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ABSTRACT

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of
reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the
sides by mass sources. Dissipation is provided by bottom friction. To the order of the appromixations made
(weak forcing and dissipation), the nonlinear hydraulic control is found to influence only the mean level of the
interface separating upper and lower layers, and not the horizontal circulation. For the case of forcing from
above the interior basin flow is anticyclonic about closed geostrophic contours and feeds into diffusive boundary
layers leading to the draining strait and sill. With sidewall forcing, the interior is motionless and flow is channeled
directly to the strait in boundary layers. The latter may circle the basin cyclonically or anticyclonically depending
on the source distribution, and a circulation integral is shown to predict the sense of the overall swirl velocity
and the presence of eastern and western boundary currents. Modifications caused by the presence of open
geostrophic contours or horizontal friction are commented upon. The model is used to predict pathways for deep
flow entering the Norwegian Sea from the Greenland Sea and escaping through the Faroe–Shetland Channel.
Comparison with the few existing observations are made.

1. Introduction

Part I of this work (Pratt and Llewellyan Smith 1997)
establishes an analytical method for computing deep,
reduced-gravity circulations contained in deep basins
and drained through a strait acting as a hydraulic control.
The main approximations allowing analytical tractabil-
ity are 1) the strait and sill system allows only a weak
outflow compared to the recirculating mass in the in-
terior of the basin and 2) that forcing and dissipation
are equally weak. Although the outflow is weak, the
strait and sill potentially have a zero-order influence on
the basin circulation. This influence is exercised through
slow time dependence in the amplitudes of the oscil-
lating and steady (geostrophic) modes that make up the
circulation. The purpose of this article is to explore the
simplest case of hydraulically drained flow, namely, that
of steady flow in the upstream basin. Specifically, the
interior circulations, interface configurations, and
boundary currents that arise when the deep fluid is fed
from above or from the side by a mass source that crude-
ly approximates deep convection in the overlying fluid,
sinking of fluid on the surrounding shelf, or inflows from
neighboring basins will be illustrated. To the extent per-
mitted by existing observations, comparisons are made
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with the circulation of deep and intermediate waters in
the Nordic seas.

Of particular interest are the features of the interior
circulation influenced by the hydraulic control. It will
be shown that the only significant interior feature subject
to regulation by the control is the mean stratification,
that is, the mean elevation of the interface separating
upper and lower fluids. The interior horizontal circu-
lation can be specified independently of the boundary
conditions around the edge of the basin, which takes
the strait and sill out of play. For the case of an interior
mass source, the horizontal circulation directs the added
mass slowly into boundary currents, which carry it to
the entrance of the strait. The general dynamics of the
boundary currents are independent of the hydraulic con-
trol, although the detailed velocity structure may depend
on the velocity distribution at the strait entrance, which
in turn is influenced by the hydraulics.

Also of interest are the pathways of flow between the
source and the sill. In general, the trajectories of fluid
parcels introduced into the basin are sensitive to the
type of source (interior or sidewall) and to the type of
geostrophic contour (open or closed) on which the fluid
is introduced. A circulation integral about the basin edge
can be used to predict the overall sense (cyclonic or
anticyclonic) of the boundary circulation.

A brief review of the governing equations and ap-
proximations is given in the next section. Included are
the integral constraints that govern the interior circu-
lation and interface elevation. Section 3 explores interior
solutions for a circular basin with radially varying bot-
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FIG. 1. Definition sketch with (a) showing a plan view with mass
introduced from the sidewalls and (b) showing a vertical cross section
with fluid fed from above.

tom topography, including cases of interior and of side-
wall mass sources. It is here that the hydraulic control
of the stratification is established. For an interior mass
source the interior circulation is anticyclonic about geo-
strophic contours and the added fluid must be carried
out of the interior by a weaker, ageostrophic circulation.
Introducing a weak bottom drag gives rise to an O(«)
radial velocity, which, depending on one’s view of the
drag law, may be thought of as an ageostrophic interior
velocity or an Ekman flux. (The small parameter « mea-
sures the strength of the outflow and is the same order
as the Rossby number.)

The ageostrophic secondary circulation (discussed in
section 4) carries fluid to the basin boundaries and from
there it must be diverted to the entrance of the strait by
a boundary layer. If the mass is introduced through the
sidewalls, there is no interior circulation and the fluid
is carried directly to the strait by the boundary layer.
As shown in section 5, the boundary layer obeys the
same diffusion equation that governs the northern or
southern boundary layer in a Stommel model (Pedlosky
1968, 1974) or the ‘‘arrested topographic wave’’ of
Csanady (1978). In order to calculate the detailed ve-
locity structure in this layer, it is necessary to specify
the velocity profile of fluid entering the strait, which in
turn requires some analysis of the hydraulic model (sec-
tion 6). The solution is then given (section 7) for the
case of a sidewall mass source, which gives cyclonic
flow around most of the basin edge with an overshoot
at the entrance. An interior mass source also gives a
cyclonic boundary layer circulation but this is over-
whelmed by the anticyclonic interior velocity field.

Section 8 comments on the potential vorticity of the
outflow, whose value is shown to be a decreasing func-
tion of transport. This feature is consistent with recent
work (Killworth 1994) indicating zero potential vortic-
ity as a condition for maximal transport. Section 9 ex-
plores modifications of the circulation that occur when
open geostrophic contours are introduced into the in-
terior. The resulting combination of Sverdrup and ‘‘cir-
cumpolar’’ interiors with associated diffusive and Stom-
mel western boundary layers gives rise to interesting
and rich path structures. A brief note on the structure
of the interior flow and boundary layer under the pres-
ence of horizontal friction, rather than bottom friction,
is presented in section 10. Section 11 discusses possible
connections with the horizontal circulation of inter-
mediate and upper deep water in the Greenland, Iceland,
and Norwegian Seas. Finally, section 12 generalizes the
discussion of circulation sense and, in particular, the
presence of eastern versus western boundary currents,
by making use of a circulation integral.

