Appendix A: List of Selected Notation. The following list includes variables that are common, that require special explanation, or that have multiple usages; is not exhaustive.

()*	The asterisk always denotes the dimensional version of a variable			
	The star is omitted for common parameters such as g or f, or for scales			
	such as D and L that do not have not have dimensionless versions			
$()^{\mathrm{T}}$	matrix transpose			
() _c	a quantity evaluated at a section of critical flow			
$()_{R}, ()$	L quantities measured along the right and left sides (facing			
	downstream) of a channel			
() _s	usually a quantity evaluated at a topographic sill			
[AB]	$=A_1B_2 - A_2B_1$ in Appendix B			
a	usually denotes the amplitude of a wave, initial condition or topographic			
	amplitude. It can also be also the position $(x=-a)$ of the left edge of a			
	current (Sec. 2.9), the potential vorticity gradient (Sec 2.9), the basin			
	radius (Sec. 2.13), or a background potential vorticity (Sec. 6.4)			
Α	cross-sectional area of flow (Secs. 2.12, 5.8); Mach angle (Secs. 4.3, 4.4,			
	and Appendices A and B); coefficient in depth profile (Sec. 5.8)			
Α'	angle of characteristic curve in hodograph plane (Appendix B)			
A	cross-sectional area of background flow (Sec. 3.9)			
A_{C}	area enclosed within a contour C			
b	<i>x=b</i> generally denotes the position of the free edge, or grounding point of			
	a current. In Sec. 6.4 <i>b</i> is the background potential vorticity in Region II			
В	Bernoulli function			
\overline{B}	average of the two side-wall values of B (Sec 2.2)			
Bo	surface Buoyancy flux (Sec 5.6)			
B_{f}	Buoyancy flux (Sec. 2.12)			
ΔB	internal Bernoulli function (Sec. 5.2.)			
С	generally a wave speed. Also the background potential vorticity in Region			
	III in Sec. 6.4			
C_{\pm}	characteristic wave speeds			
$c^{(n)}$	the propagation velocity of a shock normal to itself (Sec. 3.5)			
C_b	speed of gravity current nose (Sec. 4.4)			
C _{sep}	speed of left-wall separation point in a gravity current (Sec. 4.4)			
С	a contour such as a potential vorticity front (Sec. 3.2), shock (Sec. 3.5), or			
	a contour of depth discontinuity (Sec. 6.2); a coefficient in the depth and			
	velocity profiles (Sec. 5.8)			
C_{+}, C_{-}	denote characteristic curves (Sec. 4.3, 4.4 and Appendix B and C)			
C_d	dimensionless drag coefficient (Sec. 1.9)			
d, d_n	layer thickness, thickness of layer <i>n</i> (Chapter 5)			

$d_{1\infty}, d_{2\infty}$	constant thick	ness of layer	1 or layer 2 in a	hypothetical reservoir of	
	infinite width	(Chapter 5).	Used in systems	with no background rotation	ı

- \overline{d}, \hat{d} average of, and one-half the difference between, the wall depths in a rotating channel (Ch. 2)
- $\overline{d}_1, \overline{d}_2$ mid-channel (x=0) values of the layer depths (Sec. 5.7)
- $d_{\rm b}$ wall depth of a gravity current just to the rear (upstream) of the head (Sec. 4.5)
- d_{\circ} This initial depth in Long's towing experiment (Sec. 1.7); the layer thickness along a channel wall (Secs. 2.3, 5.7); the nondimensional basin depth below sill level (Sec. 2.13)
- $d_{\rm s}$ the depth (below the rigid lid) at which the plume is introduced. Mixing presumably increases as does $d_{\rm s}$ (Sec. 5.5)
- $d_{\rm u}$ upper layer thickness in laboratory estuary basin (Sec. 5.5)
- $(d\gamma_1, d\gamma_2,...)$ The displacement or displacement vector associated with a small change in a steady flow due to a stationary wave. The displacement vector determines the structure of the wave (Section 1.5)
- *D* background current depth (Sec. 1.3) or depth scale (elsewhere)
- \hat{D}_f form drag (Section 1.6)
- $D_{\rm s}$ in a two-layer system with a rigid lid, the depth over the sill (Ch. 5)
- D_{∞} , $D_{n\infty}$ potential depth (Sec. 2.1) or potential depth within layer *n* (Chapter 5)
- $D_{-\infty}$ In submerged weir flow (end of Sec. 2.4) the depth measured in a quiescent region of the downstream basin
- \hat{D}_r nondimensional Bernoulli function along the coast in Sec. 4.1
- $\mathcal{D}(x)$ depth of background flow (Sec. 2.9)
- e_n enstrophy (Sec. 2.9)
- e_w density of wave energy (Sec. 3.9)
- *E* volume entrainment rate (Sec. 1.6); the maximum energy or Bernoulli function (Sec. 2.10); the total energy (Sec. 3.9); the evaporation rate (Chapter 5)
- \dot{E} time rate of change of energy (negative for energy dissipation).
- E_b, E_m, E_w background, mean and wave energies (Sec. 3.9)
- E_n the entrainment rate (Secs. 1.6 and 2.12)
- f Coriolis parameter, $2\Omega \sin(latitude)$, where Ω is Earth's angular rotation rate.

