; or

ri. To compute either, it is necessary only to measure
Q, fand w,. Another possibility is that the flow is sep-

=2 (separated).
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Some additional intuition into the meaning of the
dimensionless parameters can be gained by supposing
temporarily that the fluid in the flume has uniform
potential vorticity, a special case for which a theory
exists (see Whitehead, et al., 1974; Gill, 1977). In par-
ticular, if u,(y) is geostrophically balanced, then the
theory of Gill (1977) predicts the depth at section 1 to
be

hi(y) = ho— AH, sinh{(y = wy/2)/Ly)/sinh[w\/2L}
+(H, — ho) cosh[(y— wi/2)/Lgl/cosh[wi/2L;] (3.9)

where
AH=(h—— h1y)/2

L= (gho)"*/ f, (3.10)

is the ‘global’ deformation radius based on the depth
hy at which the relative vorticity (= —u,) vanishes.
This last condition holds in the laboratory reservoir
within an error —u,/ f < 0.3, and A, will therefore be
called the reservoir depth. According to (3.9), the flow
is contained in boundary layers of width L, along each
side wall. The scale L, also gives the decay scale for
stationary Kelvin waves and is the decay scale of the
jump in Fig. 1. This decay scale should be distinguished
from the ‘local’ deformation radius (gH,)'/?/ f which,
according to (3.8) is related to the separated stream
width. In the present experiment, A, is always larger
than H, by a factor of ten and hence L, is always >w.
This scale mismatch places the experimental parameter
settings closer to those of Nof (1986) than those of
Pratt (1983). In the limit w,/L; = 0 (3.9) reduces to

h(y)=hy—+(f*w/2g—20H,/w)y— f*?/2g.
3.11)

and where

To prevent additional parameters from becoming
important, steps must be taken to insure that undesir-
able centrifugal and frictional effects do not influence
the structure of the jump. Centrifugal acceleration act-
ing over the along-channel length L of the jump will
impart a force per unit density of magnitude
4f?H, RWL, where R is the mean distance from the
center of rotation and H,, is the mean depth through
the jump. Also bottom friction acting over the interior
of the jump imparts a force per unit density approxi-
mately equal to c;U,2LW, where U,, is the mean ve-
locity in the jump and ¢, is a dimensionless drag coef-
ficient having value 0.008 + 0.002 for the painted flume
bottom (Chow, 1959). These forces should be small
compared to the typical momentum flux U,2H,, W if
friction and centrifugal acceleration are to be neglected.
As discussed later, there is some ambiguity in defining
L; however, if we choose W as a scale for L, as the
experiments will indicate, then the ratio R, = 4 f2RW/
U,.2 must be small to discount centrifugal effects and
csW/H,, must be small to discount friction. Using the
typical experimental values / = 0.7 s™', R ~ 10 cm,

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

W=20cm, U, ~ 50 cm s}, and H,, = 2 cm gives
R, ~ 0.2 and ¢, W/H,, =~ 0.1. Some high rotation cases
were run in which R, was not small, and these cases
will be noted.

4. Experimental results

The qualitative effect of rotation in the experiments
was found to be largely independent of Froude number
F;. Figure 4 shows the evolution of the jump as rotation
is increased when F) initially has value 7.1. (&, varies
by no more than 0.5 between photographs.) The flow
at the low rotation rate r; = 0.22 is shown in Fig. 4a.
The fluid remains attached to both side walls and the
jump is essentially no different in character than its
nonrotating counterpart. The only hint of rotation is
that a finite angle « exists between the line of depth
discontinuity and the y-axis (as defined in Fig. 3a). Fig-
ure 4b shows the effect of increasing the rotation to the

d

FIG. 4. Photographs of jump at various rotation rates. (a) r, = 0.22,
L\ =7.1;b)r,=0.84, F =6.6,(c)/,=3.1,F, =172, d) F, = 4.7,
=17.
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point where separation of the supercritical flow is in-
cipient (7, ~ 1.0). The tendency of the fluid approach-
ing the jump to be deflected to the right due to Coriolis
acceleration is now more pronounced, and the angle
a has increased. Also a train of stationary waves has
begun to appear against the right wall in the lee of the
jump. Despite these features, the sharp discontinuity
in fluid depth that characterizes the nonrotating jump
remains. In Fig. 4c¢ the rotation has been increased to
the point 7, = 3.1. The supercritical flow has separated
from the left wall slightly downstream of the obstacle
sill, but becomes reattached near the original position
of the jump. The reattachment is abrupt and the stream
width is practically discontinuous. On the right wall,
signs of vertical-plane turbulence such as bubbles and
small waves have begun to diminish. The line along
which sudden depth change occurs resembles an
oblique hydraulic jump and « has increased to a value
~ 45°. Also the stationary waves have grown in am-
plitude and extend several channel widths downstream
and the total depth increase is distributed over this dis-
tance. Although some of this depth change is due to
centrifugal effects, the greater part is due to the flow
dynamics (as suggested by the scale arguments at the
end of the previous section). Finally, Fig. 4d shows the
flow at relatively high rotation (7, = 4.7). The discon-
tinuity is now completely one of width, rather than
depth, and no visual signs of vertical plane turbulence
are present. In this last case, centrifugal effects are large
enough to invalidate the scaling arguments made pre-
viously. However, the photograph is shown to convince
the reader that separation of the downstream part of
the jump fails to occur even at extreme rotation rates.