2. Review of governing equations

Consider a basin containing a deep, reduced-gravity
layer that is fed either from the side (Fig. 1a) or from
above (Fig. 1b) and drains through a strait. A quiescent

state is possible when the interface lies at sill level, in
which case the dimensional lower layer thickness is de-
noted H(x, y). Nondimensional quantities are obtained
using the scale depth Ho, the (constant) Coriolis param-
eter fo, and the interface displacement scale N to form
the length scale Ld 5 (gHo)1/2/ fo and the velocity scale
(gHo)1/2N/Ho. The resulting dimensionless equations for
momentum and mass conservation are

Ro(U ·=)(UH /H) 1 k 3 U 5 2(H /H)=h 1 «Fo o

(2.1)

= ·U 1 Ro= · (hUH /H) 5 «w , (2.2)o p

where U is the vector transport (depth-integrated hori-
zontal velocity) and h is the displacement of the inter-
face above sill level. Also, Ro is the Rossby number
(5N/Ho under the above scaling), « is a small nondi-
mensional parameter measuring the degree of constric-
tion of the sill or width contraction, F represents friction,
and wp represents a positive downward, interfacial en-
trainment velocity acting in the basin interior. The pres-
ence of the coefficient « in the friction and entrainment
terms reflects the basic assumption of weak forcing and
dissipation.

For Ro and « K 1 the interior circulation is geo-
strophic and follows H/Ho contours ( f/H contours di-
mensionally). After expansion in powers of « (i.e., h 5
hg 1 «h(1) 1 . . . ) the lowest order velocity and thick-
ness fields are calculated using compatibility conditions,
here obtained by setting the right-hand sides of Eqs.
(4.10) and (4.13) in Part I equal to zero:

k ·= 3 (FH /H) ds 5 (H /H) w ds (2.3)EE o o EE p

A AC C

and
W

(1)U ·n ds 5 w ds 5 T, (2.4)E EE p

0
A

where AC is the area enclosed by any H/Ho contour C,
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all of which are assumed closed, and A is the basin area.
[Note that the f-plane assumption is enforced by setting
f 5 1 in (4.1) of Part I and that the nonlinear terms are
zero as explained in the remarks following that equa-
tion.] Equation (2.3) is the circulation integral equating
the squashing of fluid columns by positive wp within AC

by frictional torque acting around the edge of AC. Equa-
tion (2.4) is simply the mass balance for the basin for
the case of an interior mass source, with the middle term
representing the integral over the strait entrance width
W of the outflow transport velocity U(1) ·n.

In a hydraulically controlled flow, the outflow trans-
port, T, is nonlinearly linked to the geometry of the sill
or width contraction and to other independent flow vari-
ables. The formulation used in Part I is due to Whitehead
et al. (1974, hereafter referred to as WLK) and requires
the constriction parameter « to be O(Ro). The WLK
model gives the following outflow transport, T, rela-
tionship:

3/23/2 22 wsT 5 w h 2 , (2.5)s r1 2 [ ]3 8

where hr is the value of hg measured at the right-hand
corner of the entrance (facing into the strait) and ws

5 Ro21/2Ws [5O(1)] with Ws representing the dimen-
sionless channel width at the sill, the cross section
being rectangular. Equation (2.5) follows directly
from (5.2a) of Part I [also see (5.3a)] and involves a
number of assumptions. For present purposes it is
sufficient to repeat that the formula is valid as long
as the lower layer thickness remains finite across the
entire channel width at the sill. In principle, the sill
flow may separate from the left-hand side of the chan-
nel, in which case (2.5) is replaced by another formula
[see (5.3b) of Part I]. However, the possibility of sep-
arated sill flow in a hydraulically controlled environ-
ment with smoothly varying, rectangular geometry
has been questioned by Pratt (1987) [also implicit in
Shen (1981)] and will not be considered here. For
further details regarding the underlying assumptions,
the reader should consult Part I.

3. The interior circulation

Suppose now that friction takes the form of bottom
drag, so that F 5 2R fug in (2.3), where ug is the vector
geostrophic velocity. This frictional law may be inter-
preted as originating from a linear drag law with di-
mensional drag coefficient D f , leading to R f 5 D f /
Ro foHo, or from an Ekman model with D f 5 fo(Ay /2 fo)1/2,
Ay being the vertical eddy viscosity. In general, F will
also include a term accounting for momentum transfer
from upper to lower layer due to wp. Under present
scaling assumptions, that term is O(«Ro) and is therefore
negligible.

Applying these definitions to (2.3) and using Stokes’s
theorem to simplify the right-hand side leads to

1
u · l ds 5 2 w ds # 0, (3.1)R g EE pRC f

AC

showing that the circulation averaged about geostrophic
contours is anticyclonic, a result independent of the ba-
sin shape. Anticyclonic circulation is also a feature of
the lower layer flow of a two-layer system driven by a
mass transfer from the upper to the lower layer (Gill et
al. 1979). [In contrast, Kawase and Straub (1995, manu-
script submitted to J. Phys. Oceanogr.) argue that abys-
sal circulation about closed geostrophic contours is gen-
erally cyclonic if the flow is driven by a lateral influx
of mass.]

For the case of a circular basin of radius a [and using
cylindrical coordinates (r, u) and radial and azimuthal
velocities (u, y), as shown in Fig. 1a] suppose that wp

has a finite, uniform value for r , ro and is zero for r
. ro. Thus,

2T /pr , r # ro ow 5 (3.2)p 50, r . r ,o

and the corresponding azimuthal velocity is given by
(3.1) as

2 221 r T /r , r # ro oy 5 (3.3)g 52prR T, r . r .f o

From the geostrophic relation y g 5 ]hg/]r and the
corresponding interface elevation is therefore

2 2 2ln(r /a) 1 (r 2 r )/2r ,o o oT r # roh (r) 5 h (a) 2 (3.4)g g 2pR ln(r/a),f 
r . r . o

