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We investigate and quantify stirring due to chaotic advection within a steady,
three-dimensional, Ekman-driven, rotating cylinder flow. The flow field has vertical
overturning and horizontal swirling motion, and is an idealization of motion observed
in some ocean eddies. The flow is characterized by strong background rotation, and we
explore variations in Ekman and Rossby numbers, E and Ro, over ranges appropriate
for the ocean mesoscale and submesoscale. A high-resolution spectral element model
is used in conjunction with linear analytical theory, weakly nonlinear resonance
analysis and a kinematic model in order to map out the barriers, manifolds, resonance
layers and other objects that provide a template for chaotic stirring. As expected,
chaos arises when a radially symmetric background state is perturbed by a symmetry-
breaking disturbance. In the background state, each trajectory lives on a torus and
some of the latter survive the perturbation and act as barriers to chaotic transport,
a result consistent with an extension of the KAM theorem for three-dimensional,
volume-preserving flow. For shallow eddies, where E is O(1), the flow is dominated
by thin resonant layers sandwiched between KAM-type barriers, and the stirring rate is
weak. On the other hand, eddies with moderately small E experience thicker resonant
layers, wider-spread chaos and much more rapid stirring. This trend reverses for
sufficiently small E, corresponding to deep eddies, where the vertical rigidity imposed
by strong rotation limits the stirring. The bulk stirring rate, estimated from a passive
tracer release, confirms the non-monotonic variation in stirring rate with E. This result
is shown to be consistent with linear Ekman layer theory in conjunction with a
resonant width calculation and the Taylor–Proudman theorem. The theory is able to
roughly predict the value of E at which stirring is maximum. For large disturbances,
the stirring rate becomes monotonic over the range of Ekman numbers explored. We
also explore variation in the eddy aspect ratio.
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1. Introduction
Chaotic advection (Aref 1984) is a process in which fluid stirring is controlled by

long-lived, coherent structures. Stirring in such flows is of particular interest as it
leads to exponentially rapid stretching and folding of fluid elements, amplification of
property gradients and eventually irreversible mixing. However, if chaotic regions exist,
it does not mean the entire flow field must be chaotic. Non-chaotic regions, where the
stirring is relatively weak, can exist in other portions of the flow field, separated by
material barriers.

This picture is very relevant in the stratospheric polar vortex (e.g. Ngan &
Shephard 1999; Joseph & Legras 2002; Rypina et al. 2007b). In the ocean, the
dynamical systems approaches often used to analyse chaotic transport phenomena have
been applied to certain features or scales, or to particular geographical areas. Early
investigations of idealized jets, waves and gyres (e.g. Sommeria, Meyers & Swinney
1989; Behringer, Meyers & Swinney 1991; Samelson 1992; Del-Castillo-Negrete &
Morrison 1993; Pratt, Lozier & Beliakova 1995; Duan & Wiggins 1996; Dijkstra &
Katsman 1997; Haller & Poje 1998) led to applications to the Gulf Stream (Samelson
1992; Lozier et al. 1997; Malhotra & Wiggins 1998; Rogerson et al. 1999; Poje
& Haller 1999; Deese, Pratt & Helfrich 2002; Yuan, Pratt & Jones 2004), flow
around islands (Miller et al. 2002), exchange between subtropical and subpolar gyres
(Coulliette & Wiggins 2001), tidal-driven motion in Monterey Bay (Lipphardt et al.
2006; Coulliette et al. 2007; Shadden et al. 2009), mesoscale motion in the Gulf of
Mexico (Kruznetsov et al. 2002; Beron-Vera & Olascoaga 2009; Branicki & Kirwan
2010), dipoles in the Philippine Archipelago (Rypina et al. 2010) and gyres in the
Adriatic Sea (Haza et al. 2008; Rypina, Brown & Kocak 2009). The methods are
also used in the planning of targeted release of drifters (Haza et al. 2007) and in
the statistical descriptions of dispersion (Poje et al. 2010). The full extent to which
the methods and ideas are relevant is unknown, but the rule-of-thumb applicability
criterion is that chaotic advection is relevant when the flow field contains long-lived,
coherent structures that control stirring at both large and small scales. As argued by
Rypina et al. (2011) this picture does not apply to large basin-scale ocean gyres,
motivation for canonical ‘double gyre’ models, because the influence of mesoscale
eddies cannot be ignored.

Most oceanographic applications involve flows that are assumed to be horizontally
two-dimensional and non-divergent, either at the upper surface or on surfaces of
constant depth or density. Horizontal divergence of the velocity field is ignored
or removed. The quasigeostrophic approximation is consistent with this assumption,
since the vertical velocity w must be sufficiently weak that its vertical derivative
∂w/∂z can be neglected to leading order in the continuity equation. For this reason,
three-dimensional, quasigeostrophic eddies or jets can be treated by making a two-
dimensional analysis at each depth or isopycnal surface and piecing the results
together (e.g. Branicki & Kirwan (2010) for stratified Gulf of Mexico eddies).
Relatively little attention has been paid to flow fields that are both oceanographically
relevant and fully three-dimensional, defined here as meaning that ∂w/∂z is not
negligible at leading order. The number of eigenvalues of the velocity gradient
tensor increases from two (both real) to three (one real plus a complex conjugate
pair), and the inward or outward spiralling that is prohibited in incompressible, two-
dimensional applications can arise. In general, the extra degree of freedom would
appear to encourage chaotic motion and rapid stirring, and it is natural to ask whether
barriers are easily permitted in such flow. The answer is positive, as suggested by
special solutions to the Euler equations (e.g. Dombre et al. (1986) for ABC flow)
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or three-dimensional phenomenological models (Solomon & Mezic 2003; Mullowney,
Julian & Meiss 2005, 2008) and laboratory and numerical experiments (Fountain et al.
2000; Lackey & Sotiropoulos 2006).

The ocean is filled with eddies of different sizes, many of them long-lived. For
coherent eddies that have upwelling and downwelling circulations, the co-existence
of strongly and weakly mixed regions, separated by barriers, could have all kinds
of implications for the transport, mixing and distribution of physical, chemical and
biological quantities and for ecosystems. The vorticity supplied by Earth’s rotation
is often much larger than that due to the swirling motion in these eddies, and this
places the flow fields in a different dynamical regime than previous three-dimensional
models of chaotic advection. Although previous work has identified the generic forms,
usually tori, that barriers can take, their size, stability and distribution has not been
evaluated in an oceanographically relevant parameter space. Nor do we know the
extent to which chaos enhances the stirring rates within this space. Some guidance
follows from the KAM theorem and the analysis of resonant layers, but these are
based only on the underlying geometry of the given incompressible velocity field. The
dynamical constraints that forge the velocity field do not inform the theorem and are
often ignored in modern analysis of Lagrangian coherent structures.

