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1. Introduction

The concept of geostrophic control of a steady flow
by a sea strait, first established by Garrett and Toulany
(1982), has been the subject of numerous debates and
investigations [Garrett 1983; Toulany and Garrett
1984; Garrett and Majaess 1984; Whitehead 1986; Ro-
cha and Clarke 1987; and Wright 1987]. Despite this
attention, doubt and confusion continue to exist con-
cerning the basic concept and its formal range of va-
lidity. For example, it is not known whether the for-
mulas of rotating hydraulics (e.g., Whitehead et al. 1974
or Gill 1977) reduce to those of geostrophic control in
any limit or whether geostrophic control provides
bounds on the transports predicted by hydraulic theory.

In this note it is argued that the steady flows described
by existing, deductive hydraulic theories are not geos-
trophically controlled in any limit, nor does the trans-
port relation given by geostrophic control provide any
bound on the value predicted by hydraulic theories. It
is further argued that geostrophic control occurs when
advective effects (which are essential to the behavior
of hydraulically driven flow) are overwhelmed by time
dependence. This restriction places lower bounds on
the values that the characteristic frequency w of motion
can take. At the same time geostrophic control theory
assumes time-dependent effects to be weak in the sense
that w < f, where f'is the Coriolis parameter. Thus,
time dependence must be weak, but not too weak.

2. Geostrophic control

The fundamental ideas leading to geostrophic con-
trol can be described by reference to a strait connecting
two semi-infinite basins (Fig. 1). The reader is referred
to Toulany and Garrett (1984, hereafter designated
TG) for details of the calculation. The basins and the
strait have uniform depth H, the water has uniform
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density, and the elevation of the sea surface is given
by ¢ (assumed constant in the basin interiors). In the
limit of steady flow a mean sea level difference ({, — {2)
is assumed to exist between the two basins. Such a flow
could be established from a motionless initial state in
which a barrier placed at the narrowest width (x = 0)
separates the two basins. If §; > {, removal of the
barrier leads to flow into basin 2 set up by Kelvin waves
propagating away from the barrier. These waves keep
the coastline on their right (in the Northern Hemi-
sphere) as shown by the arrows in Fig. 1. If rotation is
sufficiently strong each Kelvin wave will be trapped
against its respective wall and each will induce only
weak motion along the opposite wall. Thus, one might
expect the elevations {4 and {s to remain close to the
interior values ¢, and ¢, since the former do not lie
in the path of Kelvin wave propagation. Based on this
scenario TG assume

§a=§ (2.1a)

$s= 6. (2.1b)

In addition, the width averaged along-strait velocity #
is assumed to be geostrophically balanced:

u=g(a— &) fw=1g(8—$)fw (2.2)

where g is the gravitational acceleration, fthe Coriolis
parameter, and w the strait width (assumed constant
in TG).

Finally, TG assume a (linear) along-strait momen-
tum balance between friction, local and Coriolis ac-
celerations, and pressure gradient, a statement essen-
tially of the form

w—fo=—g{x— Au (2.3)

where ) is a friction coefficient and (u, v) are the x-
and y-velocity components. (Toulany and Garrett use
a width averaged version of 2.3.) In the limit of steady,
frictionless motion in a gradually varying strait (v <€ u)
the along-strait pressure gradient ¢, vanishes:

=8, &= 24)

Combining (2.1), (2.2), and (2.3) results in an expres-
sion for the volume transport through the strait. In the
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FIG. 1. Sketch of strait connecting two semi-infinite basins.

limit of vanishing friction coefficient and frequency,
this expression reduces to

Q = Hwu = gHAL/f (2.5)

where A{ = {; — {. The transport is proportional to
the drop in sea level between basins, which, in turn,
equals the cross-strait sea level difference. Toulany and
Garrett argue that, even under more general dynamical
circumstances, the cross-strait sea level difference can-
not exceed {; — {5, so that (2.5) represents an upper
bound on the transport. The term geostrophic control
is thus used to describe the limit in which (2.5) applies
(this upper bound is also the transport in a boundary
current set up by a Kelvin wave of amplitude A{).
Toulany and Garrett compared their solution to a lin-
ear analytic solution due to Buchwald and Miles (1974)
for oscillatory flow through a narrow gap. In the limit
of vanishing frequency the transport is given by (2.5),
despite the fact that the assumptions {; = {; and s
= {, are not made.