To find hg(a) the hydraulic law (2.5) is inverted, lead-
ing to

3
2/3 2h (a) 5 (T /w ) 1 w /8. (3.5)g s s2

Figure 2a shows hg(r) for the settings T 5 1, a 5
1, ro 5 ½, Rf 5 0.2, and ws 5 0.5, over a diameter
of the circular basin. From this figure, and (3.4) and
(3.5), one can identify the following features: First,
the horizontal circulation is anticyclonic about closed
geostrophic contours with the interface forming a
dome. The magnitude of the velocity is independent
of the topography. In the source region, r , ro, the
interface has negative curvature (]2hg/]r2 5 2wp),
while outside the curvature is positive (]2h/]r2 5 T/
2pr2). These features are also shown in Fig. 2b, where
a has been increased to 4. Finally, only the ‘‘base’’
interface elevation hg(a) is determined by the hy-
draulic control. If the sill width ws or elevation (from
which hg is measured) is varied, the interface will
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FIG. 2. Interface elevation above sill over diameter (2a ,r , a) of circular basin for T 5 1,
R f 5 0.2, a 5 1, and W 5 Ws 5 0.5. For (a) the source region lies within r , ro 5 0.5 and a
5 1. In (b) a has been increased to 4. For (c) a 5 1 and the source lies within 0.1 5 r1 , r ,
r2 5 0.4. and 0 , u , uo, where uo is arbitrary. In (d) r has been increased to 4, r1 5 1.1, and
r2 5 1.4,

move up or down as a whole, but spatial variations
of the interface will remain fixed.

For nonaxisymmetrical forcing (but still circular geo-
strophic contours) yg and hg remain axisymmetrical with

the former given by the 2pr times the right-hand side
of (3.1) and the latter by the geostrophic relation. For
example, an isolated patch of finite wp occupying r1 ,
r , r2 and 0 , u , u1 leads to the interface displacement

1
2 2 2(r 2 r ) 1 r (ln(r ) 2 ln(r )) 1 ln(a) 2 ln(r ), r , r2 1 1 1 2 2 12

T 1 2 2 2h (r) 5 h (a) 1 (r 2 r ) 1 r (ln(r) 2 ln(r )) 1 ln(a) 2 ln(r ), r , r , rg g 2 1 2 2 1 22pR D 2f 
ln(a) 2 ln(r), r . r , 2

where D 5 2 . The displacement field is shown in2 2r r2 1

Fig. 2c using the same parameters as in Fig. 2a and r1

5 0.1 and r2 5 0.4. Over the geostrophic contours cross-
ing the source region (those occupying r1 , r , r2) the

interface again has negative curvature (]2h/]r2 5 2T(r2

1 )/2pr2D) while outside the curvature is again pos-2r1

itive (]2h/]r2 5 T/2pr2). The calculation is repeated with
a 5 4, r1 5 1.1, and r2 5 1.4 and the results shown in
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Fig. 2d. The positive and negative curvature regions
associated with nonsource and source regions might
make it possible to distinguish such regions using hy-
drographic sections.

In some oceanographic applications, the overflow-
ing layer overlies a deeper, stagnant layer and contact
with the bottom is lost except at the basin edge. This
situation apparently occurs in the Norwegian Sea
where overflow water is thought to comprise primarily
intermediate and upper deep water types (Hopkins
1991). The calculations presented above are still ap-
plicable with three modifications. First, the definition
of the reduced gravity must be altered slightly. Sec-
ond, friction must be interpreted as an interfacial drag.
Finally, since the H/Ho is nearly constant, any closed
contour qualifies as a geostrophic contour and (2.3)
must replaced by the quasigeostrophic potential vor-
ticity equation, as described in section 4c of Part I.
However, solutions of this equation for the forcing
functions given above are identical to those already
presented, as suggested by the fact that H does not
appear in the latter.

We conclude this section with the obvious remark
that, if fluid is fed into the basin through the sidewalls,
rather than across the interface, (3.1) requires the in-
terior geostrophic velocity to be zero at all points.

4. The secondary circulation

How does the fluid make its way from the source
to the strait? Since the radial geostrophic velocity is
zero, the outward transport must be carried by the
ageostrophic velocity component u(1). The latter may
be found from the steady form of the O(«) momentum
and continuity equations, (3.1) and (3.2) of Part I,
which reduce to

H
(1) (1)k 3 U 1 =h 5 F

Ho

and
(1)= ·U 5 w ,p

under current assumptions. Writing these in polar co-
ordinates and eliminating y (1) and h(1) leads to

HR] H ] Hf o(1)u 5 w 1 ry , (4.1a)p g1 2]r H rH ]r Ho o

which is valid for axisymmetric topography. A useful
alternative form can be obtained by expanding the de-
rivative in the final term and making use of (3.1), leading
to

21
] H

(1) 21u 5 w 2 (2pr) rw dup R p 1 2[ ] ]r HC o

Ho2 y R . (4.1b)g f H

If wp is independent of u, the first term on the right-
hand side of (4.1b) vanishes and the radial velocity re-
duces to 2ygR fHo/H. If the linear drag is felt uniformly
throughout the water column, this last expression rep-
resents an ageostrophic velocity distributed uniformly
over depth. With the Ekman model interpretation
2ygR fHo represents the volume flux in the bottom
boundary layer. In either case the radial velocity may
be calculated independently of the boundary conditions,
and there is no guarantee that the condition of zero
normal transport at the basin edge will be satisfied. For
example, the forcing (3.2) leads to

u(1)(a, u) 5 T/(2paH(a)/Ho), (4.2)

if (4.1b) is used with (3.1). (This result could also have
been derived using mass conservation alone.) A bound-
ary layer is clearly needed to divert this flow into the
strait, a subject taken up next.