The present work represents only a first step towards establishment of the relevance
of chaotic advection to eddies in an oceanographically relevant parameter range. We
analyse a dynamically consistent, three-dimensional flow field that is both simple and
canonical but also lies within a parameter range spanning the ocean submesoscale to
the mesoscale. The specific flow field has a horizontal swirling circulation plus an
overturning cell, all driven by an imposed velocity at the upper surface. The curl
of the surface stress leads to a divergence in the surface Ekman layer and induced
upwelling and downwelling. This type of circulation has been observed, for example,
in mesoscale eddies subject to wind forcing (McGillicuddy et al. 2007; Ledwell,
McGillicuddy & Anderson 2008). Stratification is ignored, but this is reasonable for
submesocale feature that reside primarily in the mixed layer, and may be informative
for mode water eddies (Ledwell et al. 2008), which tend to be weakly stratified. For a
basic state with no azimuthal dependence, it is readily established that all trajectories
are confined to tori and no trajectory is chaotic. As demonstrated by Fountain et al.
(2000), chaos can be introduced into the system through a steady, symmetry destroying
perturbation. We describe the Lagrangian structure of the resulting flow with respect
to chaotic and non-chaotic (regular) regions and the boundaries that separate the two.
We will map out general trends in the space of the primary governing parameters
(the Ekman and Rossby numbers, the aspect ratio and the disturbance amplitude)
paying attention to structural characteristics and barrier stability. The amplification of
the stirring rates due to the Lagrangian chaos will be quantified through analysis of
tracer release experiments. We will show that for a weak or moderate disturbance,
the stirring rate is a non-monotonic function of the Ekman number, which agrees
with earlier predictions due to Mezic (2001). However, we will also argue that
the dynamical explanation differs from what is thought to apply in flows that lack
strong background rotation and that the non-monotonic behaviour disappears when
the disturbance amplitude grows sufficiently large. We will also explore variations in
the Rossby number and aspect ratio of the flow. We will also use various analytical
results, including linear Ekman layer solutions, the Taylor–Proudman theorem and a
calculation of resonance width, to construct a narrative explaining many, although not
all, of the observed transitions and regimes.
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Examples of invariant tori have been visualized using dye in the beautiful laboratory
experiments (Fountain et al. 2000) in which a viscous flow in a cylinder is forced at
the top by a tilted, rotating impellor. Most of the cases considered lack background
rotation. Lackey & Sotiropoulos (2006) also consider cylinder flow with counter-
rotating top and bottom, producing a twin overturning circulations. No cases with
background rotation are considered. Our study is distinguished from these earlier
studies by, among other things, the consideration of oceanographically important frame
rotation, which is reflected in the parameter space we explore: Rossby numbers that
are low to moderate and Ekman numbers ranging from O(1) to 10−4.

Our investigation is centred on a high-resolution integration of the Navier–Stokes
equations, and this is described in the next section along with the governing
parameters and a complementary phenomenological model. Section 3 describes the
two mechanisms by which Lagrangian chaos can arise as a result of perturbation of
an azimuthally uniform steady state in which each trajectory lives on a torus. Some
of this material consists of review (action–angle–angle coordinates, the KAM theorem,
stable and unstable manifolds) while other aspects (resonance width calculation) are
new. Section 4 describes an exploration of numerical results over variations of Ekman
and Rossby numbers and disturbance amplitude. Chaos typically occurs near the
rotation axis and outer regions of the cylinder, and in resonant layers, but the geometry
and distribution of these objects differs markedly as the Ekman number is varied.
The non-monotonic behaviour with E of the vertical velocity, as predicted by linear
theory, provides insight into three regimes of distinct geometry and mixing that are
identified. In § 5 we present estimates of the bulk stirring rate and use ideas relating
to resonance width, the Taylor–Proudman theorem and analytical solutions to construct
a narrative and theory that predicts the non-monotonic character of the stirring for
weak disturbances. We then describe some significant changes that occur in geometry
and mixing rate as the disturbance amplitude is increased. We also comment on some
other aspects, including the stability around the central torus, the result of reducing
the aspect ratio and the general behaviour of stable and unstable manifolds. Section 6
identifies ocean features and scales for which the stirring mechanisms may be relevant
and outlines some observational challenges. Section 7 summarizes the findings and lists
some unresolved theoretical issues.

2. Models for the rotating cylinder flow
2.1. Traditional Model with rapid frame rotation

In a traditional setting (figure 1), the cylinder rotates at angular speed Ω and is driven
by a lid that rotates at speed Ω + δΩ . The linear circulation produced when the
Rossby number Ro = |δΩ|/Ω � 1 is described by Greenspan (1969) and depends on
the Ekman number

E = v/ΩH2, (2.1)

where ν is the kinematic viscosity and H is the tank depth. Ekman layers of thickness
(v/Ω)1/2 exist at the top and bottom of the tank and they are thin compared with
H for E � 1. Relatively thin Ekman layers would be typical for many mesoscale
eddies but not necessarily for submesoscale eddies. Between the Ekman layers (and
away from the sidewalls) lies an inviscid, geostrophic interior. For ocean applications
one should think of ν as a turbulent vertical viscosity, producing Ekman layers
approximately 20 m thick. The corresponding value of E would then be 10−3–10−4

for a deep mesoscale eddy or ring, whose depth might exceed 1000 m, and O(1) for a
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Hydrostatic

Non-hydrostatic

FIGURE 1. (a) The boundary layer structure for the steady, linear flow in a rotating cylinder
driven by a differentially rotating lid at low Rossby number. The dimensionless boundary
layer thicknesses are given in terms of the Ekman number E, which is assumed to be�1.

shallow, submesoscale eddy. We will explore this range. Modern models of the upper
ocean would use a variable turbulent viscosity or a more sophisticated turbulence
closure, but this is beyond the present scope.

The overall picture revealed by the E� 1 solution is as follows. For δΩ > 0, the lid
produces the equivalent of a cyclonic wind stress at the surface. The top Ekman layer
is divergent and sucks up fluid from the geostrophic region below. For small values of
the Rossby number

Ro = δΩ/Ω � 1 (2.2)

the interior is subject to the Taylor–Proudman theorem, which requires that all three
velocity components be independent of z. The vertical velocity at the base of the
divergent upper Ekman layer must therefore match that at the top of a convergent
bottom Ekman layer. It can also be shown that the interior contains a cyclonic, rigid-
body circulation, with the azimuthal velocity equal to half the differential lid velocity.
The radial velocity in the interior is negligibly small. The volume flux in the top
Ekman layer is outward and must be redirected downward when it reaches the outer
rim of the can. This takes place largely within a non-hydrostatic, viscous sidewall
(Stewardson) layer with dimensionless thickness E1/3. In addition, there is an E1/4

layer that participates in the overturning and helps satisfy other boundary conditions.
The sidewall layers feed fluid down into the bottom Ekman layer where it is carried
radially inward and later up into the geostrophic interior. An asymptotic solution
describing the interior and all boundary layers can be written down, but its usefulness
for Lagrangian studies is limited by the fact that all trajectories travel through an
unresolved E1/2 × E1/2 corner region. (Our literature search has failed to reveal a single
source in which the full asymptotic solution is written out, so we have done so at http:
//www.whoi.edu/page.do?pid=52816.) These difficulties are relieved if the stress at the
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top surface vanishes at the outer rim. This is achieved in our numerical simulations by
replacement of the azimuthal lid velocity v = δΩr by

vlid = 4δΩr(R− r)/R, (2.3)

where r is the radial coordinate and δΩ now represents the angular speed of the lid at
r = R/2. The lid speed vanishes at r = R, eliminating the discontinuity and singularity.
As shown in the linear solution, written down in appendix A, the descending motion
now occurs in the broad interior region 2R/3 < r < R rather than in thin sidewall
layers.

Variations of the set-up depicted in figure 1 arise in all kinds of industrial and
engineering applications. There is a vast literature on the subject, much of it due to
Professor J. Lopez and collaborators (see Lopez & Marques (2010) and references
contained therein). The main focus is on Eulerian structure and stability, with most
examples existing outside of the parameter space we expect for ocean eddies. More
relevant to the ocean is early work on cases with strong background rotation and
with a focus on stratification (e.g. Barcilon & Pedlosky 1967) or instability (e.g. Hart
& Kittelman 1996). Small values of the aspect ratio H/R and consequences for the
sidewall layers have also been explored in numerous studies (e.g. Pedlosky & Spall
2005). Works that explore Lagrangian aspects include Fountain et al. (2000) and
Lackey & Sotiropoulos (2006), both of which concentrate on cases with very high
Rossby number and low Reynolds number.