Rocha and Clarke (1987, hereafter referred to as
RC) reconsider the model of TG in the case where the
strait and basins have unequal depths. Their calculation
involves solutions to the linear Laplace tidal equations

w—fo=—g¢ (2.6)
v+ fu = —g§, (2.7)
.+ Hu, + Hv, = 0 (2.8)

in a rectangular strait, matched with the basin solutions.
In the limit of low frequency w, the transport through
the strait is similar in form to (2.5), but with corrections
for the depth discontinuities. This result can be antic-
ipated by reconsidering the Kelvin wave adjustment
problem mentioned earlier. When the waves generated
by the barrier removal reach the end of the strait, some
of the wave energy is carried across the strait along the
discontinuities in depth.

A qualitative representation of the streamline pat-
terns for the steady flow found by RC is shown in Fig.
2 for equal basin and strait depths (see their section
3.3). The transport between basins occurs in a bound-
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ary layer set up by Kelvin waves propagating away from
the gap or strait. As it passes from one basin to the
other, the boundary layer switches from one coastline
to the other. The crossing region, which contains sharp
corners and strong offshore velocities, is set up in part
through the action of Poincaré waves. The solution of
Buchwald and Miles (1974) as w — 0 is qualitatively
similar.

Wright (1987) reconsidered the TG calculation in
the case of the finite basin area, the major complication
being that Kelvin waves can propagate completely
around the edge of the basin and eventually influence
both sides of the strait. Wright finds that geostrophic
control is completely expunged from the problem when
the basin areas are finite. When one basin is finite and
the other semi-infinite, a modified form of geostrophic
control does hold in certain frequency ranges.

3. The symmetry principle for hydraulically driven
flows

A different approach to the steady flow problem is
provided by hydraulic theory. Here the flow is assumed
steady at the outset, and the equations of motion are
solved with advection terms. Because of the assumption
of steadiness we must take the basins to be semi-infinite;
otherwise, the water would accumulate in the down-
stream basin. Furthermore, Wright’s (1987) analysis
suggests that geostrophic control is applicable primarily
in the semi-infinite setting. Hydraulic theory also as-
sumes that the basin/strait geometry varies gradually
in the x-direction, so that sharp corners are disatlowed.

For simplicity, assume that the strait and basin sys-
tem of Fig. 1 has a horizontal bottom and that the
width w(x) varies on a scale large compared to w itself.
If the potential vorticity of the fluid is uniform, the
theory of Whitehead et al. (1974) or Gill (1977) specify
the possible steady solutions for flow from one basin
to the other. As discussed by Gill (1977) some of these
solutions possess a symmetry property that can be de-

FIG. 2. Low-frequency (w/f < 1) circulation obtained
by RC for constant depth.
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scribed through consideration of any dependent vari-
able and its variation with x. For example, consider
{(x, 0), the value of the sea surface elevation along
the centerline' of the strait. According to hydraulic
theory, {(x, o) obeys an equation of the form

G[$(x, 0), w(x); Cy, Coye -+, Gyl =0 (3.1)

where the C,, are constants determined by the properties
of the flow in the upstream basin (the potential vor-
ticity, for example). Once these constants are specified
¢(x, 0) is determined entirely by the local value of the
width. Pratt and Armi (1987) have shown that a re-
lation of the form (3.1) holds for general potential vor-
ticity distributions as well.

