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ABSTRACT

Kinematic models predict that a coherent structure, such as a jet or an eddy, in an unsteady flow can exchange
fluid with its surroundings. The authors consider the significance of this effect for a fully nonlinear, dynamically
consistent, barotropic model of a meandering jet. The calculated volume transport associated with this fluid
exchange is comparable to that of fluid crossing the Gulf Stream through the detachment of rings. Although the
model is barotropic and idealized in other ways, the transport calculations suggest that this exchange mechanism
may be important in lateral transport or potential vorticity budget analyses for the Gulf Stream and other oceanic
jets. The numerically simulated meandering jet is obtained by allowing a small-amplitude unstable meander to
grow until a saturated state occurs. The resulting flow is characterized by finite-amplitude meanders propagating
with nearly constant speed, and the results clearly illustrate the stretching and stirring of fluid particles along
the edges of the recirculation regions south of the meander crests and north of the troughs. The fluid exchange
and resulting transport across boundaries separating regions of predominantly prograde, retrograde, and recir-
culating motion is quantified using a dynamical systems analysis. The geometrical structures that result from
the analysis are shown to be closely correlated with regions of the flow that are susceptible to high potential
vorticity dissipation. Moreover, in a related study this analysis has been used to effectively predict the entrainment
and detrainment of particles to and from the jet.

1. Introduction

It is well known that horizontal fluid exchange and
mixing in the Gulf Stream and other oceanic jets can
result from the detachment of rings and other spin-off
eddies. More recently, attention has been focused on the
prospect that exchange and stirring can occur due to the
meandering motions of the stream in the absence of eddy
detachments (Bower 1991; Bower and Lozier 1994).
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Support for this idea comes from models of wavy flows
that have simple Eulerian time dependence but very
complicated Lagrangian motion. In simple models of
meandering jets with periodic or quasiperiodic time de-
pendence for example, the flow contains regions in
which fluid blobs are continually stretched and stirred,
resulting in chaotic Lagrangian motion. The fluid par-
cels that participate in this process are able to move
across regime boundaries that separate regions of the
flow exhibiting qualitatively different types of motion.
The associated volume flux across such boundaries is
called ‘‘chaotic transport’’ and it can be calculated using
a method known as ‘‘lobe dynamics’’ (Wiggins 1992).
As summarized below, many of the simple jet models
for which this mechanism has been illustrated are ki-
nematic or involve other restrictions, such as linearity.

This paper has several aims. First, we describe the
fluid motion and lobe dynamics in a meandering jet that
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FIG. 1. Streamfunction contours in the moving reference frame for
the the kinematic model of the meandering jet from Bower (1991).
The bounding streamlines separating the prograde (R 1), recirculation
(R 2), and retrograde (R 3) regions are drawn with thick lines. Two
hyperbolic points, p1 and p2, are indicated.

is fully nonlinear and temporally aperiodic (and there-
fore one step closer to reality). The resulting lobe di-
agrams provide a new way of visualizing meandering
flow fields and can be used to interpret drifter data (Lo-
zier et al. 1997). Second, we suggest the importance for
fluid exchange and mixing within the Gulf Stream and
other meandering jets by calculating the dimensional
transport and showing it to be comparable to transports
caused by Gulf Stream rings. Also, we use the lobe
calculations to identify regions of strong fluid filamen-
tation and, through calculation of changes in potential
vorticity along particle trajectories, we show these re-
gions to be ones of high dissipation. Finally, we dem-
onstrate by example the application of a potentially im-
portant dynamical systems analysis to model data that
is aperiodic and available only over a finite time.

a. Background

A number of earlier studies have suggested the ex-
istence of chaotic fluid exchange in meandering jets.
Many of these studies build on Bower’s kinematic model
of Lagrangian behavior in a jet with steadily propagating
meanders (Bower 1991). For such a flow, the motion
may be rendered steady by changing to a frame of ref-
erence translating with the meander phase speed. Figure
1 shows a typical streamfunction pattern caused by a
meander propagating at a speed within the velocity
range of the eastward jet. In the frame of reference
moving with the meander, regions containing three types
of motion appear. Near the meandering centerline or

core of the jet exists a prograde region (labeled R 1)
containing eastward streaming motion. Far away from
the jet lie retrograde regions (labeled R 3) containing
westward streaming motion, and between the retrograde
and prograde regions lie recirculations or ‘‘cat’s eyes’’
(labeled R 2). The recirculations are centered about the
critical lines, defined as values of y at which the phase
speed c equals the velocity u(y) of the background jet.
These recirculations should not be confused with the
broader recirculation gyres known to exist north and
south of the Gulf Stream. The points labeled p1 and p2

are hyperbolic stagnation points. The term ‘‘hyperbolic’’
implies pure straining motion, with fluid moving toward
or away from p1 or p2 along ‘‘stable’’ and ‘‘unstable’’
directions, respectively, as indicated by the arrows in
Fig. 1. In this steady flow, the streamlines are pathlines
and therefore the streamlines connecting the hyperbolic
points to the north of the crests and to the south of the
troughs are regime boundaries separating the prograde
(R 1), recirculation (R 2), and retrograde (R 3) regions.
In Bower’s model, no fluid exchange occurs across the
bounding streamlines (the edges of the cat’s eyes) and
the Lagrangian motion is regular (nonchaotic).

When additional time dependence is added to the
steadily propagating meander, it is no longer possible
to render the flow steady by shifting reference frames.
In the studies of Behringer et al. (1991), Samelson
(1992), Meyers (1994), and Duan and Wiggins (1996)
additional time dependence is included by superimpos-
ing meanders of different frequencies or by modulating
the amplitude of the original meander. In all cases, cha-
otic exchange occurs across the regime boundaries and
the stretching and folding associated with chaotic mo-
tion implies stirring in the vicinity of these boundaries.
[Dutkiewicz et al. (1993) effected a similar result by
adding a diffusive process.] This process is depicted in
Fig. 2 for a time-periodic meandering jet flow (from
Miller et al. 1996). The Lagrangian motion of particles
in the vicinity of the cat’s eye is represented by a Poin-
caré map, which marks the locations of different particle
trajectories at the end of each time period. The points
p1 and p2 of Fig. 2 are generalizations of the hyperbolic
stagnation points of the steady flow. In the time-periodic
case p1 and p2 mark periodic trajectories, that is, tra-
jectories for which the fluid element in question passes
the same location at the end of each time period. Point
p1 is intersected by a solid curve Wu(p1) called an un-
stable manifold of p1. In the absence of time depen-
dence, Wu(p1) relaxes to the boundary separating the
recirculating and prograde regions in the steady case
(Fig. 1). As in the steady case, we can define Wu(p1)
as the collection of trajectories that diverge from p1 (or,
equivalently, approach p1 as t → 2`). Any fluid element
that initially lies on Wu(p1) must continue to lie along
this curve after subsequent iterations of the map. Sim-
ilarly, a continuous material segment initially lying
along this curve will map to another material segment
on the curve. The motion of material elements or con-
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FIG. 2. Poincaré map for the time-periodic meandering jet flow analyzed by Pratt et al. (1995),
from Miller et al. (1996), illustrating the chaotic transport between regions R 1 and R 2. Two
hyperbolic points, p1 and p2, are indicated. Intersections of the stable manifold W s(p2) (dashed
line) and unstable manifold Wu(p1) (solid line) define primary intersection points, qn and q̃n, and
lobes An and Bn. The regime boundary is defined in this case as W u(p1, q0) < W s(q0, p2). The
mapping of a square patch of fluid within lobe A21 to lobes A0, A1, and A2 at subsequent times is
illustrated.

tour segments along Wu(p1) follows the arrows marked
in the figure. Note that p1 has a stable manifold (also a
solid curve in Fig. 2), which defines the collection of
all trajectories that approach p1 as t → `. The point p2

has its own stable and unstable manifolds and the for-
mer, Ws(p2), is shown as a dashed line in Fig. 2.

It is sometimes helpful to think of the stable and
unstable manifolds as surfaces in the three-dimensional
space (x, y, t). For example, one might picture the time
axis as perpendicular to the (x, y) plane of Fig. 2. Then
the trajectories of all fluid elements, which initially lie
on Wu(p1), form a material surface. Time slices of this
surface yield curves like Wu(p1), and these curves are
identical when the time slices are taken periodically.
Visualizing the manifolds this way is also very helpful
when the time dependence becomes aperiodic, in which
case the time slices no longer replicate themselves ex-
actly.