Our attention is restricted to steady flow, and we find that instability is avoided if
the Reynolds number Re = UR/ν = δΩR2/ν is limited to values less than ∼5000. Also,
we concentrate on cases in which the aspect ratio H/R is O(1), characteristic of deep
convection cells in the ocean, but also explore values down to 1/50, which would be
appropriate for many submesoscale eddies. Our model is highly idealized, but this is
desirable given the rich variety of regimes that arise. The dimensionless parameters
of primary importance are Ro, E and the forcing amplitude as defined below. The
Reynolds number is related to the above by

Ro = ERe(H/R)
2. (2.4)

2.2. Fully nonlinear numerical model
We conduct numerical simulations using Nek5000, which solves the Navier–Stokes
equations based on the spectral element method (Patera 1984; Maday & Patera 1989;
Fischer 1997). Nek5000 has been developed by P. F. Fischer and colleagues (see http:
//nek5000.mcs.anl.gov/index.php/Main Page). Previous studies within oceanographic
context conducted with Nek5000 include simulations of gravity currents (Özgökmen
et al. 2007; Özgökmen, Iliescu & Fischer 2009a,b) and upper-ocean mixed layer
instabilities (Özgökmen et al. 2011; Özgökmen & Fischer 2012; Özgökmen et al.
2012). Nek5000 is configured to integrate the equations(

∂

∂t
+ u ·∇

)
u= R−1

o 2k× u−∇p+ R−1
e ∇2u (2.5)

and

∇ ·u= 0. (2.6)

All variables are now non-dimensional, with lengths scaled by R, time by 1/δΩ , and
velocities by δΩR (see appendix A).
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Spectral element methods combine the geometric flexibility of finite elements with
the numerical accuracy of spectral expansions. The cylindrical domain (1 > r > 0, 1 >
z > 0) is discretized using 640 elements. In almost all experiments presented below,
solutions on each element are represented by Legendre polynomials of order N = 21,
leading to 5 990 923 grid points. The model is integrated using a time step of 10−3 for
a total integration period changing from 10 to 200 until a full steady state is reached,
depending primarily on the value of E. Most integrations have been carried out on
128 processors of the recent Linux cluster, while we have also run higher resolution
experiments with N = 39 (38, 183, 887 grid points) on 320 processors of a Cray SE6m
system to check for numerical convergence.

At the upper lid, the horizontal velocity imposed in the model is given by

u(x, y, 1)=−4y(1− r) (2.7a)
v(x, y, 1)= 4(x− xo)(1− r). (2.7b)

For xo = 0, the lid velocity is purely azimuthal and equivalent to the non-dimensional
version of (2.3). The velocity vanishes at the outer edge r = 1 regardless of the
value of xo. The flow produced is steady, has ∂/∂θ = 0, and is referred to as the
‘undisturbed’ flow. A disturbed flow is produced through finite xo, which places the
zero of the lid speed at y = 0 and x = xo. This effectively creates a low azimuthal
mode structure. The parameter xo is therefore a measure of the strength of the
disturbance.

2.3. Phenomenological (kinematic) model
We will occasionally employ a kinematic model for purposes of illustration and, more
importantly, to verify tendencies predicted by our resonance width calculation. The
latter would be quite difficult using the full Navier–Stokes equations. Let (u, v,w)
represent radial, azimuthal and vertical velocity components. Then

u= (2z− 1)
3

r(a− r), v = αr and w= z(1− z)

(
2
3

a− r

)
(2.8)

describes a steady, incompressible velocity field satisfying the no-normal-flow
conditions along the cylinder boundaries (z = 0, 1 and r = a). This azimuthally
uniform velocity field consists of a horizontal swirling motion with constant vorticity
2α. There is also an overturning circulation with radial velocity u that is inward in the
bottom half of the cylinder (0 < z < 1/2) and outward in the top half (1/2 < z < 1),
and a vertical velocity w that is positive for 2a/3> r > 0 and negative for r > 2a/3.

Each trajectory in this field lives on a torus, a property that can be verified from the
streamfunction

ψ(r, z)= 1
3 r2(r − a)z(z− 1), (2.9)

for the overturning circulation: u = −(1/r)∂ψ/∂z and w = (1/r)∂ψ/∂r. Level curves
of ψ form closed contours in the (r, z) plane and these represent the slices through
tori on which trajectories live. All trajectories are integrable and each maintains a fixed
value of ψ as it winds about the torus, as illustrated in the next section.

In their laboratory and numerical study of (mostly) non-rotating flow, Fountain et al.
(2000) induce chaos by tilting an impellor that drives the flow from the top. Here we
impose a disturbance that also has azimuthal structure, but zero vertical velocity. The
disturbance is specified in Cartesian (x, y, z) coordinates, which allow a finite velocity
at the origin r = (x2 + y2)

1/2 = 0. The horizontal perturbation velocity is specified
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through the streamfunction

ψ̃(x, y; z, t)= 1
2(a

2 − r2)[ε1(x− xo)+ ε2r2 cos(nθθ)](1− βz), (2.10)

with ũ(x) = −∂ψ̃/∂y, ṽ(y) = ∂ψ̃/∂x, and θ = arctan(y/x) . The disturbance can destroy
the axial symmetry by adding an offset factor xo relative to the centre (x = y = r = 0).
It can also introduce vertical shear through the parameter β and a stationary azimuthal
wave with wavenumber nθ . The strengths of these various components are controlled
through amplitude parameters α, ε1, ε2, β and xo. Additional details are given in
appendix B.

The kinematic model should not be viewed as a substitute for the Navier–Stokes
simulations. It does not, for example, have boundary layers, so detailed comparisons
would be meaningless. It is used simply to make illustrations of objects that are
generic given the background geometry and to implement verification of trends that
are independent of dynamics.

3. Theory for steady perturbations of azimuthally symmetric, steady states
In an undisturbed (∂/∂θ = 0) state, trajectories spiral up through the interior of

the tank and into the top Ekman layer, where they spiral outward (figure 1). They
spiral downward around the outer edge and inward at the bottom. Regardless of
the model, each trajectory remains on a torus as it executes an overturning cycle.
Examples taken from the velocity field (2.8) are constructed by tracing six colour-
coded trajectories over many overturning cycles (figure 2a). The red trajectory ascends
near the centreline of the tank and descends near the outer walls. It is quasiperiodic
and so traces out a slightly different path over each overturning cycle, eventually
covering a torus. All other trajectories on this surface are identical but for a phase shift
in θ . If the red and yellow tori are pealed away (figure 2b), a periodic (green) orbit
is revealed. This trajectory also lives on a torus but the surface is no longer revealed
by a single trajectory. Inside lie other tori containing quasiperiodic or periodic orbits
(figure 2c), and at the centre lies a single, periodic orbit (figure 2d).

A vertical slice through the objects shown in figure 2(a) reveals the tori in section
(figure 3). This view is akin to a Poincaré section in that the trajectories are marked
with a dot each time they cross the fixed vertical section. For a quasiperiodic trajectory,
the dots will densely cover a closed curve that forms the intersection with the
corresponding torus. For periodic trajectories, such as the green one, there will be
a finite number of intersections points. For example the green trajectory in figure 2(b)
intersects each side of the figure 3 plot four times.

There are two mechanisms by which perturbations to this azimuthally uniform
background state can generate chaotic motion. The first involves the resonant breakup
of tori, and this is discussed in §§ 3.1–3.3 below. The second mechanism involves
the breakup of the central streamline at r = 0 into stable and unstable manifolds, as
discussed in § 3.4.

3.1. Action–angle–angle coordinates
The trajectories of the undisturbed state are all regular (non-chaotic). At question is
the survival, under perturbation, of the tori on which they live. Does a particular torus
simply deform under perturbation, continuing to exist as a two-dimensional material
surface, or does it break up? The answer depends on whether the motion on particular
torus is resonant, in a Lagrangian sense. In order to identify the condition for
resonance, one needs to define frequencies of motion in the azimuthal and meridional
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FIGURE 2. Trajectories and associated tori for the steady, axisymmetric state given by (2.8),
with a = 0.5, α = 0.35. The full surfaces are associated with quasiperiodic trajectories. (a)
The surfaces traced out by six trajectories with different colours. (b) The two outermost
tori are taken away, revealing a periodic (green) orbit. (c,d) More surfaces are pealed away,
revealing smaller tori (purple) and a limiting periodic trajectory (black).

(overturning) directions. It is not immediately obvious that one can do so, since the
period between successive trajectory crossings of the vertical plane (figure 3) generally
varies with each crossing. Mezic & Wiggins (1994) show that a consistent period can
be defined for a given torus if the crossings are measured in a transformed coordinate
system: so-called ‘action–angle–angle’ variables. Certainly the geometry of the nested
tori suggest a natural coordinate system in which each torus is assigned a label I (the
‘action’), and the position on that torus is prescribed by two angles, as suggested in
figure 4. One may define the angles in a variety of ways, but Mezic & Wiggins (1994)
identify a particular set (see below) for which all trajectories with given I not only
have well defined frequencies but also have constant angular velocities.