5. The boundary layer

Denoting the thickness of the hypothetical bound-
ary layer by d and recognizing that the layer must
bring the O(«) radial transport to zero at r 5 a and
divert this flow along the boundary into the strait, it
is anticipated that the radial boundary-layer velocity
uB must be O(«), while the azimuthal velocity yB must
be O(«/d). Since the WLK model requires « 5 O(Ro),
we henceforth replace « by Ro. The full velocity and
displacement fields for the circular basin may there-
fore be written as

(1)u 5 Rou (j, u) 1 Rou (r, u) 1 · · ·B

(1)y 5 y (r) 1 (Ro/d)y (j, u) 1 Roy (r, u) 1 · · ·g B

(1)h 5 h (r) 1 Roh (j, u) 1 Roh (r, u) 1 · · · ,g B

(5.1)

where j 5 (a 2 r)/d.
The rapidly varying boundary-layer fields lie outside

the classes of flows considered in Part I and the gov-
erning equations must be derived from basics. Forming
a potential vorticity equation from (2.1) and (2.2) in the
usual manner leads to

d 1 1 Roz1 2dt (H/H ) 1 Roho

Ro
5 k ·= 3 (FH /H)o[(H/H 1 Roh)o

(1 1 Roz)
2 w , (5.2)p ](H/H 1 Roh)o

where z represents relative vorticity and « has been
replaced by Ro as explained earlier. After substitution
of (5.1), careful expansion of the result, and subtraction
of the vorticity balances for the interior geostrophic and
ageostrophic fields, one obtains
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22 2 2] H Ro H ] y Ro H Ro ] y RoR H ]yo o B o B f o B(1)u 1 (u 1 u ) 2 y 2 y 2 5 0.B B g B3 2 2 21 2 1 2 1 21 1 2 2 1 2]r H d H ]j d r H d ]j]u d H ]j

Balancing the first term with the O(Ro/d 2) terms gives
d 5 Ro1/2, rendering the remaining terms small. Drop-
ping the latter and using

2
] H H ] Ho o5 21 2 1 2 1 2]r H H ]r Ho

gives

2y] H H ] y ]yg B Bu 1 1 R 5 0. (5.3)B f1 2 1 2]r H r H ]j]u ]jo o

Unless H(r) varies rapidly over the boundary layer, one
may approximate H(r) and its derivative by their values
at r 5 a. Then, if H(a) is zero, as is normally the case,
(5.3) reduces to

] H ]y Bu 1 R 5 0. (5.4)B f[ ]]r H ]jo r5a

Direct expansion of the momentum equation and sub-
raction of the O(0) and O(Ro) balances shows both
boundary layer velocity components are geostrophic,

]hBy 5 2 (5.5)B ]j

and

1 ]hBu 5 2 , (5.6)B a ]u

from which follows the condition of nondivergence:

]u 1 ]yB B5 . (5.7)
]j r ]u

Eliminating yB between (5.3) and (5.5) leads to

2]u ] ] uB B2a 1 g 2 1 5 0, (5.8)
21 2]u ]u ]j

where

21 ] H
2a 5 (. 0) (5.9)[ ]aR ]r Hf o r5a

and

y21 Hg
g 5 (. 0). (5.10)[ ]aR Hf o r5a

When g 5 0, as occurs whenever yg or H vanishes
at the basin edge, (5.8) reduces to a diffusion equation
with u playing the role of time. The corresponding
boundary layer on a straight coast is sometimes referred

to as the ‘‘arrested topographic wave’’ (Csanady 1978).
It is also equivalent to the northern or southern boundary
layer arising in a homogeneous Stommel circulation in
a rectangular basin (with the beta effect replacing the
topographic effect). As such it can be traced back to
the work of Pedlosky [1974, his Eq. (8.1)] and Pedlosky
[1968, his Eq. (6.3)].

The estimate of the thickness of the diffusive (g 5
0) boundary layer can be refined somewhat by replacing
the original estimate d 5 Ro1/2 by d 5 Ro1/2/a, which
is equivalent to replacing a2 by unity in the g 5 0
version of (5.8). Dimensionalizing this estimate results
in the dimensional boundary-layer thickness

1/2
D f1/2 1/2 1/2d̃ 5 ã 5 ã d , (5.11)S[ ]H bo T

where

] H
b 5 2 fT o ]r Ho

is the topographic version of b, ã is the dimensional
basin radius, and ds is the Stommel western boundary
layer thickness based on topographic beta. The presence
of the basin radius in the definition has the following
meaning. It is well known that a diffusive process causes
spreading in proportion to the square root of the distance
from a point source. In the present problem the point
‘‘source’’ could correspond to the strait entrance or to
an isolated source on the side wall. In any case, the
boundary layer should thicken in proportion to the
square root of distance around the basin edge from the
isolated source. Since this distance is at most 2pã, the
average thickness should be proportional to ã1/2. Finally,
note that increasing u is equivalent to increasing time
in a standard heat equation; therefore, we expect the
boundary layer to spread as one moves counterclock-
wise around the basin edge.

If H is nonzero at the boundary or the variation of
H(r) across the boundary layer is sufficiently rapid that
H(r) cannot be replaced by H(a), the term multiplied
by g in (5.8) must be taken into consideration. This term
introduces waves into the otherwise diffusive boundary
layer. Specifically, a Fourier representation of the so-
lution with sums of terms proportional to sin(nu) or
cos(nu) will be controlled at large n by a balance be-
tween the two terms involving u derivatives. Keeping
only these terms and integrating with respect to u yields

2 2] u aB 1 u 5 k/g,B2]j g

where k is a constant. Since a2/g is positive, the so-
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FIG. 3. Definition sketch showing entrance to strait (section E)
leading into approach section (A), finally leading to sill section.

lutions oscillate, indicating the presence of topographic
Rossby waves held stationary by the interior azimuthal
velocity field. For the remainder of our discussion, at-
tention will be focused on the purely diffusive (g 5 0)
version of the boundary layer, which is the normal sit-
uation.

Solving (5.8) requires that uB be specified all around
the basin edge, including the strait entrance. WLK the-
ory gives only the total transport and not the detailed
velocity distribution at the strait entrance, and some
further development is necessary to obtain the latter, a
subject taken up next.

6. The boundary condition at the strait entrance

Figure 3 contains a diagram of the strait showing the
entrance (section E) and an approach section (A) lying
immediately upstream of the sill and width contraction.
The cross section of the strait is assumed rectangular,
as required by WLK, and the bottom elevation between
sections A and E is assumed constant. Section E is po-
sitioned far enough downstream of the entrance that the
flow entering the strait from the basin has become ap-
proximately parallel there. Furthermore, the same equa-
tions and scaling used in the basin are assumed to remain
valid between sections E and A; the rapid, hydraulically
driven flow occurring only downstream of A.