In the steady case Wu(p1) and Ws(p2) are identical,
but this is no longer true in the periodic case. Instead,
Wu(p1) and Ws(p2) are distinct curves that intersect each
other at an infinite number of points (labeled q0, q̃0, q1,
q̃1, etc., in Fig. 2). Between successive intersection
points are segments of the unstable and stable manifolds
that delineate regions of fluid called lobes (labeled A0,
A1, B0, B1, etc.). Since any point lying initially on a
manifold must be mapped to another point on the same
manifold, the intersection points must be mapped to
other intersection points (say q̃21 to q̃0 and q21 to q0)
and material segments like q̃21q21 are mapped to, say,
q̃0q0, and then to q̃1q1. It follows that the material con-
tained in a particular lobe, say A21, is mapped into a
different lobe, say A0, then to A1, and so on. (More
complicated scenarios, such as movement from A21 to
A1 to A3 can also occur, but we assume this is not the

case here.) Similarly, material from B21 is mapped to
B0, then to B1, and so on.

Two fundamentally important events occur as a result
of this motion. First, fluid is transported from the pro-
grade region R 1 to the recirculating region (or cat’s eye)
R 2, and vice versa. For example, the material in A21

(which clearly lies outside R 2) is eventually mapped to
A2 (which clearly lies inside). Similarly, the material in
B21 (which lies inside R 2) is mapped to B2 (which lies
outside). The cat’s eye may now be regarded as a region
where the motion is predominantly recirculating but ex-
periences exchanges with the prograde and retrograde
regions. The second important event is that fluid enter-
ing R 2 through the ‘‘A’’ lobes becomes stretched and
folded, as suggested by the deformation of the solid dye
patches shown in Fig. 2. This process is due in part to
the fact that there is an infinite number of intersection
points between the stable and unstable manifolds and,
consequently, they become densely packed in the neigh-
borhood of the hyperbolic points. For example, the dis-
tance between q̃n and qn, which is a measure of the
width of lobe An decreases to zero as n increases. To
conserve area, as required by mass conservation, the
lobes must lengthen. This filamentation process tends
to increase property gradients, eventually bringing dif-
fusive processes into play.

The boundaries separating R 1 and R 2 in the time-
periodic case can be defined in a number of ways. A
convenient choice is the curve p1q0p2, formed by a
segment of the unstable manifold Wu(p1) and a segment
of the stable manifold Ws(p2). This boundary roughly
coincides with the boundary between R 1 and R 2 in the
steady case. Inspection of the ‘‘A’’ lobes shows that fluid
crosses into R 2 from R 1 only during the mapping from
A0 to A1 and that fluid leaves R 2 for R 1 only during the
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FIG. 3. Nonlinear regime diagram from Flierl et al. (1987) iden-
tifying different types of finite-amplitude flow evolution in (b, k0)
phase space for the nonlinear barotropic numerical model.

B0-to-B1 mapping. Thus, fluid enters and leaves R 2

through a ‘‘turnstile’’ mechanism. The associated flux
from R 1 to R 2 is calculated by dividing the area of A0

by the period. In situations where the mapping of fluid
lobes is more complicated (such as when A21 maps di-
rectly to A1 and A0 to A2) two or more pairs of lobes
may cross the boundary during each time period.

Readers unfamiliar with the process and the termi-
nology described above can refer to Guckenheimer and
Holmes (1983), Ottino (1989), and Wiggins (1992) for
a more general and complete presentation of the ma-
terial. In the models of Behringer et al. (1991), Samelson
(1992), Meyers (1994), and Duan and Wiggins (1996)
this same process is at work, though different approach-
es and techniques have been utilized to analyze the cha-
otic motion in each case. Furthermore, these results
seem consistent with laboratory experiments showing
mixing at the edges of a barotropic jet (Sommeria et al.
1989; Behringer et al. 1991).

The aforementioned kinematic models are limited in
that the velocity fields do not obey any dynamical con-
straints, a shortcoming partially addressed by del-Cas-
tillo-Negrete and Morrison (1993) and Pratt et al. (1995)
who used linear, dynamical modes to produce mean-
dering velocity fields. In both cases the modes are neu-

trally stable and have critical lines on either side of the
jet axis. Their results also show chaotic exchange but
the dynamics are formally valid only for infinitesimal
meander amplitude. Furthermore, chaos is diagnosed us-
ing the long-time behavior of fluid parcels whereas tra-
jectory calculations in these linear models are formally
valid only for finite time. Work along these lines has
recently been extended to the weakly nonlinear regime
by Ngan and Shepherd (1997) in a critical-level model,
but the results still require small amplitudes. There are
also a small number of analytical models that employ
exact solutions to the fully nonlinear equations of mo-
tion, though none involve jets. One is the Kida vortex
(Polvani and Wisdom 1990), an elliptical vortex em-
bedded in a constant background shear. The vortex ‘‘nu-
tates,’’ a phenomenon of rotation accompanied by pe-
riodic variation of the aspect ratio. In a frame of ref-
erence rotating with the ellipse, the motion is periodic
and the situation is therefore similar to the periodic mo-
tion of a jet with an additional meander frequency su-
perimposed on the original steadily propagating me-
ander. Chaotic particle trajectories are found in the re-
gion exterior to the Kida vortex.

A significant feature of all periodic models that utilize
dynamical modes is that chaos occurs where the poten-
tial vorticity gradient is zero. For example, the Kida
vortex and the jet examined by Pratt et al. (1995) have
piecewise uniform potential vorticity. The jet examined
by del-Castillo-Negrete and Morrison (1993) has a back-
ground potential vorticity gradient which vanishes along
the critical lines where the chaotic motion is centered.
These results have been formalized by Brown and Sa-
melson (1994) who show that chaotic motion is pre-
cluded (in time-periodic, two-dimensional, incompress-
ible, potential-vorticity conserving flow) in regions of
nonzero potential vorticity gradient. As a result, the cha-
otic motion produces no mixing of potential vorticity
nor any potential vorticity fluxes. Indeed, strong poten-
tial vorticity gradients have been observed to act as a
barrier to mixing in laboratory jets (Sommeria et al.
1989) and the Gulf Stream (Bower and Rossby 1989;
Bower and Lozier 1994).

b. Present approach

Our approach overcomes some of the limitations of
the simple models described above. In the flow field that
is analyzed, the dynamics are fully nonlinear and there
is no restriction to small amplitude. The meandering jet
flow forms as the result of the growth of initially small
amplitude disturbances until saturation occurs. The ul-
timate meander amplitudes are determined as the result
of this evolution, rather than set to arbitrary values (as
they are in the linear and kinematic models). Finally,
the potential vorticity varies continuously throughout
the flow field, in contrast to the artificial piecewise uni-
form distributions used in several earlier studies.

In the saturated states we consider, the flow field is
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FIG. 4. Evolution of the numerically generated flow as represented by the potential vorticity field for case III. The contour increment is
Dq 5 0.1. Only a portion of the computational domain is shown. (a) The early nonlinear evolution of the unstable jet, t 5 20, 40, 60, 80.
(b) The nearly time-periodic meandering jet flow, t 5 200, 220, 240, 260. A patch of vorticity within a recirculation region is marked with
an asterisk.

TABLE 1. Parameter settings for the three cases analyzed along with
the (nondimensional) simulation time t0 chosen as the initial time for
the analysis, the translation speed c of the frame of reference, and
the dominant time period T exhibited in the moving reference frame.

Case (Re, b, k0) t0 c T

I
II
III

(104, 0.103, 0.74)
(104, 0.207, 0.98)
(103, 0.103, 0.74)

650
300
200

0.1255
0.1641
0.1209

52.5
31.5
56.5

dominated by a meander of a single wavelength. The
spatial structure of the Eulerian flow field remains qual-
itatively simple; there is no eddy detachment. The me-
anders propagate eastward at a nearly constant speed
and decay slowly due to the presence of weak dissi-
pation. In a frame of reference moving with the average
meander speed the time dependence is aperiodic. We
have chosen these flow fields for analysis because it is
possible to identify in them the prograde (or jet core)
region, the recirculations (or cat’s eyes), and the ret-

rograde (or far field) regions. The underlying geometry
is therefore the same as in the simple models cited
above, providing us with the opportunity to verify the
fundamental results (that fluid is exchanged between the
different regions) in a dynamically consistent setting.
At the same time, our flow field presents complications
such as aperiodic time dependence and availability of
velocity fields over limited time intervals, both of which
are more characteristic of oceanic reality. These features
necessitate the use and development of new method-
ology, and this is an important aspect of this work.