Now consider the values ¢ and {, lying along the
strait centerline, but well into the interiors of the two
basins. If w is the same for each location, the value of
¢ determined by (3.1) is identical to {». Furthermore,
if values of {(x, 0) can be found for all other widths
present in the basin and strait system, a complete so-
lution is obtained. The solution is symmetric, in that
for any value of {(x, o) in the left basin there exists
an identical {(x, 0) in the right basin at the same width
value. Many examples of such solutions exist and have
been computed; the reader is referred to Gill (1977)
for the computational details.

It is clear that any symmetric solution of (3.1) cannot
be geostrophically controlled. The basin-to-basin sea
level difference ¢, — { is zero, while the cross-strait
difference is finite. Application of (2.5) would give Q
= 0, whereas the actual transport is finite.

4. Critical control

The derivation of (3.1) is based, in part, on the fully
nonlinear, x-momentum equation

U, + vu, — fo = —gi,. 4.1)

The functional G in (3.1) consequently has the non-
linear property that two or more values of {(x, o) may
exist for a given w(x). The different roots lie along
different solution branches, which can sometimes
merge at the narrowest section of the strait. Asymmetric
solutions are thus possible, in which case {(x, o) lies
along one solution branch in basin 1 and along another
in basin 2. These solutions have {; # {, and, therefore,
could be candidates for geostrophic control.

There are, however, important differences between
the asymmetric solutions of hydraulics and those of
TG. First, switching of solution branches at the nar-
rowest section is essentially a nonlinear phenomena,
whereas the TG and RC solutions are based on a linear
theory. Second, it can be shown (Gill 1977 or Pratt
and Armi 1987) that the flow at the narrowest section

! For simplicity we assume that the channel walls lie at y = =w(x)/
2, although this is not crucial to the overall conclusion.
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is hydraulically critical (the Kelvin wave speed is zero)
when the solution changes branches. Under these con-
ditions, the volume transport Q depends only on the
conditions in the upstream basin. Geostrophic control
is clearly not applicable since Q cannot depend upon
{,.2 Finally, the transport of a critically controlled flow
can be decreased by decreasing the minimum value of
the width; the flow can be choked. Choking of geos-
trophically controlled flow by the same mechanism is
clearly impossible since Q does not depend on w [see
(2.5)]. These comments suggest that geostrophically
controlled flow cannot be achieved in any limit of hy-
draulic theory, despite the fact that the equations of
hydraulics would appear to be more general due to
inclusion of nonlinear advection.

5. Conditions for geostrophic control

In order to clearly identify the conditions under
which geostrophic control holds, it is helpful to consider
the Rossby adjustment problem in a strait (Gill 1976).
A barrier placed at x = 0 initially separates two resting
homogeneous bodies of water (Fig. 3a). The strait has
constant width and bottom elevation, and the differ-
ence in surface level across the barrier is A{. Atz =0
the barrier is removed and fluid from the deeper region
(x < 0) is allowed to flow into x > 0.

If A¢/h < 1 the linearized shallow water equations
(2.6)-(2.8) may be used to obtain a solution valid to
O(A{%/H?). Gill (1976) performed this calculation
and a qualitative sketch of his solution is shown in Fig.
3b, for the case in which the width is equal to four
deformation radii (also see his Fig. 3). The removal
of the barrier generates Kelvin waves that propagate
away from x = 0 and set up boundary currents. In Fig.
3b, these waves have propagated about eight defor-
mation radii upstream and downstream of x = 0, leav-
ing behind a steady flow in which the fluid approaches
x = 0 along the left (y = —w/2) wall, crosses the strait,
and continues along the right (y = w/2) wall. The
crossing region is set up by Poincaré waves (the Kelvin
waves possess no cross-strait velocity). The steady so-
lution is similar in many respects to the low frequency
solutions obtained by RC (Fig. 2) and Buchwald and
Miles (1974). In particular, the flow is geostrophically
controlled, in that the transport is given by (2.5) with
A¢ representing the difference in interior surface level
between locations several deformation radii upstream
and downstream of x = 0. If it were not for weak non-