The transformations, which are detailed in appendix C, describe the formulation of
a transverse angle φ that increases linearly from zero to 2π following a trajectory that
winds around the shaft of the torus. In the azimuthal direction, the new coordinate θ̃
is similar to the standard azimuthal angle θ , but has an origin that is tilted relative
to θ , as suggested in figure 4. Successive crossing of this origin by a trajectory occur
at uniform time intervals Tθ . The equations for motion along an unperturbed torus are
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FIGURE 4. (Colour online) Action–angle–angle variables (φ, θ̃ , I) for the undisturbed flow.
The standard azimuthal angle θ is measured relative to the x-axis. The angle θ̃ is measured
relative to a shifted reference curve that depends on φ, as shown.

thus

dφ
dt
=Ωφ(I)= 2π

Tφ(I)
,

dθ̃
dt
=Ωθ(I)= 2π

Tθ(I)
and

dI

dt
= 0, (3.1)

where Tθ(I) = 2π/Ωθ(I) and Tφ(I) = 2π/Ωφ(I) are the azimuthal and meridional
periods of motion. In order to measure Tθ(I) on a particular torus, one must locate the
contour θ̃ = 0 and this is generally non-trivial. Fountain et al. (2000) estimated Tθ(I)
by averaging over many zero crossings of θ = 0.
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3.2. Periodic orbits and barrier destruction

Periodic orbits cycle through the same path and therefore sample any steady
perturbation in a periodic manner. The expected resonance is analogous to that
occurring in two-dimensional, steady systems forced by a time-periodic disturbance.
For small perturbations, resonance leads to the breakup of the torus along with
neighbouring tori, and to the generation of a corresponding band of chaos. As shown
by Mezic & Wiggins (1994), and reviewed by Fountain et al. (2000), the transformed
variable set allows invocation of an extension of the KAM theorem and the conclusion
that some non-resonant tori survive a small perturbation. We will advance this subject
a bit more by calculating the resonance width.

Following Fountain et al. (2000), suppose that on a particular torus I the azimuthal
and meridional periods obey

Tθ
Tφ
= m

n
(3.2)

for some integers m and n. Then the trajectories on that torus are periodic, with
period nT (θ) = mT (φ). Under perturbation, any such torus will break along with those
nearby in the manner described in § 3.3. For tori with irrational Tθ/Tφ the trajectories
are quasiperiodic. As applied to this problem, the KAM theorem guarantees that at
least some tori with sufficiently irrational Tθ/Tφ (i.e. those satisfying a Diophantine
condition written down by Fountain et al. (2000)) will survive. This condition is not
sufficient and it is impossible to say whether any individual torus will survive. The
only guarantee is that the majority of these tori survive, so one is assured that the
weakly perturbed flow will contain some barriers to chaotic transport.

The green trajectory shown in figure 2(b) lives on a torus covered with similar
periodic trajectories. As shown in figure 3, each trajectory crosses the vertical half-
slice (0 6 x 6 0.5, 0 6 z 6 1) four times during each complete circuit, and thus
n = 4. (Strictly speaking, one should count trajectory crossings in the tilted plane
corresponding to θ̃ = 0, but in the example presented the count is the same as in a
vertical plane.) Similarly, each trajectory crosses each horizontal slice within its range
2 time, so m = 2. Figure 5 shows the result of the resonant breakup of this torus
for a disturbance with ε1 = 0.15, α = 0.35, xo = −0.25, β = 1 and ε2 = 0. Note the
braided region of chaotic behaviour, dark and cloudy in figure 5, in the vicinity of the
original resonant torus. Other tori, one coloured blue in the figure, have survived the
perturbation. In a three-dimensional view (figure 6), this blue torus is just a slightly
distorted donut.

A fascinating aspect of a resonance is that, along with chaos and enhanced stirring,
it also produces new invariant tori. These are shown in figure 5 as ‘islands’ of nested
contours, one coloured green, within the resonant layer. The expected number of
islands in the vertical plane is n, whereas a horizontal Poincaré section is expected to
show m islands. At the centre of the islands is an elliptical fixed point corresponding
to a periodic orbit. This orbit is encased in tori that resemble twisted hula hoops, as
illustrated by the green object in figure 6. When sliced vertically, the twisted torus
appears as the green contours of figure 5. Elsewhere in figure 5 lie other islands,
including an outer chain of 5 that appear as clear regions imbedded in the main cloudy
region. These result from the breakup of a torus with n = 5. Between this and the
n= 4 chain lies a less distinct chain with n= 9.



154 L. J. Pratt and others

0.8

0.6

0.4

0.2

–0.3 –0.1 0.1 0.3–0.5 0.5
x

1.0

0

z

FIGURE 5. A Poincaré section based on a perturbation of the figure 3 flow with a= 0.5,
ε1 = 0.15, ε2 = 0, α = 0.35, xo =−0.25 and β = 1 in (2.10).
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FIGURE 6. Examples of the material tori in the disturbed flow of figure 5. The blue rings
of figure 5 are sections of the blue torus shown here. The green island rings in figure 5
correspond to the torus with n = 4, shown here in green. The red trajectory inhabits the large
chaotic region.

3.3. Resonant width
The extent of chaos about a resonant tori depends on how well the structure of the
perturbation projects onto the structure of the resident periodic trajectories, and on
how nearly resonant the nearby tori are. These properties can be formalized through a
calculation of the width of a resonant layer, an exercise that also reveals the existence
and geometry of the island structures. Resonant width calculations have been done for
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two-dimensional flows with time-periodic perturbations (see Lichtenberg & Lieberman
(1992) for examples). Here we work through the steady three-dimensional case. By
standard definition, the resonance width is the half-width of the islands that appear in
the resonant layer, as measured in the change 1I in the action variable from the centre
to the outer edge of the island. Thus, for a resonant torus I = Io, tori in the range
Io −1I < Io < Io +1I will break up.

Consider the trajectory equations for the perturbed flow in action–angle–angle
variables:

İ = εF0(I, φ, θ̃), (3.3a)

φ̇ =Ωφ(I)+ εF1(I, φ, θ̃), (3.3b)

˙̃
θ =Ωθ(I)+ εF2(I, φ, θ̃). (3.3c)

The dot denotes a time derivative and the perturbation amplitude ε is assumed � 1.
Owing to periodicity in the angle variables, it is possible to expand the disturbance

functions in Fourier series, for example

F0(I, φ, θ̃)=
∞∑

m,n=−∞
F0

nm(I) sin(nφ − mθ̃ + αnm), (3.4)

where αnm are phases. The evolution of I along a trajectory is then given by

İ = ε
∞∑

m,n=−∞
F0

nm(I) sin(nφ − mθ̃ + αnm). (3.5)

For flow in the vicinity of a particular torus I = Io, the phase function in (3.4) can
be approximated as

η(t)= nφ(t)− mθ̃ (t)+ αnm

= nφ(0)− mθ̃ (0)+ αnm + t[nΩφ(Io)− mΩθ(Io)] + O(δI)+ O(ε) (3.6)

which follows from integration of (3.3b) and (3.3c). Thus, for non-resonant tori
(nΩφ(Io) 6= mΩθ(Io)) the argument increases linearly with time, the right-hand side of
(3.5) is sinusoidal, and the displacement δI = I − Io of a trajectory from the reference
torus varies periodically in θ and φ but does not grow. However, if Io is resonant,
nΩφ(Io)= mΩθ(Io), then the coefficient of t in the phase function is replaced by

nΩφ(I)− mΩθ(I)= n
dΩφ

dI

∣∣∣∣
Io

δI − m
dΩθ

dI

∣∣∣∣
Io

δI + · · · (3.7)

so faster growth in δI is possible.
Temporarily disregarding the non-resonant terms, equation (3.5) can now be

approximated as

δ̇I = εF0
nm(Io) sin(η) (3.8)

and

η̇ =
[

n
dΩφ

dI

∣∣∣∣
Io

− m
dΩθ

dI

∣∣∣∣
Io

]
δI, (3.9)
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FIGURE 7. Phase space portrait for flow near resonant torus. The contours are of
H(I, η)= constant for the function defined in (3.11).

which can be expressed in the Hamiltonian form

δ̇I =−∂H/∂η and η̇ = ∂H/∂(δI) (3.10a,b)

where

H = εFo
nm(Io) cos η +

[
n

dΩφ

dI

∣∣∣∣
Io

− m
dΩθ

dI

∣∣∣∣
Io

]
δI2

2
. (3.11)

Each trajectory maintains a fixed value of H and so the level sets of H(I, η)
correspond to invariant surfaces in physical space. In the phase space (I, η) (figure 7)
the contours of constant H consist of closed curves (corresponding to islands) and
open contours (corresponding to perturbed, but intact tori). The closed curves are
contained within a heteroclinic separatrix. Chaos arises when the non-resonant terms
are resurrected, leading to breakup of the separatrix.