Briefly, we use an extended version of a previously
described lobe analysis developed for aperiodic flows
fields specified over a finite time interval. [Miller et
al. (1997) first extended the lobe analysis to the treat-
ment of finite-time data, and Haller and Poje (1998)
have strengthened the mathematical underpinnings.
The reader is also referred to Nusse and Yorke (1998)
and Miller et al. (1997) for background material on the
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FIG. 5. Time dependence of the flow in the stationary reference frame for case III. (a) Time series of the meridional
velocity, y(t), in the stationary reference frame for two points, located at (x, y) 5 (6.0, 12.8) (marked ‘‘1’’) and (x, y) 5
(8.0, 15.0) (marked ‘‘2’’). (b) The power spectrum obtained using the maximum entropy method. The spectral peak at v/
(2p) 5 0.0138 corresponds to the propagation speed of the dominant meander, c 5 (LD/n0) (v/(2p).

FIG. 6. Time dependence of the flow in the moving reference frame for case III. (a) Time series of the meridional velocity,
y(t), in the moving reference frame for a point located near the jet axis at (x, y) 5 (6.0, 12.8) (marked ‘‘1’’), and for a
point located in a recirculation region at (x, y) 5 (8.0, 15.0) (marked ‘‘2’’). (b) The corresponding power spectrum. The
spectral peaks in the range v/(2p) 5 (0.017, 0.018) are associated with the nutation period.

numerical construction of the finite-time geometrical
structures. Additional discussion and examples can be
found in the recent work by Malhotra and Wiggins
(1998).] The results will show that the stretching, stir-
ring, and fluid exchange associated with lobe dynamics
is confined to the edges of the recirculations where the
potential vorticity gradient is weak, reinforcing the pic-
ture that the jet core acts as a barrier to mixing. It will
also be shown that these edges are regions of relatively
high dissipation of potential vorticity due to filamen-
tation. Estimates of the flux are calculated which, when
dimensionalized using scales appropriate to the Gulf
Stream, indicate that the transport and exchange due
to meandering motions is comparable to the transport
associated with warm-core and cold-core ring forma-
tion.

Before we continue, we remark that the dynamical
systems analysis utilized in this study is just one tech-
nique for examining fluid exchange and stirring in flow
fields. In addition to providing quantitative estimates of
the fluid transport between different regions of the flow,
detailed pictures of the Lagrangian motion result from
this analysis. These pictures can be used, for example,

to interpret complicated drifter trajectories, as has been
done for a set of Gulf Stream RAFOS trajectories (Lo-
zier et al. 1997). However, there are other methods that
have their own advantages, and the reader is referred,
for example, to the work of Pierrehumbert (1991a, b),
Ngan and Shepherd (1997), and references contained
therein for analyses that use Lyapunov exponents and
Lagrangian statistics to describe mixing.

In the next section we describe the numerical model
that has been utilized to generate the flows that are
analyzed in this investigation. The finite-time aperiodic
analysis that has been applied to the numerical model
data is described in section 3, and the results for three
meandering jet flows is presented in section 4. In section
5 we discuss the oceanographic relevance of the results
and summarize our findings.

2. Numerical framework

Our choice for a model of a meandering jet was dic-
tated by the need to capture some of the properties of
Gulf Stream meanders (eastward phase propagation, fi-
nite amplitude), to achieve dynamical consistency, and,
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FIG. 7. Schematic of the computational approach used to approximate the finite-time material
surfaces and the hyperbolic trajectory g (t). (a) The stable surface, (shown in blue), issW g

generated by trajectories that exponentially move away from the hyperbolic region in the vicinity
of g (t 5 Tf ) as time regresses; (b) the unstable surface, (shown in red), is generated byuW g

trajectories that exponentially move away from g (t 5 0) as time progresses. Portions of sW g

[in (a)] and [in (b)] outlined with the dotted line are not computed but are included in theuW g

figure to aid the visualization of the surfaces.

at the same time, to maintain a link with existing simple
models (limited number of wavelengths present and
well-defined retrograde, prograde, and recirculating re-
gions). Flow fields that fit these requirements were
found by Flierl et al. (1987) in their study of barotropic,
b-plane jets. They numerically simulated the evolution
of an unstable jet disturbed by a small amplitude per-

turbation in order to identify regimes in which eddy
detachment would occur. In addition to spin-off eddies,
they found a variety of other regimes including finite-
amplitude meandering states, vortex streets, dipoles, and
various instabilities (see Fig. 3). Using higher resolu-
tion, longer computation times, and a different type of
dissipation, we have recomputed three of their finite-
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FIG. 8. (a) Schematic of the time evolution of the surfaces
(shown in blue) and (shown in red) for two distinguisheds uW Wg g1 2

hyperbolic trajectories, g1(t) and g2(t), on the northern side of
the jet. Also shown are portions of (shown in orange) anduW g1

(shown in purple). The intersection point used to define thesW g2

regime boundary, depicted as point q0 at early times and q21 at
later times, is shown in black. Two lobes, A and B, are also
marked. (b) Time slices of the tangling stable and unstable sur-
faces near the intersection point q0, illustrating how the regime
boundary deforms and is redefined. Segments of the stable (shown
in blue) and unstable (shown in red) curves are used to define
the regime boundary which is indicated by the thick line style.
At time t0, the boundary is [g1, q0] < [q0, g2]. At times uW Wg ,t g ,t1 2

t . t0, the boundary has deformed, but is still defined with respect
to the intersection point q0. At time t1, the boundary is redefined
in terms of the intersection point q21, and lobes A and B are
thereby ‘‘transported’’ to different flow regimes resulting in a fluid
exchange.

amplitude meandering states and we will base our lobe
analysis on these simulations.

The flow fields we analyze are numerically approx-
imated solutions of the barotropic, b-plane, potential
vorticity equation,

]q
1 J(c, q) 5 D (1)

]t

with periodic boundary conditions in both zonal and

meridional directions. In (1), c is the streamfunction, q
5 ¹2c 1 by is the potential vorticity, b is the variation
of the Coriolis parameter with latitude, J(c, q) 5 (]c/
]x)(]q/]y) 2 (]c/]y)(]q/]x) is the Jacobian of c and q,
and D is a dissipation term. Equation (1) is viewed as
nondimensional, with length, velocity, and time scales
L*, U*, and L*/U*, respectively, where L* is represen-
tative of the half-width of the jet and U* is the maximum
jet velocity. The flow is approximated pseudospectrally
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in a square computational domain of nondimensional
length LD and is allowed to develop from a weakly
perturbed zonal jet of the form,

c (x, y, t 5 0) 5 2erf(y)1 2y/LD 1 sin(k0x)22yee
(2)

with e 5 0.02 and wavenumber k0 5 2pn0/LD. Flierl
et al. (1987) found that (b, k0) 5 (0.103, 0.74) and
(b, k0) 5 (0.207, 0.98) lead to finite-amplitude mean-
dering states in which the flow is dominated by a me-
ander with wavelength equal to the initial perturbation.
An example of the development of this meandering state
is shown in Fig. 4.

Using a dimensional value of 5 1.8 3 10211 m21b̂
s21 5 bU*/L*2, we associate b 5 0.103 with the scales
U* 5 175 cm s21, L* 5 100 km, and t* 5 L*/U* 5
⅔ day, and b 5 0.207 with the scales U* 5 87 cm s21,
L* 5 100 km, and t* 5 L*/U* 5 1⅓ day. These scales
are associated with propagation speeds that are higher
than the speeds observed for Gulf Stream meanders by
Lee and Cornillon (1996) using satellite imagery. Be-
tween 758 and 458W, they find speeds less than 6 km
d21 for the 650–800 km wavelengths corresponding to
the meanders in our numerical solutions, which prop-
agate at 12 to 18 km d21. This discrepancy is probably
due to the fact that Gulf Stream meanders have a sig-
nificant baroclinic component. We also note that Gulf
Stream meanders are unrestricted by periodic boundary
conditions. It is unlikely that the clean, nearly mono-
cromatic meanders of the type considered in this study
would exist for long in such a setting, and we therefore
view the model flow as a stepping stone to more com-
plicated situations.