 $f_{\pm}(x - c_{\pm}t)$ linear wave solutions

F or \mathbf{F} a scalar or vector force in the horizontal momentum equation (Sec 2.1).

 F_1, F_2 layer Froude numbers (Chapter 5)

 F_{β} Beta plane Froude number (Eq. 6.4.13).

- F_{d} The Froude number based on the local values of velocity and layer thickness (Sec 1.2). In Chapters 2-6, F_{d} can denote various generalized versions of the Froude number for rotating flow.
- F_{o} The Froude number of the initial flow in an initial-value problem. (e.g. Secs. 1.7, 3.8, and 6.2)

- F_p F_s Froude number for rotating flow in a parabolic channel (Sec. 2.8)
- Froude number defined using Stern's criterion (Eq. 3.4.12)
- F_{τ} bottom drag (Sec. 2.12)
- $F_{\rm w}$ Froude number based on side-wall velocities (Sec. 3.5)
- \overline{F}_{n} Pseudo Froude number for layer *n* of a rotating exchange flow (Sec. 5.7)
- the first can represent either the normal $(9.8m/s^2)$ or reduced gravitational g, g' acceleration depending on whether the equation in question applies to a free-surface flow or an equivalent barotropic (1.5-layer) model. The second always represents reduced gravity.
- G, Gn G hydraulic function, or one of n such functions in n variables (Sec 1.5).
- composite Froude number for two-layer flow (Chapter 5), also a Greens function (Sec. 3.2).
- composite Froude number for rotating, exchange flow with zero potential $G_{\rm r}$ vorticity (Sec 5.7)
- h topographic elevation, usually referenced to the elevation of a source basin
- δh height of topographic step or shelf (Sec. 6.2)
- $h_{\rm c}$ the minimum sill height required for upstream influence (Sec. 3.4); more generally, the bottom elevation at critical section usually the sill elevation. $h_{\rm m}$ sill elevation
- H(y)step function (Sec. 6.2)
- J_n* the contribution to the vorticity flux from dissipation (Sec 2.1)
- k wave number in the cross-channel direction (Sec. 2.1) or in along-channel direction in a zonal channel (Sec. 6.2)
- topographic function defined by Equation (6.4.6). K(y)
- $K_{o}(y)$ modified Bessel function of zero order.
- $K_{m,n}$ Helmholtz point vortex (Sec. 2.1).
- l wave number in the along-channel or along-coast direction (Sec 2.1); also the width of a control volume (Sec. 3.5.1).
- L generally the dimensional scale of variation in the primary direction of the current; a differential operator in Appendices B and C.
- $=(gD_{\infty})^{1/2}/f$, the Rossby radius of deformation based on the potential $L_{\rm d}$ depth.
- ΔL distance L_1 - L_2 between potential vorticity fronts in Sec. 6.4.
- total momentum (Sec. 3.9 and 6.2). M
- M_b, M_m, M_w background, mean and wave momentum (Sec. 3.9)
- density of wave momentum m_{w}
- in curvilinear (s,n) direction, n is normal to the current axis (Sec. 2.12) or п isobath (Sec. 2.13), or coastline (Sec. 4.1)
- cross-channel structure function for wave mode (Sec. 2.1). N is also used N(x)as a scale for the interface displacement η (Sec. 2.13).
- $\mathcal{N}(x)$ x-varying component of topographic height $h = \mathcal{N}(x)H(y)$ (Sec. 6.4)
- fluid pressure, pressure in layer n p,p_n
- external pressure field (Sec. 3.8). p_{\circ}
- p_T^* rigid lid pressure
- Р precipitation rate (Sec. 5.5)

- *q* potential vorticity
- q_2 in the Chapter 5 Froude number diagrams, q_2 is a proxy for the topographic height or channel width. See equation following 5.3.2.
- \tilde{q} potential vorticity anomaly (Sec. 3.2)
- q_0^* average potential vorticity (Sec. 2.8)

 $\Delta q = |a|Q^*/2q_o^*$ (see Sec. 2.8)