Figure 5 shows a cross section of the separated su-
percritical flow slightly upstream of the jump for 7,
= 5.2 and F, = 6.8. The observed profile is indicated
by the crosses, each of which represents a single mea-
surement of the free-surface elevation using the point
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FIG. 5. Observed (+++) and theoretical (———) depth profiles for
the case F| = 6.8, /; = 5.2. The dashed line shows the dimensionless
Ekman height dg/h- = (2v/fF3.)'2. The observed dimensional
quantities used to obtain the theoretical profile are O = 0.36 L*s™!,
J=1985s!, w= 3.0 cm. The dimensional wall depth is 1.1 cm.
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gauge. The deepest portion of the stream is concen-
trated along the right wall. To the left lies a thin, flat
viscous region whose thickness is roughly the Ekman
thickness 6z = (2v/f)" based on the kinematic vis-
cosity v of the fluid, as indicated by the dashed line.
The depth of the viscous layer vanishes abruptly near
the left wall. The stream is thus characterized by two
widths, the first being the actual width and the second
being the width of the inviscid portion of the stream
near the right wall. Since most of the mass flux (in this
case about 80 percent) is typically carried by the inviscid
portion of the stream, the viscous layer is simply ig-
nored and w, is taken as the inviscid width. In most
cases the inviscid portion of the stream can easily be
distinguished by the naked eye and w, can be deter-
mined unambiguously. The solid curve in Fig. 5 is the
theoretical, ‘zero’ potential vorticity (i.e., w,/L; = 0)
profile computed from (3.11) with the observed values
of f, Q@ and w,. Agreement between the observed and
theoretical profiles is fairly reasonable indicating that
the potential vorticity of the fluid in inviscid portion
of the stream is fairly low and uniform. The irregularity
of the observed profile is due to the presence of small
stationary cross-waves (which appear in most labora-
tory supercritical flows).

Figure 6 shows the extent of the parameter space r
(or 7)), F; in which stationary shocks were found in
the experiment. Above the dashed line F; = 2/r, the
upstream flow is separated. Jumps in which stationary
waves are observed are indicated by dots, those without
by triangles. Also the angle o formed between the line
of abrupt depth change and the y-axis is indicated next
to each dot. The general tendency is for o to increase
with increasing F, and 7,. The absence of an « value
next to a dot indicates that no line of abrupt change is
observed, as is generally the case for 7, > 4.0. The a-
values represent cross-channel averages only. Pratt
(1983) has shown that any discontinuity in fluid depth
at a wall must occur along a line perpendicular to the
wall. This property does appear to be a feature of the
shocks in Fig. 4; however, the line is clearly oblique to
the walls in the interior.

Figure 7 shows a fairly representative map of the
horizontal velocity structure near the jump. The in-
viscid portion of the supercritical flow is separated here
(1 = 2.5); however a thin, viscous region also exists
(as in Fig. 5) making contact with the left wall and
giving the appearance of nonseparation. Downstream
of the point of reattachment the flow is concentrated
in a jet which flows along the right wall. Estimates of
the horizontal surface velocity obtained from streak
photographs appear in Fig. 7 along with corresponding
values of the local Froude number F = u(x, y)/[gh(x,
W12 Tt is well known (Chow, 1959) that the require-
ment for stationary cross waves to exist locally in the
flow is that F > 1, and it can be seen that this require-
ment is satisfied along the right wall. The suggestion,
then, is that the stationary waves shown in Figs. 46b-
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upstream flow is separated above the dashed line and there 7, should
be used as the abscissa.

¢ are cross waves lying in a ‘locally supercritical’ region.
Along the left wall the flow is dominated by time-de-
pendent eddy motions, with typical velocities an order
of magnitude less than those along the right wall. As
one moves downstream, the right wall velocities di-
minish and the mass flux becomes more evenly dis-

-
40 cm/sec
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tributed across the channel width. This picture holds
for r; 2 0.2 and remains qualitatively unchanged even
after separation occurs upstream of the jump.