A common problem in spectral approximations is the
amplification of high modes associated with Laplacian-
type operators, resulting in numerical instability. One
method used to control this amplification is to model
diffusion in terms of a superviscosity (D 5 2n4¹6c),
as was done in Flierl et al. (1987). An alternative ap-
proach employs a filter to selectively damp only the
high modes. In this study, we have applied a weak ex-
ponential cutoff filter to the Fourier projection of the
potential vorticity field to control numerical instability.
The form of this filter in terms of the normalized wave-
number ui 5 LD /N 5 2p i/N, i 5 0, . . . , N/2, is (seeHki

Canuto et al. 1988)

1 for |u | , ui cs (u ) 5 (3)i 82a ( | u |2u )5 ce for u # |u | # p,c i

where 5 2p i/LD is the discretized wavenumber inHki

the x or y direction, and we have set uc 5 0.65p and
a 5 37 ø 2ln(10216). Since the use of the filter intro-
duces some (albeit small) numerical dissipation, we
have chosen to model the physical dissipation of po-
tential vorticity,

1
4D 5 ¹ c, (4)

Re

where Re 5 U*L*/A is the Reynolds number. The flows
are computed at two Reynolds numbers, Re 5 103 and
Re 5 104, corresponding to eddy viscosities A 5 175
m2 s21 (17.5 m2 s21) and A 5 87 m2 s21 (8.7 m2 s21)
for b 5 0.103 and b 5 0.207, respectively, at Re 5
103 (Re 5 104). The solutions presented were computed
pseudospectrally using N 5 128 Fourier modes in the
zonal and meridional directions on a square computa-
tional domain with nondimensional length LD 5 25.6,
and advanced in time using leapfrog time stepping with
occasional Euler correction and time step Dt 5 0.025.
The resolution is such that, for the Reynolds numbers
used, the physical dissipation dominates the numerical
dissipation associated with the filter, resulting overall in
approximately 1% (10%) total kinetic energy loss per
100 nondimensional time units for simulations with Re
5 104 (Re 5 103).

Three flows are analyzed in this study, corresponding
to the following parameter settings,

4Case I: (Re, b, k ) 5 (10 , 0.103, 0.74)0

4Case II: (Re, b, k ) 5 (10 , 0.207, 0.98)0

3Case III: (Re, b, k ) 5 (10 , 0.103, 0.74).0

As an example, the evolution of the flow for parameter
setting III is shown in Fig. 4 in terms of the potential
vorticity field. The initial weakly perturbed zonal jet
[Eq. (2)] is unstable and develops nonlinearly into a
finite-amplitude meandering configuration. The gener-
ation and evolution of coherent structures in the flow
for times t 5 0 to t ø 100 is discussed in detail by
Flierl et al. (1987). By time t0 5 200 in this case (Fig.
4b), the flow has saturated into a configuration char-
acterized by large-scale meanders that propagate east-
ward at a nearly constant speed and decay in amplitude
as time progresses. It is in this regime that the numerical
flows are analyzed. In some cases, secondary instabil-
ities occur causing pairing of the meanders and gen-
eration of longer wavelengths. This stage of evolution,
which begins for simulation times on the order of 500–
1000, is avoided in our analysis.

Table 1 lists the simulation times t0 that have been
chosen as the initial times for the analysis in each case.
These times have been subjectively chosen and no rig-
orous selection criterion has been applied. To examine
the Lagrangian motion in the three flows, it is conve-
nient to view the flows in a reference frame moving
with the large-scale meanders. The propagation speed
of the large-scale meanders has been estimated by spa-
tially averaging over a portion of the domain (24.4 ,
y , 4.4) the difference of the streamfunction, velocity,
and vorticity fields at times t . t0 with fields at time t0

until a best fit (a minimization of the spatially averaged
difference) was located. The reference-frame translation
speeds that have been selected for each of the three flows
analyzed are listed in Table 1. Spectral analysis could
also be utilized since the large-scale meanders are dom-
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inated by a single meandering mode. For parameter set-
ting III, for example, time series of the meridional ve-
locity at two fixed locations, (x, y) 5 (6.0, 12.8) and
(x, y) 5 (8.0, 15.0), reflect the propagation of the jet
meanders past these locations (see Fig. 5a). The power
spectra of both time series (Fig. 5b) show distinguished
peaks near v/(2p) 5 0.0138, indicating a propagation
speed of c 5 (LD/n0)v/(2p) 5 0.1178. We remark that
a precise determination of the propagation speed is not
essential to the characterization of the lobe dynamics
presented in the following sections. Viewing the flow
in a reference frame translating with the large-scale me-
anders simply makes it easier to identify the regions in
the flow that exhibit the strong hyperbolicity necessary
for the construction of the stable and unstable surfaces.

Figure 4b also shows patches of vorticity swirling
around within the recirculation regions, a motion that
is evidence of a second important time dependency.
(One patch is marked in the figure with asterisks.) The
vortical regions undergo a nutation (a rotation accom-
panied by a change in aspect ratio similar to that of the
Kida vortex) concurrent with an amplitude pulsation of
the large-scale meanders. The time dependence of this
motion can be quantified by computing the spatially
averaged norm described above, or by conducting a sim-
ilar spectral analysis, for the flow in the moving ref-
erence frame. For example, the spectral analysis for pa-
rameter setting III is shown in Fig. 6. The highest peaks
in the spectra coincide with the period of nutation, a
feature found in all three flows studied. (The secondary
peaks in Fig. 6b are harmonics.) The time periods as-
sociated with the nutation are listed in Table 1 for each
of the three flows analyzed. We document this phenom-
ena to give the reader a feeling for the time dependence
in the moving frame. However, the analysis presented
below does not require the presence of any characteristic
time scale.

In the next section, we describe the analysis that has
been conducted on the numerical model data. In each
case, the flows are analyzed over a finite time interval
spanning 250 nondimensional time units (that is, over
the time interval t 5 [t0, t0 1 250]). Although t0 is
different for each of the parameter settings analyzed,
for convenience throughout the rest of the paper we will
refer to the time interval over which the analysis is
conducted as t 5 [0, Tf ] for each case.

3. Aperiodic analysis

It is possible to carry out the same type of lobe anal-
ysis for the aperiodic flow that was described in section
1 for periodic flow, provided generalizations of hyper-
bolic points and their stable and unstable manifolds can
be found. Recall that a hyperbolic point corresponds to
a particular fluid trajectory that passes the same location
periodically. Such points are found just to the north of
meander crests (and the south of troughs) of the jet.
Nearby trajectories converge and diverge toward or

away from this trajectory along its stable and unstable
manifolds, respectively. In the aperiodic case it is rea-
sonable to expect similar structures to arise, given the
geometrical similarity with the periodic case. Specifi-
cally, one might expect to find a distinguished trajectory,
g (t), in the region north of a meander crest that remains
in the general area and is characterized by converging
and diverging Lagrangian motion in its immediate
neighborhood. We call g (t) a hyperbolic trajectory. Sta-
ble and unstable manifolds W s and W u are then defined
as the collection of trajectories that converge to g (t) as
t → ` and as t → 2`, respectively. Unlike the periodic
case, these surfaces must be visualized in the full three-
dimensional space (x, y, t). Figure 7 shows a hypo-
thetical example with the hyperbolic trajectory labeled
g (t) and its stable and unstable manifolds indicated by
blue and red surfaces, respectively. Intersection between
the stable and unstable manifolds of different hyperbolic
trajectories can be used to identify material lobes of
fluid trapped between the two surfaces and whose mo-
tion can be followed in the same manner as before. The
intersecting surfaces might look something like the ones
drawn in Fig. 8a. Whether this exercise is helpful in
clarifying transport and stirring processes in the flow
field depends on the complexity of the flow field under
consideration.

Unfortunately, velocity fields defined over 2` , t
, ` are typically available only in highly idealized
models. In most imaginable examples based on numer-
ical or real data, the velocity fields will be available
over only a finite time, and it will not be possible to
formally identify stable and unstable manifolds in terms
of infinite time limits. However, it is possible to identify
material surfaces that approximate the stable and un-
stable manifolds, which presumably could be found pro-
vided the full (2` , t , `) time record was available.
The construction of these material surfaces is described
below. [The reader is also referred to Nusse and Yorke
(1998), Miller et al. (1997), and Haller and Poje (1998)
for more detailed and rigorous discussions.]