- Q, Q_n volume transport (flux) or volume transport within layer *n*. In Section 2.14, Q_0^* and Q_1^* denote the dimensional flux for a flow with potential vorticity q=0 and q=1. In Section (5.2) Q denotes the net flux over two layers.
- Q_b volume flux in a gravity current
- $Q_{\rm r}$ ratio of top to bottom volume fluxes in a two-layer system (Sec. 5.2)
- Q_R volume flux due to river runoff or other source of fresh water (Sec. 5.5)

Q(x) potential vorticity of background flow (Sec. 3.9)

- *r* part of the Riemann function (see Eq. 2.2.24); the ratio of width to deformation radius for a parabolic channel (Sec. 2.8, 2.13); the radial coordinate (Sec. 2.12).
- $r_{\rm f}$, $R_{\rm f}$ dimensional and nondimensional versions of a linear drag coefficient (Sec. 2.13).
- $r_{\rm o}$ radius of downwelling patch (Sec 2.13)
- *R* a region of the flow field
- ∂R the boundary of region R
- R_{\pm} Riemann invariant functions (e.g. Secs. 1.3 and 2.2).
- R_b bulk Richardson number
- R_i Richardson number (Sec. 1.10)
- $R_{\rm c}$ reflection coefficient (Sec. 1.8)
- R_o Rossby number (Sec. 6.1)
- s in a curvilinear (s,n) coordinate system, s is tangent to the axis of the current (Sec. 2.12), isobath (Sec. 2.13), or coastline (Sec. 4.1). In Sec. 6.4, s is the topographic slope.
- s_{\pm} see Eq. (5.9.12)
- Δs nondimensional salinity difference between layers (Eq. 5.5.8)
- *S* bottom slope (Secs. 1.9 and 2.12); ratio of horizontal length scale to Rossby radius (Secs. 6.1-6.4)
- S_n salinity in layer n
- *r* part of the Riemann function (see Eq. 2.2.24); the ratio of width to deformation radius for a parabolic channel (Sec. 2.8); width parameter for separated shock (Eq. 3.7.1).
- t time
- \tilde{t} slow time variable (Sec. 6.2)
- T tanh(qw/2) over most of the book. *T* is also used to denote the volume transport of a basin source (Sec. 2.13) and a time scale (Sec. 6.1).
- T_e $\tanh(qw_e/2)$

- (u,v) x- and y-velocity components in most of the book. In Section 2.13, u and v are radial and azimuthal velocities. In Section 4.1, they are the off-shore and along-shore velocities along a curvy coast line.
- $u^{(n)}, u^{(s)}$ normal and tangential velocity components to a shock (Sec. 3.5)
- u_o westward velocity of far field flow (Sec. 6.4)
- U_{o} maximum velocity in zonal jet (Sec. 6.2) \overline{v}, \hat{v} average of, and one-half difference between
- \overline{v}, \hat{v} average of, and one-half difference between, the wall velocities in a rotating channel.
- $\overline{v}_1, \overline{v}_2$ layer velocities at mid-channel (Sec. 5.7).
- v_{o} initial velocity in Long's towing experiment (Sec. 1.7); the layer velocity along a channel wall (Secs. 2.3 and 5.7);
- v_e velocity on free edge of stream (Sec. 2.3)
- V scale for v and (in Section 1.3) the velocity of the background current. V is also used to denote a control volume (Sec. 1.6) and the along-axis velocity of a plume (Sec. 2.12).
- V(x) the mean barotropic velocity in a two-layer system (Sec. 5.9)
- $\mathcal{V}(x)$ velocity of background flow (Sec. 3.9)
- (x,y,z) cross channel, along channel, and upward coordinates. For coastal flows, y is aligned along the coast, or in its predominant direction.
- *w* channel or shelf width or, in Section 1.1, the vertical velocity
- $w_{\rm b}$ width of a gravity current just to the rear of the head (Sec. 4.4)
- w_B variable basin width upstream of channel mouth (Sec. 5.7)
- w_{e} width of separated channel flow (Secs. 2.3, 5.7, 5.8); the current width (Section 4.1); the (positive downwards) entrainment velocity (Secs. 1.10, 2.13)
- W width scale
- *x*,*y* in rotating channels or coastal applications, *x* generally denotes the crosschannel or offshore coordinate. and *y* the longitudinal coordinate. In Chapter 6, where the currents are aligned east-west, this convention is reversed.
- \tilde{x} scaled version of x used to capture gradual variations (Sec. 6.2).
- x_c the midpoint of a separated current (Sec. 2.3).
- $y_{\pm}(t)$ along-channel position along a characteristic curve
- Y(x,t) position of Kelvin bore (Sec. 3.6); position of potential vorticity front (Sec. 6.2)
- Y(x) position of topographic step or shelf (Sec. 6.2).
- *z* vertical coordinate
- Δz difference between reservoir surface or interface elevation and sill elevation
- $\Delta z_{\rm E}$ an upstream surface or interface, measured relative to deepest part of the sill, equivalent to E/g', where E is the maximum energy over the streamlines passing across the sill (Sec 2.10).
- z_R the source elevation above the bottom in a Sec. 5.5 experiment.
- $z_{\rm s}$ elevation of source of plume (Sec. 5.5)
- $z_{\rm T}$ in a two-layer system, the elevation of the bounding rigid lid.