5. Theory

How do long waves fit into the picture described
above? First consider the propagation of long waves in
the separated flow. Since w/L; < 1, the results of Stern
(1980) would appear to be the most relevant and he
shows that two long-wave modes exist. The dynamics
of the first are essentially those of a Kelvin wave and
this mode always propagates downstream. The second
mode is associated with the free (left hand) edge of the
current and propagates in the direction of the right-
hand wall velocity. Since the latter is observed to be
positive in all cases, the frontal mode also propagates
downstream and the flow is therefore unambiguously
supercritical. These properties also apply to separated
flows with ‘finite’ potential vorticity (i.e., w/Lz = 0(1)).
In particular, the frontal wave always propagates in the
direction of the wall velocity (see Kubokawa and Han-
awa, 1984a).

Turning now to the downstream (unseparated) por-
tion of the flow one may use the results of Gill (1977)
or Pratt (1983). Both authors show that the two long-
wave modes are Kelvin waves, each trapped against a
separate wall. The wave associated with the left wall
can propagate upstream provided that U < (gH)"[1
— TX1 — H/hp))"? where T = tanh(w/2L,;) (cf. Eq.
3.19 in Pratt, 1983). When w/L,; < 1, this requirement
reduces to U < (gH)"? or F < 1, as observed in the
experiment. Hence the nonseparated flow downstream
of the region of abrupt width change is apparently sub-
critical.

Nof’s (1984) calculations show that stationary
shocks cannot exist when the entire flow is separated.
This result can be interpreted as meaning that the fron-
tal wave dynamics cannot support stationary shocks.

-l
\
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» » ’
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FIG. 7. Horizontal circulation for case #, = 2.5, F, = 6.0 as deduced from streak photographs.
Note that the actual stream width is equal to the channel width W upstream, whereas the inviscid
width w, (dashed line) is <W. The downstream edge of the obstacle lies approximately where the
line of abrupt depth change begins.
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On the other hand, suppose that the downstream por-
tion of the shock is attached, allowing the left-wall Kel-
vin wave to come into play. Does shock-joining theory

then allow stationary shocks? Nof’s calculation can

easily be repeated for the new case and the answer is
yes. The procedure is to specify values of 7, and F),
describing a separated, supercritical flow and search
for a conjugate attached state (r,, F3) having the same
flow rate, flow force and potential vorticity.

The statements of flow rate and flow force conser-
vation are

BlAhl =7[2Ah2 (51)

R (hu = f+ghi*/2)dy

w .
- fo (bt = [+ gh/Ddy  (5.2)

which follow directly from Nof’s (1984) Egs. (3.7) and
(3.14). The streamfunction y, is defined by dy,/dy
= —u,h, and 0Y,/dx = v,h,, and it follows from the
geostrophic relation for u, that

Vn= &2/ Nk’ (M)~ K] (n=1or2),

(F\8/167,%){—16/10F,°+ 8/3F* + (F, 72— 1)[4/F* -
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where the value of Y, has been chosen as zero at the
right wall. Substituting this expression into (5.2) gives

wy w
5 hlulzdy+gh%_/2=L hwtdy+ghi.j2. (5.3)

The depth profiles, obtained using the appropriate
width w, or Win (3.11) can be written

h(y)= B\[—2F, "% (p/wi)* + 2(F, 2= D)y/w, + 2]
(5.4)

ha(y) = ﬁz[— S
+ (% - rzf'z)(y/W)+ (1 +%r2F—2)]. (5.5)
The geostrophic velocity profiles are thus
w(y)=U\2F, X (y/wy) — (F, 2= 1)]
(y)= 02[F2“r2( yw) - (%Fz—lrz - 1)] (5.7)

Substituting for u,, h,, 4, and A, in (5.1) and (5.3)
and nondimensionalizing the results, one obtains

SF_2f14= r23F'14 (58)

(5.6)

A/F 2+ 3(F2— 12— 10(F, "2 — 1)/F 21+ 2/F\ %}

3
=r, {(“7’24/10+ ¥y (—r2 Fz) —[(—rz Fz) ry = 2r2(—;-r2—ﬁz)(l +—;—r213'2)]
2 \2 B \2
+%[2r22(1 +%72F2) 5"2 (—rz Fz) ] (zrz—ﬁz) (1 +%F2r2)]+|:(1 +%72F2) /27'24]. (59)

By eliminating r, between these two equations it is
possible to form a fourth-order polynomial for F,3
whose coefficients depend upon #, and F;. For practical
purposes, however, it is easier to solve (5.8) and (5.9)
in present form using a method due to Powell (1970)
and the results of this calculation are shown in F1g 8.
Stationary shocks are possible only for values of 7, and
F; lying to the right of the contour F, = 1. To the left
of this line no physically meaningful roots of (5.8) and
(5.9) exist. To the right can be found a family of sub-
critical downstream states whose Froude number de-
creases as the upstream Froude number increases, also
a property of nonrotating jumps. It has been verified
that the fluid passing through the shocks experiences
an energy loss. The experimental values of F; and 7,
for which stationary shocks are found (indicated by
dots in Fig. 8) lie, for the most part, to the right of the
contour F, = 1. The only exceptions lie fairly close to
the F;, = 1 contour and the discrepancies could easily
be due to measurement error or to sources of momen-
tum or potential vorticity within the jump.