Suppose that data over a finite time interval, 0 # t
# Tf , is given and regions of strong hyperbolicity are
identified, such as to the north of the meander crests.
Then, as depicted schematically in Fig. 7a, a surface
W s(x, y, t) can be generated by evolving in backward
time a short segment of particles initially located in the
region and aligned in the stable direction. The initial
placement of the line of particles is such that the end
points stretch in opposite directions and the surface W s

continues to straddle the particular hyperbolic region
for all 0 # t # Tf . A second surface W u(x, y, t) is
generated by evolving forward in time a segment of
particles initially located in a region of strong hyper-
bolicity at time t 5 0 and aligned in the unstable di-
rection (see Fig. 7b). Initializing the surface W u so that
it includes the same hyperbolic region used to generate
W s ensures that there will be intersections between W u

and W s. Moreover, there will be exactly one intersection
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FIG. 9. Results of the aperiodic analysis for case I corresponding to (Re, b, k0) 5 (104, 0.103, 0.74).

TABLE 2. Nondimensional lobe areas for the lobes illustrated in Fig. 9 for case I.

Group A

Lobe Area

Group B

Lobe Area

Group C

Lobe Area

Group D

Lobe Area

1
5
9

1.143194
0.997582
0.924829

2
6

10

0.942861
0.810276
0.983440

3
7

11

0.307937
0.284402
0.704648

4
8

12

0.713867
0.721887
1.166643

that remains in a ‘‘small’’ neighborhood of the hyper-
bolic region for the entire time interval. We will refer
to such an intersection as a distinguished hyperbolic
trajectory, denoted as g (t) (see Fig. 7b). The corre-
sponding stable and unstable surfaces are denoted as

and , respectively. By construction, all trajec-s uW Wg g

tories on the material surface approach g (t) as timesW g

progresses (t → Tf ) and all trajectories on approachuW g

g (t) as time regresses (t → 0). Therefore, these surfaces

serve as approximate stable and unstable manifolds for
the distinguished hyperbolic trajectory g(t).

In this manner, every distinct hyperbolic region in the
meandering jet flow can be identified with a distin-
guished hyperbolic trajectory, denoted gi, and with ap-
proximate stable and unstable manifolds denoted sW gi

and , for which g i 5 ù . For the mean-u s uW W Wg g gi i i

dering jet flow, stable and unstable manifolds have been
computed for two hyperbolic trajectories, g1(t) and
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TABLE 3. Lobes participating in the retrograde-to-recirculation (T
→ C) and recirculation-to-retrograde (C → T) exchange, the cumu-
lative lobe area, and the corresponding transport over the length of
the cycle Dt 5 t2 2 t1, for the flow illustrated in Fig. 9 for case I.

Time
interval
[t1, t2]

Participating
lobes

T → C : C → T
Total lobe area
AT → C : AC → T

Transport
AT → C /Dt : AC → T /Dt

[38, 98]
[98, 156]

[156, 210]

1, 3 : 2, 4
5, 7 : 6, 8

9, 10 : 10, 12

1.451 : 1.657
1.281 : 1.532
1.630 : 2.150

0.0242 : 0.0276
0.0221 : 0.0264
0.0302 : 0.0398

FIG. 10. Results of the aperiodic analysis for case II corresponding to (Re, b, k0) 5 (104, 0.207, 0.98).

g2(t), north of consecutive meander crests. The fluid
exchange between the northern recirculation region and
the adjacent retrograde region is described in terms of
the surfaces and , shown schematically in Fig.s uW Wg g1 2

8a. Fluid particles that move toward g1 as time pro-
gresses lie on the surface , shown in blue. ParticlessW g1

that move away from g2 as time progresses lie on the

surface , shown in red. The surfaces intersect trav-uW g2

ersely in the x–y plane. At a given time in the x–y plane,
the intersections terminate segments of the stable and
unstable curves that bound areas of fluid called ‘‘lobes’’
(two lobes, marked A and B, are labeled in Figs. 8a,b).
Since the surfaces are composed of Lagrangian trajec-
tories, the fluid within the lobes can be tracked through-
out the time interval once the surfaces are known. As
the lobes evolve in time, their shape can deform con-
siderably but, due to the incompressibility of the flow,
the area of an individual lobe remains constant. In re-
gions of strong hyperbolicity, found in the vicinity of
g1 and g2 for example, the boundaries of lobes undergo
rapid stretching, and we can expect their shapes to be-
come severely filamented as in the case of periodic time
dependence.

In order to discuss fluid exchange between the dif-
ferent regions of the flow, the boundaries between the
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regions must be defined. Referring to Figs. 8a,b let
denote the curve that is the t 5 t0 time slice ofsW g ,t1 0

the surface , and similarly for , that is,s uW Wg g ,t1 2 0

s sW [ W (x, y, t 5 t )g , t g 01 0 1

u uW [ W (x, y, t 5 t ).g , t g 02 0 2

Furthermore, let [p, q] denote the segment ofsW g , t1 0

between the points p and q, and similarly forsW g , t1 0

[p, q]. The regime boundary between the recir-uW g , t2 0

culation region and the retrograde region at time t0 ∈
[0, Tf ] is then defined as

B (t 5 t0): [g1, q] < [q, g2],s uW Wg , t g , t1 0 2 0
(5)

where q is an intersection point of and . Wes uW Wg , t g , t1 0 2 0

select the intersection point that produces a boundary
resembling the cat’s eye structure in the steady flow. In
Fig. 8a for example, the boundary at time t 5 0 is
defined in terms of the intersection point labeled ‘‘q0.’’
As time progresses however, the boundary deforms and
in order to restore symmetry to the shape of the bound-
ary, another intersection point, q21, is eventually chosen
to define the new boundary. That is,

s uW [g , q ] < W [q , g ] for t ∈ [0, t )g , t 1 0 g , t 0 2 11 2
s uB (t): W [g , q ] < W [q , g ] for t ∈ [t , t )g , t 1 21 g , t 21 2 1 21 2

_ _

Therefore, the regime boundary is defined discontinu-
ously in time. (Notice that in Figs. 8a,b and in the def-
inition above the index of qi is incremented for every
second intersection point.) The redefinition of the
boundary results in a fluid exchange ‘‘across’’ the
boundary involving a pair of lobes called ‘‘turnstile
lobes.’’ (Transport occurs only where the boundary is
redefined, which is generally away from the hyperbolic
trajectories.) Referring to Fig. 8b, the fluid in lobe A,
which is north of the boundary (and therefore in the
retrograde region) for times t ∈ [t0, t1), is ‘‘transported’’
south of the boundary (and therefore into the recircu-
lation region) at time t 5 t1 when the intersection point
with which the boundary is defined is switched. Mean-
while, the fluid in lobe B is transported from the recir-
culation region to the retrograde region. Since the fluid
in lobe A is trapped south of and north of foru sW Wg2 g1

the entire available time interval (t ∈ [0, Tf ]), there
would be no fluid exchange if the chosen intersection
point with which the boundary is defined remained un-
changed.

In the traditional time-periodic or quasiperiodic anal-
ysis, the boundary across which the exchange occurs is
also defined discontinuously in time. In a time-periodic
flow, the structure of the material surfaces are replicated
at constant time intervals equal to the time period of
the flow. The intersection point with which the boundary
is defined is switched at these regular time intervals,
yielding a boundary that is exactly the same as the
boundary at the beginning of the interval. In the ape-

riodic flow, the timing of the boundary redefinition is
less obvious. Since the meandering jet flow in this study
is spatially symmetric in the large-scale sense, the re-
definition of the boundary has been selected to approx-
imately coincide with the time when an intersection
point is midway between the meander crests. The re-
sulting boundary at time ti11 has the same cat’s eye shape
as the boundary at time ti, but the two boundaries are
not identical. Alternatively, the timing of the boundary
redefinition could be chosen to coincide with a char-
acteristic time period such as the nutation period. Note
that the discontinuous alteration of the boundary occurs
well away from the hyperbolic trajectories so that the
motion of the latter do not effect the transport.