In dimensionless terms the potential vorticity of the
fluid at section A is given by

(1)q 5 1 1 Ro(z 1 Roz 1 · · ·A g[ ]
H Ho o(1)3 1 2 Ro h 1 Roh 1 · · · . (6.1)g1 2[ ]H HE E

Now the volume transport into the strait is constrained
by the hydraulic control to be O(Ro), and therefore the
lowest order normal velocity ug at the entrance must
either be zero, or net zero when integrated across the
strait entrance. The second possibility is ruled out if the

entrance coincides with a geostrophic contour, as is the
case in the circular basin with finite topographic slope
at r 5 a. It is therefore assumed that ug 5 0 across the
entire entrance and that the same condition holds from
the entrance to section A. Under these conditions zg is
zero in (6.1); therefore,

H Ho oq ø 1 2 Roh . (6.2)A g1 2H HE e

Since ug 5 0, hg must be y independent and therefore
qA must be constant. Also, since hg is constant along
the side wall, it is equal to hr [cf. Eq. (2.5)].

The flow from sections E to A is subject to bottom
friction and therefore the entrance potential vorticity qE

may not equal qA. A possible flow at E is one with
uniform normal velocity and uniform relative vorticity.
Since the potential vorticity of a fluid column flowing
from E to A is altered in proportion to the relative vor-
ticity, the potential vorticity of the flow would remain
uniform across each cross section and would therefore
reach a uniform state at A as required. Of course it must
be verified that a flow with uniform normal velocity and
uniform vorticity at E is dynamically consistent; this is
done in connection with (6.3) below. Furthermore, such
a flow is, at best, only a consistent entrance condition
and may not hold up to a detailed analysis of the strait
and corner regions. However, since the boundary layer
is diffusive, its structure should not be too sensitive to
the velocity profile imposed at the entrance provided
that the entrance width is small, and that it is assessed
more than a few widths away.

Since the basin boundary layer overlaps section E,
the boundary layer fields must be taken into account in
the computation of qE. Using the boundary-layer scaling
the result to O(Ro) is

]y ]y Hg B oq 5 1 1 Ro 2 2 hE g1 2[ ]r ]j HE r5a

Ho21 O(Ro ) . (6.3)]HE

Since neither ]yg/]r nor hg vary across the strait en-
trance, uniform potential vorticity implies uniform ]yB/
]j. By (5.4) the latter is proportional to the normal
boundary-layer velocity uB which, therefore, must also
be uniform across the strait entrance. By mass conser-
vation, uB at the strait entrance takes on the following
values depending on the mass source:

TH Wou (0, u) 5 1 2 (interior forcing) (6.4)B 1 2WH 2paE

or

THou (0, u) 5 (sidewall forcing). (6.5)B WHE
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Equations (6.4) or (6.5) give the normal boundary-layer
velocity at the entrance.

In formulating the boundary condition around the re-
maining periphery of the basin further consideration of
the geometry is required. Whether interior or sidewall
sources of mass exist, a normal transport uBH/Ho must
be specified at r 5 a, and the vanishing of H(a) at the
basin edge implies that uB → ` there. The vanishing of
H(a) also leads to some geometrical complexity near
the corners of the strait entrance, where H takes the
finite value He. Both problems can be avoided by simply
assuming that the basin edge consists of a vertical wall
such that H(a) 5 He. The diffusive limit (g K 1) of the
boundary layer balance then requires He K Ho.

7. Boundary layer solutions for interior and side
wall sources

Using the entrance condition derived in the previous
section, the solution can now be calculated for the dif-
fusive (g 5 0) version of the boundary layer. The cal-
culation is first performed for sidewall forcing with no
interior mass source. A slight redefinition of coefficients
then leads to the solution for the case of interior forcing.
In the first case, the boundary condition at the entrance
is given by (6.5). Around the remainder of the basin,
the normal velocity is inward and is equal to the total
transport T divided by the sidewall area (2pa 2 W)HE /
Ho. Thus,

TH 2W/(2pa 2 W), |u| . W/aou (0, u) 5B 5WH 1, |u| # W/a,e

(7.1)

assuming uniform inflow around the basin edge and
using (6.5).

The general solution to (5.8) with g 5 0 may be
written as

u (j, u)B

` Ï2
1/25 A cos an j 2 nu 2 BO n n1 2[ 2n50

Ï2
1/21/2 2an (Ï2/2)j3 sin an j 2 nu e , (7.2)1 2]2

and the distribution (7.1) leads to Bn 5 Ao 5 0 and

4TH a nWoA 5 sin . (7.3)n 1 2nH (2pa 2 W)W pae

For the case interior forcing the boundary condition
(7.1) is replaced by

TH 2W/2pa, |u| . W/aou (0, u) 5 (7.4)B 5WH 1 2 W/2pa, |u| # W/ae

in view of (6.5). The solution (7.2) still holds but with

2TH nWoA 5 sin . (7.5)n 1 2WH pn pae

The zonal velocity and interface elevation for the
boundary layer flow can be computed from (7.2) using
(5.5)–(5.7), resulting in

y (j, u)B

` Ï2aa An 1/25 sin an j 2 nuO 1 2[ 2n51Ï2 Ïn

Ï2
1/21/2 2an (Ï2/2)j2 cos an j 2 nu e1 2]2

(7.6)

and

h (j, u)B

` Ï2An 1/21/2 2an (Ï2/2)j5 a sin an j 2 nu e . (7.7)O 1 2n 2n51

Note that An, as defined by (7.3) and (7.5), are just
multiples of each other, the multiplicative factor being
independent of n, and the corresponding circulations
therefore have identical streamline patterns but different
flow speeds.

Figure 4a shows the streamlines (hB 5 const) for the
case of sidewall forcing using the same parameters as
in Fig. 2a and with Ro1/2 5 0.1, a 5 1, He/Ho 5 0.2,
and W 5 0.5. The basin is drained by a cyclonic bound-
ary flow (lower part of figure) and, on the opposite wall,
by an anticyclonic boundary flow. The cyclonic flow
approaches the strait from the right (facing into the
strait) and overshoots before entering. Some fluid pen-
etrates into the interior.