Although the theory and experiment agree fairly well
as to the conditions under which stationary shocks can

occur, detailed comparisons between the predicted and
observed downstream states are less successful. For ex-
ample, consider the shock which occurs when 7, = 4.0
and F; = 3.25 which, according to Fig. 8 and Eq. (5.8)
has the downstream values r, = 2.33 and F; = 0.69.
The downstream velocity profile is thus given by (5.7)

as
uy) = U,{3.38(y/ W) —0.69].

This profile indicates a reverse flow u, < 0 along the
right wall, whereas the observations seem to indicate
that #, > 0 along the right wall in all cases (for example,
Fig. 7). One explanation for this discrepancy, as dis-
cussed in the next section, is that the rotating tank is
too short to allow the downstream conjugate state to
develop fully.

6. Discussion

The experiments show that flow separation from the
sidewall leads to a shock structure drastically different
from that of the nonseparated solutions obtained by
Pratt (1983) and Nof (1986). The most obvious differ-
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FIG. 8. Downstream Froude number F, as function of F; and #
for stationary shocks in which flow is separated upstream and attached
downstream.

ence is that the latter are characterized by sudden
changes in fluid depth, while the former are charac-
terized by sudden changes in stream width with gradual,
wavelike changes in depth. One consequence is that
the turbulence in the separated shock is associated with
horizontal eddies (see Fig. 7) having length scales much
larger than the fluid depth whereas sudden depth
changes tend to produce vertical-plane eddies which
scale with the fluid depth (Bakhmeteff and Matzke,
1936). It is not uncommon for deep outflows to widen
rapidly while exiting straits, one example being the deep
outflow from the Jungfern Passage. Sturges (1975, Figs.
4 and 5) observed this current to widen and thicken
appreciably downstream of the sill and to entrain upper
fluid in the process. These features may indicate a
shock, possibly of the type shown here, but may also
be due to some other mechanism such as topographic
steering or bottom friction.

What would happen to the shock if the downstream
end wall was moved to x = —o0, as would better typify
the oceanic prototype? It is wrong to suppose that the
shock would disappear; even without the end wall a
shock would be triggered by the weak force due to bot-
tom friction. With no rotation, it is known that the
shock would then take the form of an undular hydraulic
jump (Chow, 1959). Presumably, the rotation of this
jump would lead to the same sorts of qualitative effects
observed here.

One matter which remains unsettled is the definition
of the shock length, that is, the along-channel distance
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over which the shock occurs. In the nonrotating case
the shock is defined to include the region in which the
sudden depth change occurs in addition to the region
in which major turbulent features and lee waves exist
(see Chow, 1959, for more details). Accordingly, one
might define the shocks of Figs. 4c, d to begin at the
point of reattachment and to include all cross waves
and major turbulent features in the lee. Visual evidence
then suggests that the jump extends at least several
channel widths downstream of the point of reattach-
ment and probably runs into the end wall at higher 7,
values. This conclusion is supported by the inability
of the shock-joining theory to predict the velocity
structure of the downstream end state. To insure that
the upstream portion of the shock was not sensitive
to the end conditions, these conditions were altered in
a variety of ways (the withdrawal tubes were rearranged
and different types of submerged obstacles were placed
in the flow path at the end of the tank); none were
found to change the qualitative structure near the re-
gion of abrupt width change.

There is clearly a need for a more sophisticated and
refined version of the crude experiment described here.
The use of a longer tank might allow the downstream
end state of the shock to become fully developed. Also,
detailed velocity and depth measurements of the end
states would provide information concerning the con-
servation of potential vorticity and implications for
shock-joining theory. Unfortunately, such an experi-
ment would require a larger turntable than the 2-meter
diameter table used here and considerable contami-
nation from centrifugal accelerations might occur. Ex-
periments using two immiscible fluids could overcome
this difficulty since the deformation radius L; would
be reduced in proportion to the square root of the den-
sity difference. However, the parameter w;/L; would
no longer be small and the experimental results would
depend upon three (rather than two) dimensionless pa-
rameters. A cleaner approach to the problem might be
made numerically, provided that numerical methods
can be developed which are able to handle both flow
separation and abrupt depth changes.
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