In order to visually transform the invariant surfaces H = constant back to physical
space, consider the phase variable η(φ(t), θ̃ (t)) evaluated at t = 0:

η(φ(0), θ̃ (0))= nφ(0)− mθ̃ (0)+ αnm. (3.12)

Here φ(0) and θ̃ (0) represent the initial position of a trajectory, but we can also view
(3.12) from an Eulerian perspective by tracing the changes in η when θ̃ (0) = 0 and
φ(0) is varied through 2π. This traces a path that travels one cycle about a tilted
closed curve similar to that shown in figure 4. (If one sets δ(I) = 0, then the path is
exactly the closed curve shown.) Over this circuit, (3.12) shows that η changes by 2nπ,
and so if the phase portrait has one island in each 2π interval, as in figure 7, there will
be n islands in the tilted Poincaré section taken at constant θ̃ .

The separatrix between the closed and open contours corresponds to the contour
Hsep = εFo

nm. The maximum excursion of this contour, which corresponds to the half-
width of the trapped region and thus defines the resonance width, is

1I = 2

√√√√ εF0
nm(Io)∣∣∣n (dΩφ/dI)

∣∣
Io
− m (dΩθ/dI)|Io

∣∣∣ = 2

√√√√ εF0
nm(Io)∣∣∣nΩφ(Io) (d ln(Ωφ/Ωθ)/dI)

∣∣
Io

∣∣∣ , (3.13)

where the second equality follows from use of the resonance condition (3.7). It can be
seen that the resonant response is O(ε1/2) whereas the non-resonant terms would have
led to a O(ε) response had they been included.
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The term F0
nm measures the projection of the spatial structure of the disturbance

onto the periodic orbits, whereas the derivative of ln(Ωφ/Ωθ) indicate the proximity
of resonance of neighbouring tori. Large resonant widths are encouraged by a close
structural match, small n (as seen in the denominator of the final expression) and
gradual variation of Ωφ/Ωθ between neighbouring tori. If the derivative of Ωφ/Ωθ

vanishes for some resonant I, then higher-order terms in the expansion (3.7) must be
considered.

Evaluation of (3.13) for a particular torus is fiendishly difficult: one must first
compute the action–angle–angle variables and then somehow Fourier expand the
disturbance in them. However, the simplicity of the kinematic model makes it possible
to verify at least some of the general tendencies seen in (3.13). As described in
appendix D (also see figure 21), we have checked the square-root dependence on the
disturbance amplitude ε as well as the factor dΩφ/dI and found very good agreement
in both cases.

3.4. Stable and unstable manifolds
A second mechanism for the generation of chaos is the breakup of the central
streamline that connects the top and bottom of the cylinder at r = 0 in the undisturbed
state (figure 3). The analogue of this object in two dimensions would be the streamline
that separates two horizontal gyres or eddies of opposite sign. In the two-dimensional
case, a time-dependent perturbation generally causes this boundary to split into distinct
material contours, the stable and unstable manifolds. The contours generally intersect
each other in multiple locations and the resulting ‘turnstile’ lobes contain fluid that
is being exchanged between the two gyres. Samelson & Wiggins (2006) present a
thorough description of this process.

The present situation is different, partly because the central streamline no longer
separates two distinct regions: it simply lies at the centre of a swirling flow. Under
a steady perturbation the streamline splits into two manifolds, one emanating from
the lower-boundary, parabolic stagnation point and one from the upper-boundary,
parabolic stagnation point. Using methodology developed by Rypina et al. (2011)
we have constructed the stable manifold of the perturbed flow (figure 8). It is a curve
that contains all material that approaches a stagnation point on the upper boundary
asymptotically in time. An unstable manifold emanates from the lower boundary. It is
not presented here but Fountain et al. (2000, figure 16) show a laboratory visualization
from a dye release. These curves do not appear to intersect, but verification of this
property is difficult. It is apparent, however, that the curves wander about and fill a
finite subvolume of the cylinder. Fluid trajectories in this subvolume are subject to
initial condition sensitivity since each must lie arbitrarily close to the stable manifold
and must eventually pass close to the hyperbolic region at the top of the cylinder.
We therefore expect chaotic behaviour in the volume filled by the manifolds, and this
volume includes the central axis and outer edges of the cylinder, as exemplified in
figure 5.

4. Chaos and stirring in the Navier–Stokes flow
Visualizations of invariant tori, including islands, by dye release are presented by

Fountain et al. (2000). The parameter range and forcing mechanisms are not broadly
applicable for ocean eddies, so we have used the numerical model to map out a
more relevant parameter space, roughly 10−4 6 E 6 1 and 0.2 6 Ro 6 1. Although the
fundamental geometry of the underlying Lagrangian structures remains the same, the
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FIGURE 8. (Colour online) The stable manifold of the flow shown in figure 5. This curve
contains fluid that approaches a stagnation point at the top lid asymptotically in time. The
manifold was produced using the arclength-based complexity method described by Rypina
et al. (2011). Select horizontal slices of the arclength field near the centre of the cylinder are
shown in colour. Blue indicates smaller arclength, red indicates larger arclength.

qualitative pictures that emerge, particularly for small Ekman number, can be quite
different than anything found in previous work.

4.1. Poincaré sections versus finite-time Lyapunov exponents
A representative result from the numerical model, with parameter settings x0 = −0.02,
E = 1/20, Ro = 1 and H/R = 1 (and therefore Re = 20), is shown in figure 9.
Figure 9(a) contains a Poincaré section in the (x, z) plane; figure 9(b) shows finite-time
Lyapunov exponents (FTLEs) over the same space. The details of the computation
of FTLEs from the nonlinear model is described by Özgökmen et al. (2012). For
any location in the vertical slice shown, the FTLE is the maximum exponential rate
of separation between a fluid trajectory beginning at that location and trajectories
beginning at nearby locations (both in and out of plane). The expectation is that, for
finite but large integration time, chaotic regions will be characterized by much larger
FTLE values than regular regions. The results are sensitive to the time T over which
the trajectories are integrated, and the distinction between the regular and chaotic
zones becomes more apparent at longer integration times.

The case shown contains invariant tori that have survived perturbation along with
a complicated assortment of islands produced by resonances at various n. There is
good correspondence between the tori and islands in the upper panel and low FTLE
regions in the lower panel. The broad chaotic region that occupies the cylinder centre
and outer edges is represented by uniformly high (although grainy) FTLE distribution.
In order to achieve correspondence between the fine structures seen in the Poincaré
sections and FTLE fields, and integration of time T of several thousand dimensionless
time units, or T/2π differential rotation cycles, was generally found necessary.

4.2. Lagrangian regimes for weak disturbances
We now consider a sequence of runs (figure 10) with variable Ekman number E,
with Rossby number fixed at Ro = 0.2 or Ro = 1.0 (left and right columns), and with
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FIGURE 9. (Colour online) Numerical solution for Ro = 1, E = 1/20, H/R = 1 and
xo = −0.04 (so that Re = 20). (a) A Poincaré section over a vertical slice along the x-axis.
The trajectory that forms the broad chaotic (cloudy) regions was tracked for 5500 azimuthal
cycles. (b) FTLEs over the same (x, z) plane.

fixed forcing amplitude xo = −0.02. For O(1) values of E, as in frames (a,b), the top
and bottom Ekman layers strongly overlap and viscous effects are felt throughout the
entire depth. The tori are very stable, although magnification reveals the presence of
island chains that are very thin, have very high n, and thus have the appearance of
dashed curves. Chaos is thus confined to very thin resonant layers sandwiched between
invariant tori. We will refer collectively to cases with E = O(1) as regime I: they are
characterized by viscous effects extending top to bottom and thin resonant layers.