4. Transport in the aperiodic flow

The aperiodic analysis described in the previous sec-
tion has been applied to three meandering-jet flows cor-
responding to the parameter settings,

4Case I: (Re, b, k ) 5 (10 , 0.103, 0.74)0

4Case II: (Re, b, k ) 5 (10 , 0.207, 0.98)0

3Case III: (Re, b, k ) 5 (10 , 0.103, 0.74).0

In this section, we present results illustrating the fluid
exchange across the regime boundary separating the re-
circulation region and the retrograde region, as repre-
sented by intersections of the surfaces and ,s uW Wg g1 2

for one recirculation region on the northern side of the
jet. The exchange between the jet core and the recir-
culation region, represented by the intersecting surfaces

and , is significantly less than that across theu sW Wg g1 2

recirculation–retrograde boundary for each of the three
cases; results showing jet core–recirculation exchange
will be presented at the end of this section for parameter
setting III only.

a. Case I: (Re, b, k0) 5 (104, 0.103, 0.74)

The results of the analysis for this case are shown in
Fig. 9. At selected times, time slices through the inter-
secting surfaces and are shown and the areas,s uW Wg g1 2

or lobes, delineated by the intersecting curves are color
filled. Included in the plots are contours, drawn in the
dotted line style, of the potential vorticity field in the
moving reference frame north of the jet axis. The lo-
cations of two distinguished hyperbolic trajectories are
marked in the figures with the ‘‘1’’ symbol, and in the
discussion that follows we refer to the one north of the
westernmost meander crest depicted in the figures as g1

and to the one north of the easternmost meander crest
as g2. The point marked with an asterisk distinguishes
the intersection point q, chosen to define the regime
boundary at the displayed time. The boundary is drawn
in the figures with a thick black line. To ease the dis-
cussion that follows and help the reader decipher the
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TABLE 4. Nondimensional lobe areas for the lobes illustrated in
Fig. 10 for case II.

Group A

Lobe Area

Group B

Lobe Area

2
4
6

0.838730
0.182250
0.548278

1
3
5
7

0.819390
0.787710
0.007154
0.854710

8
10
12
14

0.764800
0.719425
0.864622
0.411970

9
11
13
15

0.769599
0.785175
0.721175
0.516083

TABLE 5. Lobes participating in the retrograde-to-recirculation (T
→ C) and recirculation-to-retrograde (C → T) exchange, the cumu-
lative lobe area, and the corresponding transport over the length of
the cycle Dt 5 t2 2 t1, for the flow illustrated in Fig. 10 for case II.

Time
interval
[t1, t2]

Participating
lobes

T → C : C → T
Total lobe area
AT → C : AC → T

Transport
AT → C /Dt : AC → T /Dt

[38, 64]
[64, 96]
[96, 128]

[128, 164]
[164, 196]
[196, 228]

2 : 3
4, 6 : 5, 7

8 : 9
10 : 11
12 : 13
14 : 15

0.839 : 0.788
0.731 : 0.862
0.765 : 0.770
0.719 : 0.785
0.865 : 0.721
0.412 : 0.516

0.0323 : 0.0303
0.0228 : 0.0269
0.0239 : 0.0241
0.0225 : 0.0245
0.0270 : 0.0225
0.0129 : 0.0161

figures, each lobe is numbered individually and tagged
with one of six colors.

As noted in the previous section, the curves andsW g , t1

become severely filamented near the hyperbolicuW g , t2

regions g2 and g1, respectively. This filamentation can
be so extreme that the accuracy of the computation is
insufficient to be reliable and the structures lose their
physical relevance. Therefore, we have deleted portions
of and in the vicinity of g2 and g1, re-s uW Wg ,tø0 g , tøT1 2 f

spectively. Even though an infinite number of lobes the-
oretically exist throughout the entire available time in-
terval, the result of truncating and is that onlys uW Wg g1 2

a finite number of lobes can be identified and the iden-
tified lobes are visible in the figures for only a portion
of the available time interval, appearing near g2 at early
times and then disappearing near g1 at late times after
moving cyclonically along the northern recirculation–
retrograde boundary. In addition, a consequence of the
method used to compute the material surfaces (see sec-
tion 3 and Fig. 7) is that only a small segment of the
curve is known at times near the beginning of theuW g , t2

available time interval and only a small segment of
is known at times near the end of the interval. InsW g , t1

the first frame in Fig. 9 corresponding to time t 5 38,
the curve has been truncated near g2 and onlysW g , t5381

the segment of the curve between q and g2 isuW g , t5382

known. Therefore only six lobes are identified at time
t 5 38. At later times additional lobes are identified,
and as the lobes move towards g1 they eventually dis-
appear from the figures as is truncated. Near theuW g , t2

end of the available time interval, no newly identified
lobes are present in the figures since only a short seg-
ment of is known (see last two frames in Fig.sW g , tøT1 f

9).
According to the chosen regime boundary at time t

5 38 (first frame in Fig. 9), lobes 1 (purple), 3 (blue),
and 5 (too thin to recognize the coloring) are in the
retrograde region while lobes 2 (red), 4 (pink), and 6
(yellow) are in the recirculation region. As time pro-
gresses, the fluid within the lobes moves cyclonically
(counterclockwise). After advecting westward, lobe 1
at time t 5 72 is stretched eastward around the southern
edge of the recirculation region, becoming thin and elon-
gated. In contrast, lobes 2, 3, and 4, which were fila-

mented at time t 5 38, have formed into more compact
shapes by t 5 72. Furthermore, two of the lobes have
moved into a different flow regime; the fluid within lobe
1 has moved from the retrograde region of the flow into
the recirculation region, while the fluid in lobe 2 has
moved from the recirculation region to the retrograde
region. (Note that, as discussed in the previous section,
a new intersection point has been chosen to define the
boundary at time t 5 72.) Therefore, over the time
interval t ∈ [38, 72] there has been an exchange of fluid
between the recirculation and retrograde regions. The
exchange process between the recirculation and retro-
grade regions continues as time progresses. Between
times t 5 72 and t 5 98 in Fig. 9, lobe 3 (blue) moves
from the retrograde region to the recirculation region
while lobe 4 (pink) moves from the recirculation region
to the retrograde region. Meanwhile, lobes 1 and 2 re-
main in the recirculation and retrograde regions, re-
spectively, and are compressed and stretched as their
associated intersection points move towards g1.

The snapshots in Fig. 9 correspond to the times that
we have chosen to redefine the regime boundary (that
is, when every second intersection point crosses midway
between meander crests). The time period that was
found to dominate the flow in the moving reference
frame, T 5 52.5 (see Table 1), is almost twice as long
as the time interval between snapshots in Fig. 9. After
some study, it can been seen that the overall lobe struc-
ture is qualitatively replicated at every second snapshot
shown. That is, the lobe pattern in the snapshots at t 5
38, t 5 98, t 5 156, and t 5 210 resemble each other
(disregarding the absence of unidentifiable lobes at t 5
38 and t 5 210); there is an approximately repeatable
pattern every cycle, where the cycle length varies from
60 early in the available time interval to 54 at the end
of the available time interval. In this flow, two sets of
lobes (i.e., four lobes) participate in the exchange pro-
cess during each cycle. In the first cycle (t ∈ [38, 98]),
lobes 1, 2, 3, and 4 participate in the exchange. During
the second cycle (t ∈ [98, 156]), the exchange is rep-
resented by the movement of lobes 5 (green) and 6
(yellow) (see frames t 5 98 and t 5 130) and by lobes
lobes 7 (purple) and 8 (red) (see frames t 5 130 and
t 5 156), and so on. If the flow were precisely time-
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FIG. 11. Results of the aperiodic analysis for case III corresponding to (Re, b, k0) 5 (103, 0.103, 0.74).

TABLE 6. Nondimensional lobe areas for the lobes illustrated in Fig. 11 for case III.

Group A

Lobe Area

Group B

Lobe Area

Group C

Lobe Area

Group D

Lobe Area

1
5
9

1.425146
1.011310
0.497494

2
6

10

2.023283
1.451917
0.854587

3
7

11

0.138258
0.149030
0.2435717

4
8

0.613037
0.464254

periodic with a (constant) period of 60 for example,
then the lobe structure would be exactly replicated every
60 time units. The region occupied by lobes 1, 2, 3 and
4 at time t 5 38 would be occupied by lobes 5, 6, 7,
and 8, respectively, at time t 5 98, followed by lobes
9, 10, 11, and 12 at time t 5 158, and so on. That is,
if the flow were time-periodic there would be a mapping
of the lobes in four groups,

group A: 1 → 5 → 9

group B: 2 → 6 → 10

group C: 3 → 7 → 11

group D: 4 → 8 → 12,

such that within a given group the lobes have exactly
the same size and shape. Table 2 lists the lobe areas that
have been calculated for each of the lobes depicted in

Fig. 9.1 Since the flow in this case is not time-periodic,
the lobe structure is not precisely replicated and the lobe
areas within each group are not constant. Over the first
cycle (t 5 38–98; lobe 1 → 5, 2 → 6, 3 → 7, 4 → 8)
there is a 9% contraction of the overall lobe structure,
while over the second cycle (t 5 98–156; lobe 5 → 9,
6 → 10, 7 → 11, 8 → 12) there is a 34% increase of
the total lobe area.