2 Strictly speaking it is possible to relate Q to {; — {, using hydraulic
theory, even though Q cannot depend upon {; and ¢, individually.
However, the predicted flow in the downstream basin, which is hy-
draulically supercritical, cannot exist in normal physical settings. In-
stead, the downstream flow is supercritical over a limited distance
downstream of the narrowest section and returns to a subcritical state
via some type of hydraulic jump (Pratt 1987). Under these conditions
the downstream value ¢, can be varied while {; and Q are held fixed.
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FiG. 3. The Rossby adjustment problem in a channel with (a) the
initial state, (b) a qualitative view of the velocity field for /™! < ¢
< 1, (from Gill 1976), and (c) a qualitative view of the velocity field
for ¢ » t, (from Hermann et al. 1989). Here ¢, is defined in the text
preceding Eq. (5.1).

linear effects that slowly come into play, this solution
would be valid for all time.

The breakdown in Gill’s (1976 ) final steady solution
occurs due to nonconservation of potential vorticity.
The fluid initially lying in x > O has slightly higher
potential vorticity owing to its smaller initial depth and
the line x = 0 is therefore a potential vorticity front at
t = 0. In Gill’s solution the front remains at x = 0 (the
dashed lirc in Fig. 3b) and fluid columns simply ex-
perience « potential vorticity increase proportional to
(A{/H) as they cross over.

Hermann et al. (1989) has solved the full nonlinear
problem and shown that the front is actually advected
downstream, leaving behind a symmetric flow (Fig. 3c).
This new asymptotic state is simply one of the sub-
critical solutions described by hydraulic theory and is
not geostrophically controlled (the drop in interior
surface level is zero).

In summary, the geostrophically controlled solution
is a temporary state which occurs after Kelvin waves
have propagated out of the region in question, but be-
fore the vorticity front has been advected out. If we
focus on a region lying within a deformation radius of
x = 0, the Kelvin waves take time f ! to be removed,
while the vorticity front is removed after time (fA{/
H)™'A, where A varies from about 1 to 50 as w varies
from 0.2 to 10.0 deformation radii (Hermann et al.
1989). Hence, geostrophic control occurs for

[t < (AL/H) A, (5.1)
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In the solutions of Buchwald and Miles (1974) and
RC, there is a similar mismatch in potential vorticity
between basins. As noted by RC, one expects nonlinear
effects to come into play over a slow advective time
scale, ¢,. The Hermann et al. (1989) solution to Gill’s
adjustment problem suggests that these effects may
produce an entirely different steady state than the one
shown in Fig. 2, although calculation of such a state is
computationally difficult. In any case, we expect geo-
strophic control to hold for frequencies w in the range
f>e>t

Hydraulically controlled flows are generally asso-
ciated with small values of the minimum width-to-ba-
sin width ratio and O( 1) values of A{/H. In the ocean
A{/H is typically very small, and the corresponding
flows will tend to be completely subcritical rather than
hydraulically controlled. Thus, the choice is really one
between geostrophically controlled and symmetric
subcritical flows. For internal flows, where A{ measures
the difference in interface or isopycnal level, A{/H can
be O(1) and the corresponding flows can be hydrau-
lically controlled.

The above discussion has tacitly ignored friction.
Should frictional effects dominate those of advection
in the sense that £, > 1/ (where A is the linear friction
coeflicient), then geostrophic control can be expected
only within f~! <t < 1/ For t > O(1/)) some fric-
tionally determined steady flow will be established.