In the above case, Fig. 4a, the basin radius is unity,
which is convenient for displaying the solution but
unrealistically small. Increasing the a to 4 leads to a
solution with the same general path structure but more
boundary layer character. A contour plot of this case
is difficult to follow due to the dense packing of
streamlines against the basin edge; instead, the azi-
muthal velocity profiles from the center to the edge
are plotted for various values of u in Fig. 4b. As
before, the flow at the boundary is cyclonic for u 5
p and u 5 3p/2 and anticyclonic for u 5 p/2 (u 5
0 marking the strait entrance). The boundary stag-
nation point separating cyclonic from anticyclonic
flow is located at (0.61 6 0.02)p for both a 5 1 and
a 5 4.

The anticipated cyclonic spreading of the boundary
current away from the strait can be detected in the
streamline patterns Fig. 4. In Fig. 5 the same effect
can be detected by following the outward migration
of the zero crossings of the curves cyclonically from
u 5 p/2 (top frame) to u 5 3p/2 (bottom frame).

For the case of the interior mass source, the O(Ro1/2)
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FIG. 4. (a: left) Streamlines (also contours of constant hg) for case of
a mass source uniformly distributed along the basin side wall. The pa-
rameters are the same as in Fig. 2a and He/Ho 5 0.2, a 5 1, W 5 0.5,
Ro1/2 5 0.1, a 5 2. (b: right) Profiles of yB(r, u) for u 5 p/2, p, and
3p/2 for the same parameters as in (a) but with a 5 4.

azimuthal boundary layer velocity is dominated by the
interior velocity, and the circulation patterns shown in
Fig. 4 would be suppressed in a picture of the total
circulation. The same remarks apply to the interface
displacement, which is O(Ro) in comparison. In Fig. 5
an exaggerated plot of the boundary layer interface dis-
placement is shown above a plot of the interior dis-
placement, below which is their sum. The parameters
are the same as in Fig. 4 and the position of the observer
relative to the strait entrance is indicated on Fig. 1. The
upper plot was generated using (7.3) and (7.7) with n
5 15. Since both solutions are geostrophically balanced,
the velocity may be inferred from the surface slope. The
boundary layer circulation is simply a scaled version of
that shown in Fig. 4, while the interior circulation is
anticyclonic. The strait entrance corresponds to the
sharply sloping edge at the lower left-hand portion of
the lower surface.

8. The relation between transport and potential
vorticity

In inviscid hydraulic theories for rotating channel
flow, the potential vorticity of the overflowing fluid (the

value at section A of Fig. 3) is often prescribed. Here
the potential vorticity is required to be constant at sec-
tion A to O(Ro2) by the geometrical and dynamical con-
straints of the model. Its value may be expressed in
terms of the transport T by inverting (2.5) and substi-
tuting the result into (6.2), leading to

H H 3E E 2/3 2 2q 5 1 2 Ro (T /W ) 1 W /8 1 O(Ro ) .A S s1 2[ ]H H 2o o

(8.1)
Within the limits of validity of the Rossby number ex-
pansion, the potential vorticity decreases for increasing
transport. Simply put, large transports lead to large in-
terface displacements above the sill and, since the qA is
dominated by the stretching term [hg in (6.2)], the result
is lower potential vorticity. This trend is consistent with
the recent findings of Killworth (1994), which indicate
maximal transport for zero potential vorticity. It is pos-
sible that this agreement is fortuitous.

9. Open geostrophic contours
If the basin sidewalls are vertical, or are steep enough

to be approximated as such, it is possible for them to
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FIG. 5. The top surface represents the interface elevation hB as-
sociated with the (geostrophic) boundary layer fields for the case of
interior forcing with the same parameters as in Fig. 4a. The position
of the viewer relative to the strait entrance is indicated in Fig. 1. The
middle surface is the interior displacement hg drawn to a larger scale.
The lower surface is the sum of hg and hB.

FIG. 6. (a) Sketch of semicircular basin with semicircular bottom
contours (dashed) and with vertical wall at left end. (b) The qualitative
circulation for a uniformly distributed interior mass source. A Sver-
drup interior leads into a Stommel layer on the dynamical western
boundary, which in turn leads into a diffusive boundary layer on the
north wall.

be intersected by geostrophic contours. As a prototype
of this situation consider a semicircular basin with semi-
circular isobaths, as shown in Fig. 6a. Geostrophic con-
tours intersect the straight section of sidewall lying op-
posite to the strait. Following a topographic beta-plane
analogy the northern (southern) half of this straight sec-
tion will be called the dynamical western (eastern)
boundary since it lies to the left (right) of the direction
of decreasing H/Ho. The circulation for this case can be
anticipated without having to solve for the details of the
flow field.

To lowest order the interface displacement ho is con-
stant and given by the right-hand side of (3.5). Since
the lowest order velocity is zero along boundary-inter-
secting (open) contours, fluid fed into the interior must
make its way to the boundaries via the O(«) fields. The
radial and azimuthal components of the O(«) velocity
are now geostrophic since the vanishing of the O(0)
velocity removes any friction terms. From (4.1a) the
radial velocity reduces to

] H
(1)u 5 w , (9.1)p1 2]r Ho

which is essentially the Sverdrup relation for the radial
velocity. Fluid introduced from above sets up a cross-

isobath flow toward the deeper part of the basin, in this
case toward the origin (r 5 0). Continuity requires that
an azimuthal velocity also be set up in order to divert
the flow toward the straight boundary. The correspond-
ing boundary layer will essentially be a Stommel layer
(of thickness ds) and must occur on the dynamical west-
ern boundary, as shown in Fig. 6b. After leaving the
Stommel layer, the fluid flows toward the strait entrance
along the north wall in a diffusive layer with thickness
ã1/2 and with dynamics of the type considered in1/2ds

section 6. The south wall also must have a diffusive
layer to bring a possibly finite radial transport to zero,
as described earlier; however, this layer will carry a
relatively small mass flux.

The details of the interior circulation may be deter-
mined by calculating the O(«) interface displacement
from (3.2) of Part I and the geostrophic relations for
the O(«) velocity. The result is

u

(1) (1)h (r, u) 5 h 2 w r du9, (9.2)o E p

3p/2
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where is the constant interface displacement along the(1)ho

dynamical eastern boundary (u 5 3p/2). The azimuthal
velocity is then y(1) 5 ]h(1)/]r. The structure of the Stommel
layer is well known, and the corresponding solution will
be similar to that discussed in section 5e of Pedlosky
(1987). The solution for the diffusive layer obeys (5.8)
(with g 5 0) but requires analysis of the upper-left corner
region (Fig. 6b) for specification of boundary conditions.