The size of the lobes also indicates how much fluid is
participating in the exchange between different regions
of the flow. Over each cycle, the transport between the
two regions can be computed by simply dividing the area
of the lobes participating in the exchange by the length

1 Lobe areas are computed every two time units using Green’s
theorem. Even though the shape of the lobes deforms considerably
over the available time interval, area conservation of individual lobes
is well-approximated in our analysis, with standard deviations less
than 4 3 1025 for all lobes in all three cases presented.
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TABLE 7. Lobes participating in the retrograde-to-recirculation (T
→ C) and recirculation-to-retrograde (C → T) exchange, the cumu-
lative lobe area, and the corresponding transport over the length of
the cycle* Dt 5 t2 2 t1, for the flow illustrated in Fig. 11 for case
III.

Time
interval
[t1, t2]

Participating
lobes

T → C : C → T
Total lobe area
AT → C : AC → T

Transport
AT → C /Dt : AC → T /Dt

[48, 102]
[102, 162]
[162, 194]

1, 3 : 2, 4
5, 7 : 6, 8

9 : 10

1.563 : 2.636
1.160 : 1.916
0.497 : 0.855

0.0289 : 0.0488
0.0193 : 0.0319
0.0155 : 0.0267

* Note that the time interval t ∈ [162, 194] is only half of a cycle.

FIG. 12. Results of the aperiodic analysis depicting the jet core–recirculation exchange for case III.

of the cycle. As described above, two sets of lobes par-
ticipate in the exchange between the recirculation and
retrograde regions over each cycle for the case shown in
Fig. 9. The cumulative area from both sets of lobes and
the transport to/from the recirculation from/to the ret-
rograde region during the cycle are listed in Table 3. Over
each cycle, there is a net transport from the recirculation
region to the retrograde region. Note that this is not a
net mass transport across a fixed boundary, but rather a
net change in the type of motion exhibited by fluid par-
ticles in the vicinity of the cat’s eyes. That is, as time
progresses, more fluid undergoes a change from recir-
culating motion to retrograde motion than vice versa.

b. Case II: (Re, b, k0) 5 (104, 0.207, 0.98)

The results of the aperiodic analysis for the flow cor-
responding to the second case are shown in Fig. 10. In

the first time frame displayed, t 5 38, seven lobes have
been identified although lobe 5 is too small to be dis-
tinguished in the figure. Over the time interval t ∈
[38, 64], the fluid in lobe 2 (red) moves from the ret-
rograde region to the recirculation region, while the fluid
in lobe 3 (blue) moves from the recirculation region to
the retrograde region. Over the next time interval t ∈
[64, 96], however, two sets of lobes participate in the
exchange: lobes 4 (pink) and 5 (hidden at t 5 64), and
lobes 6 (yellow) and 7 (purple). At regular intervals
thereafter (dt 5 t2 2 t1 5 32), the exchange between
the recirculation and retrograde regions is again accom-
plished by just one set of lobes. Over the time interval
t ∈ [96, 128], the exchange is represented by the move-
ment of lobes 8 (red) and 9 (blue), and for t ∈ [128, 164]
lobes 10 (pink) and 11 (green) perform the exchange,
and so on.

That two sets of lobes pass through the turnstile dur-
ing the time interval t ∈ [64, 96] is a consequence of
the temporal aperiodicity of the flow. Also, unlike the
previous case for which the qualitative pattern of the
lobe structure was approximately repeated, the time de-
pendence in this case obscures any such pattern in the
lobe structure. Although the lobes in the groupings,

group A: 8 → 10 → 12

group B: 9 → 11 → 13,

have comparable areas (see Table 4), the shapes of the
lobes do not correspond as well (see t 5 128, t 5 164
and t 5 196 snapshots in Fig. 10).
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TABLE 8. Nondimensional lobe areas for the lobes illustrated in Fig. 12 for case III.

Group A

Lobe Area

Group B

Lobe Area

Group C

Lobe Area

Group D

Lobe Area

1
5

0.189097
0.105099

2
6

0.018088
0.004102

3
7

0.280920
0.365735

4
8

0.121965
0.032013

TABLE 9. Lobes participating in the recirculation-to-jet core (C →
J) and jet core-to-recirculation (J → C) exchange, the cumulative
lobe area, and the corresponding transport over the length of the cycle
Dt 5 t2 2 t1, for the flow illustrated in Fig. 12 for case III.

Time
interval
[t1, t2]

Participating
lobes

C → J : J → C
Total lobe area

AC → J : AJ → C

Transport
AC → J /Dt : AJ → C /Dt

[44, 98]
[98, 154]

1, 3 : 2, 4
5, 7 : 6, 8

0.470 : 0.140
0.471 : 0.036

0.0087 : 0.0026
0.0084 : 0.0006

The recirculation–retrograde transport during each
cycle is summarized in Table 5. The direction of the net
transport varies for the different cycles, but the net cu-
mulative transport over the time interval t ∈ [38, 228]
is from the recirculation region to the retrograde region.
Notice that, even though two sets of lobes participate
in the exchange over the interval t ∈ [64, 96], lobes 4
and 5 are small and do not inflate the transport over this
time interval.

c. Case III: (Re, b, k0) 5 (103, 0.103, 0.74)

The results for the third case are shown in Fig. 11.
In this case, the Reynolds number has been decreased
by a factor of 10 from case I and, in a broad sense, the
evolution of the lobe structure shown in Fig. 11 is sim-
ilar to that shown in Fig. 9. Over the time interval be-
tween successive snapshots in Fig. 11, one set of lobes
is transported across the recirculation–retrograde bound-
ary; lobes 1 (purple) and 2 (red) are transported across
the regime boundary during t ∈ [48, 80], followed by
lobes 3 (blue) and 4 (pink) during t ∈ [80, 102], and
lobes 5 (green) and 6 (yellow) during t ∈ [102, 134],
and so on.

Like case I, there is a repeatable pattern to the qual-
itative lobe structure (the snapshots at t 5 48, t 5 102,
and t 5 162 resemble each other, as do those at t 5 80,
t 5 134, and t 5 194) but the size of the lobes resident
along the northern edge of the cat’s eye decrease con-
siderably as time progresses. We can again consider the
mapping of lobes into four groups,

group A: 1 → 5 → 9

group B: 2 → 6 → 10

group C: 3 → 7 → 11

group D: 4 → 8.

Referring to Table 6, which lists the computed lobe areas
for this case, there is a 27% contraction of the overall

lobe structure over the first cycle (t 5 48–102; lobe 1
→ 5, 2 → 6, 3 → 7, 4 → 8) and a 33% contraction
over the second cycle [t 5 102–162; lobe 5 → 9, 6 →
10, 7 → 11, 8 → 12 (assuming lobe 12, which is not
identified, has the same area as lobe 8)].

The transports to/from the recirculation from/to the
retrograde region over the time intervals displayed in
Fig. 11 are summarized in Table 7. Since the lobes that
participate in the exchange decrease in size as time pro-
gresses, the transport across the regime boundary de-
creases with time. As in the low-dissipation case, more
fluid undergoes a change from recirculating motion to
retrograde motion during each cycle than vice versa.

The results presented above detail the evolution of
the intersecting surfaces and , providing a de-s uW Wg g1 2

scription of the fluid exchange between the recirculation
and retrograde regions. The exchange between the jet
core and the recirculation region can be similarly ana-
lyzed by computing the intersecting surfaces anduW g1

. Figure 12 shows the results of the jet core–recir-sW g2

culation analysis for case III. Eight individual lobes are
formed in the available time interval, but most of the
time the lobes are so thin that the intersection points
and the identifying color cannot be detected in the fig-
ure. The computed lobe areas are listed in Table 8. Com-
pared to the lobes formed along the northern edge of
the cat’s eye (see Fig. 11 and Table 6), these lobes are
a factor of 7 smaller (using the average area of lobes
1, 2, 3, and 4 as representatives). Likewise, the asso-
ciated transport between the jet core and the recircu-
lation region, listed in Table 9, is several times smaller
than the transport between the recirculation and retro-
grade regions. Analyses of the jet core–recirculation ex-
change for cases I and II yield similar results (not
shown).