Greek

α	a multiplying factor (Sec. 1.3); bottom curvature (Sec. 2.8); the
	parameter $ a ^{1/2} d^*$ (Sec. 2.9); cross-axis bottom slope (Sec. 2.12);
	bottom slope parameter (Sec. 2.13); composite variable for the position of the edge of a coastal current (Sec. 4.2); coastline angle (Sec. 4.3); the initial velocity of the channel flow (Sec. 6.2); $(\beta/u_0)^{1/2}$ in Sec. 6.4.
β	a measure of the potential vorticity gradient either due to bottom
	topography (Sec 2.9,) or due to variations in the Coriolis
	parameter (Sec. 6.1.); the angle of the plume axis (Sec. 2.12) or an oblique shock (Sec. 4.3); coefficient in the expression for the speed of the nose of a gravity current (Sec. 4.5); coefficient of expansion of water due to salinity (Sec. 5.5).
$eta_{\scriptscriptstyle w}$	coefficient in the expression for the neck width of a gravity current (Sec. 4.4)
δ	horizontal aspect ratio (e.g Sec 2.1); boundary layer thickness (Sec. 2.13)
$\hat{\delta}$	ratio of potential layer depths (Sec. 5.9)
$\delta(x)$	the Dirac delta function (Secs. 2.13 and 3.2)
$\delta_{\!\scriptscriptstyle \mathrm{b}}$	boundary layer thickness (Sec. 2.13)
$\delta_{\!\scriptscriptstyle E}$	Ekman layer thickness
Δ	the change in interface elevation across the flow (Sec. 2.11); the ratio of
	total depth to the sum of potential layer depths (Sec. 5.9)
ε	a generic small dimensionless parameter, also the length of a control volume (Sec. 3.5)
$\phi(\tilde{x}, y)$	(\tilde{t}, \tilde{t}) perturbation stream function (Sec. 6.2)
γ or γ_n	a generic dependent flow variable used in a hydraulic function (e.g. Sec. 1.5) Also $\gamma = \frac{1}{2} w * a ^{1/2} D$ in Sec. 2.9
Γ_{\pm}	hodograph images of characteristics
η	displacement of surface or interface above some reference level
$\eta_{_{\pm}}$	interface displacement along right and left walls (Sec. 5.9)
$\eta_{\scriptscriptstyle e}$	interface elevation, relative to sill, at a channel entrance (Sec. 2.13)
К	drag coefficient used in plume model (Sec. 2.12); turbulent diffusivity (Sec. 5.6)
λ	wave length
λ_n	multiplying factor in derivation of hyperbolic forms (Appendix B)
μ	artificial 'viscosity' used in numerical code (Sec. 3.4)
$\mu_{_{\pm}}$	defined by expression following Eq. (5.9.11)
θ	azimuthal coordinate (Sec. 2.13); angle of inclination of a shock (Sec. 3.5); angle of velocity vector (Sec. 4.4).
$ ho$, $ ho_n$	density, density of layer <i>n</i> . In Section 4.1, ρ is the radius of curvature of the coastline

UN A

- $\Delta \rho$ difference in layer densities
- τ slow time variable (Sec. 3.2)
- τ_B , τ_I bottom or interfacial stress (Sec. 2.12)
- *v* kinematic viscosity
- wave frequency; also the angle of a characteristic curve in the hodograph (Sec. 4.4)
- σ , σ_{\pm} parameter for characteristic curve (Appendix B)
- σ_{θ} potential density referenced to the surface
- σ_4 potential density referenced to 4000db.
- ξ boundary layer coordinate (Sec. 2.13); *x*-coordinate of point vortex (Sec. 3.2)
- ψ transport streamfunction, but occasionally also the velocity streamfunction
- ψ_i value of ψ in quiescent interior region of the reservoir of Gill's (1977) model
- ψ_o the value of the streamfunction corresponding to the potential vorticity front in a steady flow (Sec. 6.2)
- ζ generally the relative vorticity; a similarity variable (Sec. 6.3)
- ζ_{a} absolute vorticity (*f*+ ζ) (Sec. 2.1)