As E is lowered below unity (frames c–j) the outer tori break up and trajectories
through the central axis and outer edges of the tank become dominantly chaotic.
Resonances with lower n appear within the inner tori and these result in island chains
with n = 4 (e), n = 3 (g) and n = 1 (i,j), all with larger widths. The cases with n = 1
are interesting because the island is quite large and possesses a homoclinic geometry
that differs from the braided (heteroclinic) geometry characteristic of islands with
n > 1. A good example can be seen in frame (i), with the centre of the island in the
left half of the image near x = −0.4 and z = 0.5. This should be distinguished from
the nest of closed contours centred at x = −0.6 and z = 0.65, which correspond the
innermost tori of the undisturbed flow. The island is produced not from the breakup
of the n = 1 periodic trajectory lying at the centre of the nest (I = 0), but rather from
a resonant torus lying some distance from the centre (i.e. I > 0), and also with n = 1.
The two islands shown near the centre of the nested tori in frame f are connected
and we have verified that the periodic orbit at the centre of the one island also
travels through the centre of the other. These ‘regime II’ cases are characterized by
moderately small E, large and homogeneous regions of chaos through the central and
outer portions of the cylinder, thick resonant layers with low n, and weak barrier
stability.
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FIGURE 10. Poincaré sections in the (r, z) plane based on numerical solutions, all with
forcing amplitude xo =−0.02. The left column has Ro = 0.2 and the right column has Ro = 1,
and E decreases downward through the rows as labelled: (a) E = 1,Ro = 0.2 (Re = 0.2); (b)
E = 1,Ro = 1 (Re = 1); (c) E = 1/4,Ro = 0.2 (Re = 0.8); (d) E = 1/4,Ro = 1 (Re = 4); (e)
E = 1/8,Ro = 0.2 (Re = 1.6); (f ) E = 1/8,Ro = 1 (Re = 8); (g) E = 1/20,Ro = 0.2 (Re = 4);
(h) E = 1/20,Ro = 1 (Re = 20); (i) E = 1/50,Ro = 0.2 (Re = 10); (j) E = 1/50,Ro = 1 (Re =
50); (k) E = 1/2000,Ro = 0.2 (Re = 400); (l) E = 1/2000,Ro = 1.0 (Re = 2000).
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If E is lowered to 1/2000 (frames k–l) the Ekman layers become well separated
and the interior region becomes increasingly rigid in the vertical. This behaviour is
consistent with the Taylor–Proudman theorem as discussed below. The centre of the
undisturbed tori, which must have positive radial velocity above and negative velocity
below, can therefore not lie in the rigid interior. Resonances again are dominated by
very high n, an aspect that will also be explored in the next section. These ‘regime III’
flows have E 6 10−3, thin boundary layers, and semirigid interiors with thin resonant
layers and high n values.

4.3. Trajectories, islands and resonant layers
Much of the variation of behaviour exhibited in figure 10 can be explained through
consideration of the structure of periodic trajectories, as reflected by typical m
and n values. According to the asymptotic theory for small E (see (A 6)–(A 8) of
appendix A) the vertical velocity in the geostrophic interior is O(E1/2) while the
azimuthal velocity is O(1). (The dimensional interior azimuthal and vertical velocities
approach fixed values as the tank deepens. The dimensional overturning period
therefore grows while the azimuthal period remains fixed.) For E� 1 fluid parcels
cycle azimuthally many times as they slowly ascend or descend through the cylinder.
The radial velocity in the upper and lower Ekman layers is O(1) and the overturning
period is therefore set by the O(E1/2) vertical velocity. For an undisturbed torus I,
the ratio of azimuthal period Tθ(I) to overturning period Tφ(I) is then O(E1/2). A
undisturbed torus with periodic orbits has

Tθ
Tφ
= m

n
= O(E1/2). (4.1)

Resonant island chains in the vertical plane are therefore associated with large n for
very small E1/2, whereas smaller n becomes possible as E grows.

The above trend reflects the behaviour shown in figure 10 as E increases from
1/2000 to 1/50. However, when E is further increased the trend reverses and the
lowest n value for visible islands again increases. At E = 1/100 examples of periodic
trajectories can be found with low n, as exemplified by the example with n= 3 shown
in figure 11(a). At E = 1 all trajectories have high n, as exemplified by a case shown
in figure 11(b). The asymptotic theory also becomes formally invalid as E approaches
O(1), so guidance from this quarter may no longer be trustworthy. In physical terms
the Ekman layers begin to overlap and the top and bottom boundaries come into
viscous contact with each other. Intuition suggests that this should suppress the vertical
velocity, thereby increasing Tφ(I) and making n larger. This prediction is supported by
a calculation (end of appendix A) of the vertical velocity for arbitrary E, but using
infinite cylinder radius and rigid lid forcing to simplify. The resulting vertical velocity
is independent of r and is given at the mid-depth (z= 1/2) by

w

(
r,

1
2

)
= E1/2

2

(
sinh(1/2E1/2)− sin(1/2E1/2)

) (
cosh(1/2E1/2)− cos(1/2E1/2)

)
sin2(1/2E1/2)cosh2(1/2E1/2)+ cos2(1/2E1/2)sinh2(1/2E1/2)

. (4.2)

A plot of this function (figure 12) over the range 0 6 E1/2 6 1 shows that w
indeed increases from zero in proportion to E1/2, but that a maximum is reached
at E1/2 = 0.2218, above which w decreases continuously. The small circles show the
locations of experiments for Ro = 0.2 and xo = −0.02, and each is labelled with the
value of the smallest observed n based a count of islands within chains. Although the
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FIGURE 11. (Colour online) Examples of periodic trajectories with (a) Tθ/Tφ = 1/3 and (b)
Tθ/Tφ � 1. Here Ro = 1 for both cases and (a) E = 1/100 and (b) E = 1.
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FIGURE 12. (Colour online) Graph of the mid-depth value of w versus E1/2 (see (4.2))
for the case R → ∞ and rigid lid rotation. Dots mark values of E = 1/2000, 1/100,
1/50, 1/20, 1/8, 1/4 and 1 and the minimum observed value of n for island chains for
corresponding runs with Ro = 0.2 and xo =−0.02 is indicated next to each dot.

maximum in w does not exactly correspond to the minimum in n it is clear that higher
values of w generally correspond to lower n.

Further support for this reasoning comes from direct calculation of the periods Tθ
and Tφ for various tori in the undisturbed flow and for various values of E. (Since
the action–angle–angle coordinates are unknown, Tθ is estimated as an average of
periods of successive zero crossings of θ = 0 over many cycles.) To identify the
various concentric tori, we first locate the position in the (r, z) of the central elliptic
point. Then keeping z constant we decrease r to zero in increments, thereby sampling
through inner to outer tori, and Tφ and Tθ are found for each case. Figure 13 shows
the distribution of Tθ/Tφ for the cases E = 1, 1/100 and 1/2000, and it is clear
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FIGURE 13. (Colour online) Estimates of the ratio Tθ/Tφ of azimuthal to overturning periods
over tori of the undisturbed states with R0 = 1 and for three values of E. Trajectories are
started along a constant z line that begins at the elliptical centre (ro, zo) of the tori and extends
to r = 0. Here Io is an action coordinate, equal to (ro − r)/ro. The estimates do not include tori
at the very centre (small Io), or tori spanning the outer edge and central axis of the cylinder
(Io ≈ 1).

that O(1) values (and therefore small n values) occur mainly within the intermediate
case E = 1/100.