5. Discussion and summary

The structures that have been computed in the anal-
ysis presented above are constructs that enable certain
key Lagrangian features of the meandering jet flow to
be described in detail. The geometry of these structures
illustrates how patches of fluid are stretched, stirred,
and transported to different regions in the flow. In Figs.
9–12 it can also be seen that the stable and unstable
surfaces are embedded within regions of relatively low
potential vorticity gradient. In particular, the dynamics
do not allow the material surfaces to penetrate the high
potential-vorticity-gradient region of the jet, reinforcing
the picture that the jet core acts as a barrier to mixing.
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FIG. 13. Composite illustrations of the potential vorticity field (contoured in the dotted line
style), lobe structure (shaded), and two meridional transects through the cat’s eye region where
Lagragian particles are initially positioned 0.05 units apart for (a) case I at time t 5 98, and (b)
case III at time t 5 102. A total of 242 [202] particles for (a) [(b)] are tracked for 200 time
units. The initial positions of particles that exhibit rapid potential vorticity transitions, Dq .
0.01 [Dq . 0.015] for (a) [(b)] over any 10-unit time interval, are plotted with an asterisk (see
also Figs. 14 and 15).

Since the lobes undergo filamentation, it is natural to
ask whether the regions occupied by the lobes are ones
of high dissipation. The process of filamentation acts to
increase local property gradients (e.g., potential vortic-
ity gradients) and can thereby facilitate changes in the
property field by locally increasing the dissipation. To
address this question, additional numerical computa-
tions were conducted to study the potential vorticity
evolution of Lagrangian particles in this nonconserva-
tive system. In these experiments, the flows for cases I
and III were seeded with fluid particles along two me-
ridional lines that transect the cat’s eye region (see Fig.
13). The fluid particles were initialized at time t 5 98
for case I and at time t 5 102 for case III, and numer-
ically tracked for 200 nondimensional time units. The
potential vorticity of each fluid particle was computed
as the numerical flow field was advanced in time by
interpolating the potential vorticity field to the particle
location using the same sixth-order Lagrange algorithm
used to estimate the Lagrangian velocity. The resulting
potential vorticity time series for each particle was then
analyzed in a simple fashion in an attempt to quantify
the nonconservation of potential vorticity for the La-
grangian fluid particles. Figures 14 and 15 show the

mean potential vorticity and standard deviation com-
puted for each particle trajectory for cases I and III,
respectively.

Overall, fluid-particle potential vorticity variations
are weak, with standard deviations for case III (with Re
5 103) somewhat higher than for case I (with Re 5
104) as might be expected due to the increased physical
dissipation in the flow (Figs. 14b,c and Figs. 15b,c).
However, for both Reynolds numbers the potential vor-
ticity variations appear to have some spatial depen-
dence. An inspection of the potential vorticity time se-
ries for the particles reveals that while many of the time
series exhibit a general downward trend, some of the
fluid particles exhibit relatively large rapid transitions
in their potential vorticity. For case I (with Re 5 104),
we have subjectively singled out particles that exhibit
potential vorticity changes of Dq . 0.01 over any 10-
unit time interval, and have applied the criterion Dq .
0.015 over a 10-unit time interval for case III (with Re
5 103). These particles are highlighted in Figs. 14b,c
and Figs. 15b,c with a square plot marker. While this
selection process does include the particles with the
largest rms potential vorticity fluctuations, which would
manifest if the potential vorticity jumps were very large,
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FIG. 14. Lagrangian potential vorticity statistics for case I. (a) Mean
potential vorticity vs initial meridional location, Y(t 5 0), for the
western transect (plotted with the solid line) and eastern transect
(plotted with the dashed line) shown in Fig. 13a. (b) Standard de-
viation vs initial meridional location for the western transect. Particle
trajectories that exhibit rapid potential vorticity transitions (Dq .
0.01 over 10 time units) have their rms data point augmented with
a square. (c) As in (b) but for the eastern transect.

FIG. 15. Lagrangian potential vorticity statistics for case III. (a)
Mean potential vorticity vs initial meridional location, Y(t 5 0), for
the western transect (plotted with the solid line) and eastern transect
(plotted with the dashed line) shown in Fig. 13b. (b) Standard de-
viation vs initial meridional location for the western transect. Particle
trajectories that exhibit rapid potential vorticity transitions (Dq .
0.015 over 10 time units) have their rms data point augmented with
a square. (c) As in (b) but for the eastern transect.

it also includes particles that have relatively moderate
standard deviations, differentiating them from trajec-
tories that exhibit trends in potential vorticity. The initial
locations of these same selected particles are marked in
Fig. 13 with an asterisk. Also shown in Fig. 13 are
snapshots of the lobe structure for cases I and III at the
time the particles were initialized. There is a striking
correspondence between the initial locations of particles
that undergo rapid potential vorticity changes and re-
gions demarcated by the lobe structure. [Recall that only
a subset of the lobes that exist are actually depicted in
the snapshots, so it is possible that the particle locations
near (x, y) 5 (14, 16) in Fig. 13a and near (x, y) 5
(17.5, 14) in Fig. 13b also coincide with a portion of
the entire lobe structure.] The correlation suggests that
the filamentation experienced by the evolving lobes is
associated with increased dissipation and eventual mix-
ing.

In addition to revealing how the Lagrangian motion
is geometrically constrained, the analysis we have con-

ducted provides quantitative estimates of the fluid ex-
change between regions of the flow exhibiting quali-
tatively different types of motion. In all of the cases
studied here, the most significant fluid exchange takes
place between the recirculation regions located on both
sides of the meandering jet and the retrograde region in
the far field. Exchange between the recirculation regions
and the jet occurs in a narrow region along the edge of
the jet core, away from the strong potential vorticity
gradients associated with the core of the jet, and is as-
sociated with a transport estimate that is approximately
4 or 7 times smaller than the transport between the
recirculation and retrograde regions.

The amount of fluid participating in these exchange
processes can be dimensionalized to provide transport
estimates appropriate for the Gulf Stream. The dimen-
sional volume transport is

T̂ 5 L*U*D*T,

where T is the nondimensional transport, L* is the length
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scale representative of the half-width of the jet, U* rep-
resents the maximum jet velocity, and D* represents the
depth over which the transport takes place. Using L* 5
100 km and U* 5 175 cm s21 (U* 5 87 cm s21) for
nondimensional b 5 0.103 (b 5 0.207) (see section 2)
and taking D* 5 500 m as a representative value for
the thickness (Lai and Richardson 1977), the results
listed in Tables 3, 5, and 7 yield dimensional transports
on the order of 0.5 to 4 Sv (Sv [ 106 m3 s21) over one
meander wavelength. The transport associated with Gulf
Stream ring detachment could be estimated at approx-
imately 1 to 5 Sv, assuming an average formation rate
of five to six rings per year over distances comparable
to the meander wavelength of the numerical jet, an av-
erage ring diameter of 130–250 km and a thickness of
500 m (Lai and Richardson 1977; Auer 1987). Of
course, the formation of Gulf Stream rings results in a
fluid exchange that is entirely different from the trans-
port discussed here, and the above comparison is simply
meant to put the current results in perspective. Rings
generally carry large volumes of fluid from one side of
the Gulf Stream to the other, whereas the Lagrangian
transport described herein is associated with stirring and
transport along the edges of the jet.

Like the model results presented here, Lagrangian
observations of the Gulf Stream using neutrally buoyant
floats indicate that, when a strong potential vorticity
front is present, there is limited cross-frontal fluid trans-
port (Bower and Lozier 1994). The observations also
reveal a wide array of fluid particle trajectories, includ-
ing pathways that reflect the meandering Eulerian struc-
ture of the stream as well as entrainment and detrain-
ment to and from the stream (Bower and Rossby 1989).
In an effort to better understand the complicated motion
revealed in the observations, results from a dynamical
systems analysis similar to that presented here have been
utilized to aid the interpretation of a set of Gulf Stream
RAFOS trajectories (Lozier et al. 1997). Recognizing
that the analysis of the observed Lagrangian motion
would be simplified in a moving reference frame, the
study of Lozier et al. (1997) provided the first look at
float trajectories in a reference frame moving with the
phase speed of Gulf Stream meanders to expose the
underlying geometrical structure of the observed flow.

The flow we have analyzed is a very idealized model
of an oceanic jet such as the Gulf Stream, and the desire
to study more complex flows naturally arises. It is our
hope that this study will encourage future investigations
that will continue to test the extent to which a dynamical
systems approach can be effectively applied to physi-
cally relevant flows to address mixing and transport is-
sues in the ocean and atmosphere.
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