Combinations of open and closed geostrophic contours
lead to rich and interesting circulations, many of which
can be pieced together using the ideas discussed above.
Similar problems have been treated (e.g., Kawase and
Straub 1995, manuscript submitted to J. Phys. Oceanogr.;
Straub et al. 1993) in connection with the abyssal circu-
lation, often with remote sources and interfacial upwelling.

10. A note on horizontal friction

The modeling discussion is concluded with a note on
the influence of horizontal friction, which may be a more
realistic source of dissipation when the reduced-gravity
layer is bounded below by an inactive layer (rather than
a solid bottom). In this case H/Ho 5 1 and F 5 (Fr,21Re

Fu), where Re 5 AH/Ro fo , AH is the horizontal eddy2Ld

viscosity, and

(u , y ) ](y , 2 u )2g g g g2(F , F ) 5 ¹ (u , y ) 2 2 .r u g g 2 2r r ]u

Substituting into (2.3) and using the axisymmetric
source (3.2) leads to the equation

2 2] ]y y T r T /r , r , rg g o or 2 5
21 2 5]r ]r r 4pr T, r . r .o o

The solution satisfying the no-slip condition at r 5 a
and which is continuous at r 5 ro is

 2a ro3 2r /4 2 r ln 1 r,o 21 2r 4ao r , roT 
y 5g 22 r a r4pr oo 4 21 2 2r r /4 1 r r ln 2 r ln 1 r,o o o 21 2r r 4ao o

r . r , o

(10.1)

giving anticyclonic interior circulation as before.
The boundary layer structure for this case depends

upon the bottom topography near the point of intersec-
tion with the lower interface. The different possibilities
are too lengthy and involved to explore here.

11. Relation to observed phenomena

The basins forming the Norwegian, Iceland, and
Greenland Seas confine the deep and, to some extent,
the intermediate circulations of the region. What little

has been written about the horizontal circulation of deep
and intermediate waters is based largely on property
distributions and dynamic height calculations. A review
of work prior to 1990 is given by Hopkins (1991). De-
spite the lack of direct velocity measurements, it is in-
teresting to compare inferred circulations to those pre-
dicted by the present model. In doing so, it should be
noted that the typical slope S of the ridges separating
the various basins ranges from 5 3 1022 to 5 3 1023

so that fS/D ranges from 0.5 3 10210 to 5 3 10211 cm21

s21 when a depth scale D 5 1 km is used. Since this
range is well above the typical value b ø 10213 cm21

s21 for the basins, the f-plane approximation seems rea-
sonable.

Starting with the Greenland Sea, I focus on the Green-
land Sea Deep Water (GSDW), which lies below about
2000 m and is topographically confined except for a
point in the southeastern part of the basin, where leakage
through the Jan Mayen Fracture Zone and into the Nor-
wegian Sea is thought to occur (Aagaard et al. 1985).
Debate exists over which mechanism, deep convection
or double diffusion and cabbeling, is responsible for
GSDW formation, but the most recent and highest pre-
cision property measurements suggest that the former
is dominant (Clarke et al. 1990). Forcing due to an
interior mass source would therefore seem the most ap-
propriate for the present model. In this case Eq. (3.1)
predicts anticyclonic deep flow in the basin interior, a
finding neither confirmed nor disputed by observation.
(Deep inflow from the Arctic is thought to circulate
cyclonically about the west and south edges of the basin
but this flow does not lie below the region of suspected
convection.)

Turning to the deep waters of the Norwegian Sea, the
primary source appears to be the aforementioned inflow
through the Jan Mayen Fracture Zone (Aagaard et al.
1985), whereas the primary sink is the Faroe–Shetland
Channel. Since only upper deep water is found in the
latter, the most realistic model configuration may consist
of a reduced-gravity layer with ‘‘floating’’ upper and
lower interfaces, the lower boundary contacting the bot-
tom only at the sloping basin edge. Also since deep
convection does not occur in the Norwegian Sea, the
most realistic model forcing consists of side wall sources
and sinks. Figure 7 shows the horizontal circulation in
a circular basin created by a isolated source at the north-
ern tip (the Jan Mayen Fracture Zone inflow) and an
outflow at the southern tip (the Faroe–Shetland Chan-
nel). The depth and width of the entrance and exit gaps
are assumed to be the same. All parameters are the same
as for the case, Fig. 4b, except that the source is con-
centrated in uniform inflow of width W 5 0.5, leading
to the Fourier coefficients A0 5 Bn 5 0 and

`4TH 1 nWoA 5 sinOn pWH n 2an51,3,5, . . .e

in (7.2). As shown, the throughflow is concentrated in
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FIG. 7. Flow fed by isolated source and sink. The parameters are iden-
tical to the Fig. 4b flow, and the width of the source is W 5 0.5.

boundary layers on either side of the basin. Although
the two layers are not symmetric, the mass flux is equal-
ly divided between them. Note that the flow approaching
the sink from the west overshoots, as was true in the
second case (Fig. 4).

The lack of deep interior circulation within the Nor-
wegian Sea is supported by the flat potential density
contours in the sections published by Clarke et al.
(1990), provided a deep reference level exists. The lack
of interior mean currents is also supported by a current
meter record obtained by Sellmann et al. (1992). The
Norwegian Sea is separated into two basins, the Nor-
wegian Basin to the southwest and the Lofoten Basin
to the northeast. Mauritzen (1993) cites hydrographic
sections in the Lofoten Basin indicating a boundary cur-
rent, possibly anticyclonic in direction, which would
correspond to the eastern boundary current in the model
(Fig. 7). This structure is not present in all sections.
There is also evidence for cyclonic flow in the Nor-
wegian Basin (Saelen 1986), which could be the pre-
dicted western boundary current.