As an aside, it is noted that the time-dependent
equations of rotating hydraulics will not produce geos-
trophically controlled flows, even when the time scale
is restricted by (5.1). The crossing of the current from
one boundary to another is set up by Poincaré waves,
and the latter are not allowed in rotating hydraulic
theory (which admits only Kelvin wave dynamics).
Although nonlinear Kelvin waves possess finite cross-
strait velocity, linear Kelvin waves do not. The crossing
of the current in the models of RC, Buchwald and Miles
(1974), and Gill (1976) is associated with corners,
sudden depth changes, or other sources of rapid vari-
ations in the x-direction, all of which lead to Poincaré
wave dynamics. In the approximations leading to hy-
draulic theory, rapid along-stream changes are disal-
lowed.

6. Flow between closed basins and Whitehead’s (1986)
experiment

According to Wright’s (1987) calculation, geo-
strophic control becomes inapplicable when the areas
of the upstream and downstream basins are finite.
However, Whitehead (1986) has performed an exper-
iment that seems to verify geostrophic control in a lab-
oratory strait connecting two finite basins. A theory is
also presented which utilizes elements of hydraulic
theory, but which also makes the TG assumption
(2.1b) a prion. The resulting transport relation predicts
a geostrophically controlled flow when [2g(A{)]Y/?/
JSW < 1, where W is the width at the narrowest section.



FiG. 4. Sketch of surface velocities and separation streamline
(dashed line) in Whitehead’s (1986 ) experiment. (Redrawn from his
Fig. 6d).

Measurements of transport for cases of A{/H < 1 agree
within 5% or so with (2.5).

The paradox presented by Wright’s (1987) calcu-
lation and Whitehead’s (1986 ) experiment can be re-
solved by referring to a typical plan of Whitehead’s
laboratory flow reproduced in Fig. 4 from his Fig. 6a.
After entering the contraction or strait, the stream sep-
arates from the left (facing downstream) wall. The sep-
aration streamline is indicated by a dashed line. To
the left of the dashed line, a closed and relatively slow
moving recirculation exists. The presence of the sep-
aration streamline and the relatively stagnant region
to its left make the assumption (2.1b) more plausible
and may account for the success of geostrophic control
theory.

The streamline separation and recirculation ob-
served in Whitehead’s experiment are not features of
Wright’s solution. The conditions producing the sep-
aration (the corner geometry, the outlet conditions,
side wall friction, etc.) are not identified and no expla-
nation is given for the lack of symmetric subcritical
flows (which are observed in other laboratory situa-
tions, e.g., Shen 1981). Further study of this situation
is clearly needed.

7. Summary

In flow between infinite basins, geostrophic control
requires two conditions: first, the change in surface level
relative to depth between the basins must be small (A{/
H < 1), a restriction identified by RC and Whitehead
(1986). Second, the time span of applicability is limited
by

fl<t<t,

where 1, is an advective time scale depending on the
particular geometry of the flow. In most cases we expect
t, to be proportional to f ~'H/A¢{ and therefore, to be
> f~!. For a periodic flow with frequency w the cor-
responding restriction is

f>o>t".

For time scales longer than ¢,, steady flows are ex-
pected to be dominated by advection. In a gradually
varying geometry, the solutions of hydraulic theory will
arise. Whether the flow will be symmetric (subcritical )

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 21

or asymmetric (hydraulically controlled) will depend
on the initial value of A{/ H and the ratio of minimum
strait width to basin width. Hydraulically controlled
solutions will tend to occur when the former is O(1)
and the latter is <1. For typical ocean flows, A{/H is
tiny and subcritical flow is normally obtained as in the
Rossby adjustment problem. For internal flows having
an elevation difference A{ between isopycnals in
neighboring basins, A{/ H may be O(1) and hydraulic
control is more likely. Frictional effects (tacitly ne-
glected in our discussion) might also determine the
steady flow on long time scales.

The situation with regard to finite basins is less clear.
Despite theoretical predictions to the contrary, geo-
strophic control can exist if a peculiar separation phe-
nomenon occurs in the passage. This separation has
been observed in the laboratory flow of Whitehead
(1986) but not others, and the conditions for its oc-
currence are not documented.
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