The widths of the resonant layers are generally largest in the intermediate regime
(II). Here Tφ and Tθ are of similar magnitudes for at least some of the periodic orbits
and the corresponding trajectories have low n. The perturbation itself always has a
simple structure, with a low-mode azimuthal structure imposed at the top lid and a
vertical structure that is constrained by Ekman layer dynamics to spiral, decay and be
nearly constant in the geostrophic interior. The low values of n contribute to a small
denominator in (3.13) and the projection factor F0

n,m is presumably large (although
extremely difficult to calculate). In contrast, values of n are much larger in regimes
(I) and (III) leading to smaller resonance widths. The contribution to 1I from the
derivative of ln(Ωφ/Ωθ) (i.e. of ln(Tθ/Tφ)) is harder to assess. Figure 13 suggests that
this derivative is generally smaller in regimes (I) and (III), but is also small over an
intermediate range of tori in regime (II).

4.4. Eulerian flow
The presence of islands in Poincaré sections should not be interpreted as an indication
of small overturning cells in the Eulerian flow. In fact, additional overturning cells
do not arise in any of the flows analysed. As examples, figure 14 shows the Eulerian
overturning circulations for the flow fields used to produce the Poincaré sections of
figure 10(a,i,k) above. Note that each vector field contains just a single overturning
cell. The reader may also wish to reflect on the striking similarity between the
Eulerian velocity field for the cases E = 1 and E = 1/50 (figure 14a,b), along with
the equally striking differences in the corresponding Poincaré sections (figure 10a,i).

5. Analysis
5.1. Implications of the Taylor–Proudman theorem

The KAM theorem and the resonance width formula place constraints on Lagrangian
behaviour of prescribed vector fields that are restricted only by the condition of
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FIGURE 14. The overturning circulation as shown by vectors consisting of the radial and
vertical velocity components along the vertical plane y = 0. All cases have Ro = 0.2 and
xo = −0.02, with (a) E = 1, (b) E = 1/50 and (c) E = 1/2000. The sections correspond to
figure 10(a,i,k).

incompressibility. In principle, further constraints should follow from considerations
involving momentum and thermodynamic laws. In the present situation, one such
constraint follows from the Taylor–Proudman theorem, which requires that for steady,
inviscid, homogeneous flow with Ro � 1, all three velocity components must be
independent of z. The continuity equation then implies that the horizontal velocity
is divergence free, so a streamfunction ψ(x, y, z) exists for the horizontal velocity at
each z, and

u(x, y)=−∂ψ
∂y

and v(x, y)= ∂ψ
∂x
. (5.1)

The z-dependent part of ψ must take the form ψ(x, y, z) = ψo(x, y) + g(z), so the
horizontal gradient of ψ must be independent of z and each streamline must remain
aligned with one directly above. The flow may have finite vertical velocity but fluid
trajectories must remain on vertically aligned sheets. This property does not require
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radial symmetry and therefore applies to the disturbed flow. If contours of constant ψ
are closed, the sheets are topologically equivalent to cylinders.

Ideally, the cylinders should extend from the top of the bottom Ekman layer to
the bottom of the top Ekman layer. They would also lie away from the thickest
sidewall Stewardson layers (of width O(E1/4)), although these layers are very weak in
the present simulations. A trajectory may leave one cylinder by entering an Ekman
layer, and then re-enter the interior along another cylinder. It may not switch cylinders
within the inviscid interior. If the flow is driven by a rigid, rotating lid, upward
moving trajectories enter the top Ekman layer and are carried downward through the
Stewardson layers into the bottom Ekman layer, from which they re-enter the interior.
For the forcing used in the present experiments, trajectories leave and re-enter the
interior through the same Ekman layer. Regardless of the forcing, nearly all trajectories
must pass through a viscous layer. Exceptions include those trajectories lying near the
radius that separates the upwelling and downwelling regions, where w is small.

These conditions are never strictly met in the numerical simulations due to the finite
value of Ro and perhaps due to viscous influence from the sidewalls, but strong vertical
rigidity exists in the interior in cases considered with E = 1/2000 (e.g. figure 14c).
The presence of resonant layers and islands in the corresponding Poincaré section
(figure 10k) is not inconsistent with this property. As a trajectory spirals upwards,
it passes through the section at the same horizontal position, but a different vertical
position, at each crossing. This is true whether the trajectory lies on an undisturbed
torus, or on one of the twisted hula hoops that form as a chain of island in the
vertical section. After the trajectory overturns and spirals upwards again, it may cross
the section at a different horizontal position, remaining on the same hula hoop. In this
way, the island chain is eventually traced out.

One might expect that the rate of chaotic stirring (quantified below) will be small
for E � 1. The barrier stability evident in figure 10(a,b) suggests the same for
E = O(1). The intermediate regimes should have the largest stirring rates and this
is verified below. The prediction of non-monotonic stirring has also been put forth
by Mezic (2001) in connection with contained, three-dimensional steady flows. The
central hypothesis is that the domain contains an inviscid interior region in which
fluid parcels preserve the Bernoulli function B = p/ρ + |u|2/2 + gz. If the gradient
of B is non-zero in the interior, trajectories are constrained to move along surfaces
of uniform B. Chaotic stirring is thus limited to the viscous boundary layers, whose
thickness is O(Re

−1/2), and the prediction is that the stirring rate should also decrease
as Re

−1/2 where Re is large but below the threshold of turbulence. Stirring is also
predicted to be small within the highly viscous range Re � 1. The predictions of
non-monotonic stirring and of Re

−1/2 decay are verified in the experiments of Lackey
& Sotiropoulos (2006) for the case of counter-rotating top and bottom (but with no
background rotation).

In our rotating cylinder flow, the strictly inviscid conditions envisioned by Mezic
(2001) hold for few, if any, trajectories. In addition, there are now two non-
dimensional parameters, E and Ro, and not just Re. Despite these differences, the
vertical sheets required by the Taylor–Proudman theorem bear some similarity to the
closed, invariant surfaces envisioned by Mezic (2001), and it is natural to ask whether
the stirring rate is similarly constrained.

5.2. Bulk stirring rates
In order to quantify changes in the stirring rate over a range of E and Ro we track
the evolution of a passive tracer with concentration C(x, y, z, t) and having small
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FIGURE 15. (Colour online) The evolution of a passive tracer, with E = 1/50, Ro = 0.2,
xo = −0.02, shown in (a) at t = 0, in (b) at t = 30, near the beginning of the conservative
stirring stage, and in (c) at t = 300, during the mixing stage. The time history of the tracer
variance function χ 2(t), as defined in (5.2), is shown in (d).

dimensionless diffusivity κ(=10−6). The initial tracer concentration is as shown in
figure 15(a). The tracer variance function

χ 2(t)=
∫

V
|∇C|2 dv

/∫
V
|C|2 dv (5.2)

can be used to quantify the stirring rate (Pattanayak 2001). Typical of all numerical
runs, the tracer undergoes an initial stage dominated by conservative filamentation
(figure 15b) during which χ 2(t) increases linearly with time (e.g. figure 15d). After a
finite time, amplification of the tracer gradients as a result of stretching and folding
is arrested by diffusion and χ 2(t) reaches a peak value. Thereafter χ 2(t) is eroded by
diffusion and decays, corresponding to a mixing stage (figure 15c). The average slope
of the χ 2(t) curve during the initial, nearly linear growth stage is a bulk measure of
the stirring rate and is independent of κ , provided that the latter is kept sufficiently
small. In measuring this average slope, we have verified that shape exhibits the nearly
linear increase to a peak from case to case, and we have spot checked to verify
that the slope is independent of κ . We have also verified that the numerator in (5.2)
remains nearly constant throughout time, so that the variations of χ 2(t) are contained
in the numerator.