Applying the model to the Iceland Sea is more prob-
lematic due, in part, to the fact that convection leads to
intermediate waters that lie above 500 m or so (Swift
and Aagaard 1981) and are not topographically confined
to the extent of the deep water. It is therefore question-
able whether a basin geometry is the most appropriate
setting. Also, there are differences in opinion as to the
fate of the intermediate water, Swift and Aagaard (1981)
believing it to exit through the Denmark Strait and
Mauritzen (1993; 1996a,b) believing it to flow east into
the Norwegian Sea. The dynamic topography relative
to 800 dbar indicates cyclonic flow at the surface (Swift

and Aagaard 1981), and the present model as well as
that of Gill et al. (1979), predicts an intermediate an-
ticyclone, at least in the absence of wind forcing.

It is notable that deep anticyclones in regions of ther-
mal convection are predicted by a number of models
(e.g., Gill et al. 1979) but generally not (yet?) observed.

12. Eastern versus western boundary currents

What determines the sense (anticyclonic or cyclonic)
and the distribution (eastern vs western) of the boundary
flow and how sensitive are these features to variable
Coriolis acceleration? Some insight into this question
can be gained by forming a circulation integral for the
entire basin. Consider the potential vorticity equation
(5.2) generalized to include y-varying f, obtained by
replacing (1 1 Roz) by ( f(y)/ fo 1 Ro). Multiplying the
result by the (H/Ho 1 Roh), integrating over the area
A of the basin, and making use of mass conservation
leads to

f (y) FHo1 Roz u ·n ds 5 Ro · l ds, (12.1)R R1 2f H]A ]Ao

where ]A represents the basin edge. Equation (12.1)
expresses a balance between the net horizontal input of
planetary and relative vorticity by the normal velocity
2u ·n and dissipation of vorticity about the basin edge.
Under the linear drag law F 5 2R f u and thus the dis-
sipation is proportional to the tangential velocity at the
basin edge. Also, the inflow/outflow velocity is O(Ro)
by assumption, and thus the lowest order circulation
balance is

f (y) Hou ·n ds 5 2R u · l ds. (12.2)R f Rf H]A ]Ao

Suppose first that the flow is fed from above and that
the basin is drained by a single strait. Also suppose that
f(y) and H are approximately constant across the strait
entrance with average values f1 and H1, say. Then (12.2)
reduces to

f H T H1 o o5 2R u · l ds, (12.3)f Rf H H]Ao 1

where, again, T is the (positive) volume transport exiting
the basin. Thus the tangential velocity u · l must be gen-
erally negative about the basin edge, suggesting overall
anticyclonic flow, as in the example (Fig. 5).

If instead the flow is fed by a single lateral inflow
and drained by a single outflow (Fig. 7), (12.2) becomes

f H f H H1 o 2 o o2 T 5 2 R u · l ds, (12.49)f R1 2f H f H H]Ao 1 o 2

where the subscript 2 denotes the source strait and 1
the sink strait. If f1 5 f2 and H1 5 H2, as in the Nor-
wegian Sea example, the left-hand side of (12.4) van-
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ishes and thus the right-hand circulation integral must
also vanish. The boundary flow must therefore be cy-
clonic (u · l . 0) over a portion of the basin edge and
anticyclonic (u · l , 0) elsewhere. With the two straits
on opposite sides of the basin the simplest scenario is
for the entering flow to split and form two boundary
currents, one cyclonic and one anticyclonic, as in Fig.
7. The feature of balancing cyclonic and anticyclonic
boundary flow can be generalized to any lateral source/
sink distribution provided f and H are constant around
the basin edge. The central idea is that no net planetary
vorticity is introduced and therefore the net dissipation
must vanish.

If the values of f1 and f2 differ, as would occur on a
b plane with the straits at different latitudes, then the
left-hand side of (12.4) is no longer zero. In physical
terms, the influx of planetary vorticity at the source strait
is different from that at the sink strait. A similar effect
is created if H1 and H2 differ, as in a topographic b
plane, for then ∫ u ·n ds differs between the two straits,
implying differing fluxes of f. As an example, consider
the two strait solution, Fig. 7, as modified by a slight
difference in f between the northern and southern strait.
If f2, the value of f at the northern strait, is slightly
larger than f1 and H is constant around the basin edge,
then R]A u · l ds is positive but small according to (12.4).
Thus we may expect a slight intensification in the
boundary current on the western side of the basin rel-
ative to the eastern side. Increasing the difference be-
tween f2 and f1 should increase the westward intensi-
fication in agreement with conventional wisdom re-
garding western boundary layers.

In the Norwegian Sea example (Fig. 7) H1 was ar-
bitrarily chosen to be equal to H2, largely because dis-
criminatory observational evidence does not exist.
However, mismatches between the two would lead to
differences between the eastern and western boundary
currents.

13. Limitations and future improvements

The assumption of reduced-gravity dynamics is some-
what limiting. For example, the Norwegian Sea Upper
Deep Water is overlain by an intermediate water mass,
which also participates in the Faroe–Shetland overflow
and may exert influence on the deeper flow. Future im-
provements to the model should include adding an ac-
tive upper layer. Also Johnson and Ohlsen (1994), John-
son and Sanford (1992), and Pratt (1986) have pointed
out the limitations of using frictionless hydraulic models
in the Faroe Bank Channel. In fact, Whitehead (1989)
has compared the volume outflow predicted by the WLK
model to observed values and found that the theory
overestimates the observations by 160%–400%. Addi-
tion of friction would presumably lower the predicted
values.

Another limitation of the present model is the treat-
ment near the ‘‘basin edge,’’ where the lower-layer

depth vanishes. A certain amount of complication has
been avoided by representation of bottom drag as a body
force and the artificial use, in some cases, of a vertical
wall. As pointed out by MacCready and Rhines (1991)
[and reviewed by Garrett et al. (1993)] the cross-slope
advection of density by the bottom Ekman layer can
lead to stress-free conditions at the edge of the flow.
This situation is avoided in the reduced-gravity for-
mulation since the Ekman layer (or body force repre-
sentation thereof) is homogeneous. However, the pres-
ence of continuous stratification might be expected to
produce a boundary stress distribution qualitatively dif-
ferent than the one imposed here.
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