We first consider the change in stirring rate as a function of Ekman number for
fixed Ro and small disturbance amplitude xo. Measurements from the Navier–Stokes
simulation for xo = −0.02 and xo = −0.08 are represented by blue and purple dots
in figure 16(a), plotted as a function of E−1/2, and all for Ro = 0.2. Shallow (deep)
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FIGURE 16. Stirring rates calculated from the Navier–Stokes model. The stirring rate is
defined as the average value of dχ 2(t)/dt over the initial period of conservative tracer
filamentation, for which the growth in χ 2(t) is nearly linear. The results are plotted as a
function of E−1/2, so that deep eddies lie to the right and shallow eddies to the left. In (a) the
Rossby number is fixed at Ro = 0.2 and the forcing amplitude is increased. In (b) the forcing
amplitude is fixed at xo = −0.02 and the Rossby number is increased from 0.2 to 1.0. The
continuous curve in (a) shows the vertical velocity at mid-depth for an unbounded cylinder:
the same function plotted in figure 12 but in terms of E−1/2 and scaled so that its maximum
value equals that of the data for xo =−0.02.

eddies lie to the left (right) on the horizontal axis. For both sets of data, the stirring
rate is non-monotonic, with relatively low values for E−1/2 = O(1) and for E−1/2� 1,
and with a peak at E−1/2 ∼= 7. The latter is proximal to the peak in the plot of vertical
velocity given by (5.2), which is shown by the blue curve and has a maximum at
E−1/2 ∼= 4.5. So far, all seems to be consistent with the visual evidence provided by
the figure 10 sections for small xo (which suggest maximum stirring at intermediate
E−1/2), with the resonance condition (3.2) (which, along with (5.2), suggest resonances
with low n at intermediate E−1/2), with the resonance width formula (3.13) (which
suggests thicker resonant layers for low n), and with the Taylor–Proudman theorem
(which suggests low stirring for large E−1/2). We note, however, that the measured
stirring rate for large E does not decay in proportion to E1/2, which by (2.4) would be
equivalent to the Re

−1/2 decay predicted by Mezic (2001). This mismatch can be seen
by comparing the blue curve with the data points for E−1/2� 1. The former decays in
proportion to E1/2 whereas the later indicate a more rapid decay.

As the perturbation amplitude is increased, the stirring rates grow. For E−1/2 greater
than 30–40, where the Taylor–Proudman theorem is most relevant, this growth is
minimal. However, for E−1/2 = O(1), the growth is surprisingly large. As shown by
the gold and green dots representing xo = −0.16 and xo = −0.32 in figure 16(a), this
trend eventually destroys the non-monotonic stirring trend, at least over the range of E
considered. Stirring is now maximal for shallow eddies. Surprisingly, Poincaré sections
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FIGURE 17. Poincaré sections in the (r, z) plane based on numerical solutions, all with
Ro = 1, E = 1/100 and with increasing magnitude of the forcing amplitude xo, as labelled: (a)
xo =−0.02; (b) xo =−0.04; (c) xo =−0.08; (d) xo =−0.16.

for these last two cases (not shown) are similar to those in figure 10(a,b) in that the
domain is filled with thin resonant layers sandwiched between barriers. Plots of the
velocity field confirm that the flow has not split into multiple gyres.

Attempts to interpret these results raises the question of what χ 2(t) is actually
measuring. Filamentation will occur as the result of shear alone, without Lagrangian
chaos, so increases in tracer variance involves some combination of chaotic motion
and shear. A benchmark for shear alone is provided by the undisturbed flows, which
have no chaotic orbits. The stirring rates are typically an order of magnitude below
what is measured for the cases that are weakly or moderately perturbed and therefore
have similar Eulerian structure. This suggests that the increased stirring rates for small
disturbances are largely due to chaos. For large disturbances this conclusion requires
additional support; at least this is suggested by those cases with E = 1. We have not
pursued this question further.

Also apparent in figure 16(a) is that for intermediate values of E−1/2 the stirring rate
ceases to grow, and in a few cases slightly decreases, as xo increases. This saturation
roughly coincides with the forcing threshold beyond which most barriers are destroyed,
as documented below.

When the Rossby number is increased from 0.2 to 1.0, the stirring rates at fixed
values of xo undergo modest changes, as shown in figure 16(b). For the moderately
small E−1/2 the stirring rate actually decreases.

5.3. The distribution of chaos; global transport
The bulk stirring gives a measure of the average rate of stretching and folding but
yields no information about the distribution of chaos. As the magnitude of the forcing
parameter xo increases, resonant layers increase in width and begin to overlap (after
Zaslavsky & Chirikov 1972; Chirikov 1979), destroying the separating barriers. In
addition, the chaotic region occupied by the stable and unstable manifolds emanating
from the cylinder top and bottom expands. Eventually all global barriers are destroyed
and trajectories are free to roam nearly the entire volume. Small regular islands often
persist, but they occupy a small fraction of the volume. Rapid stirring due to chaos
is widespread and almost uniform. An example is shown in figure 17, where we
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FIGURE 18. In the space of Ekman number and forcing amplitude, the symbols denote the
extent to which the flow is chaotic based on visual inspection of the Poincaré section (see
the legend): (a) Ro = 0.2 and (b) Ro = 1.0. ‘Inclusive’ indicates that the section is filled with
islands so small and barriers so thin that it is difficult to distinguish between regular and
chaotic regions.

fix E, Ro and H/R and double −x0 three times. For the largest value, x0 = 0.16, only a
small region of regular motion survives.

The magnitude of x0 necessary to destroy all barriers depends on E, Ro and H/R
and is difficult to define with precision since many states that are well mixed have
tiny invariant islands (e.g. figure 17d). In principle, one can analyse sections showing
FTLE values (e.g. figure 9b) by identifying contours with relatively low values. Our
attempts yield noisy results in cases where there are many thin resonant layers,
separated by thin tori, as is generally true for E = O(1) and E� 1. Instead we present
qualitative regime figures based on visual inspections of each Poincaré section. This
survey is presented in figure 18, with the Ro = 0.2 and Ro = 1 experiments in separate
panels. The symbols denote qualitative behaviour ranging from no chaos (filled circles)
to nearly complete chaos (open circles), as described in the legend. The most striking
feature is the very strong barrier stability of the most viscous flows, particularly E = 1.
For this value we increased −x0 to 0.32, for both Ro = 0.2 and Ro = 1, without
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seeing any appreciable destruction of barriers. The x0 threshold is much reduced
once E is decreased to values of 1/4 or lower. Within this range most barriers are
destroyed below −xo = 0.08, which roughly corresponds to the value at which the
stirring rate saturates (figure 16a). For E� 1, the Poincaré sections are typically filled
with islands so small and barriers so thin that it is difficult to distinguish between
regular and chaotic regions. Visual inspection is therefore inconclusive, but the very
small stirring rates found for these cases suggests the strong constraining presence of
Taylor–Proudman dynamics.

It is clear that a direct connection between the appearance of a Poincaré section and
quantification of the bulk stirring is not always possible. In fact, the former can in
some cases be quite deceptive.

5.4. Stable and unstable manifolds
To this point the discussion of stirring has focused largely on resonance width, but
the chaos in the central and outer regions of the cylinder is more difficult to relate to
the resonances and has, instead, been attributed to the stable and unstable manifolds
emanating from the horizontally convergent and divergent points at the bottom and top
of the cylinder. Since these curves are material they coincide with trajectories of the
steady flow. For E = O(1) or E� 1, overturning is very slow and the manifolds cycle
horizontally many times over the course of a single overturning cycle. Fluid elements
straddling the stable manifold are brought only occasionally into the proximity of the
parabolic stagnation point at the top lid, where they tend to separate most rapidly.
Stirring in the regions covered by the manifolds is therefore expected to be weakest
in these cases, although our quantification of stirring rate applies to the whole volume
and not just the axial and outer portions. For moderately small E the manifolds have
comparable azimuthal and overturning periods and fluid is brought more frequently
into the hyperbolic region. (This is also the case in the dye visualization of the
unstable manifold in figure 16a of Fountain et al. (2000).)

5.5. Stability of the central orbit
The stability of the n = 1 orbit that lies at the centre (I = 0) of the undisturbed tori is
important. It is periodic, and therefore potentially resonant, yet the tori that surround
it are typically the last to be destroyed as the disturbance amplitude increases. The
case shown in figure 9(f ) is an exception, one in which the geometry surrounding this
orbit has been altered. The homoclinic (‘figure-eight’) geometry (figure 19a) contains
two stable centres corresponding to a periodic orbit with n = 2 (figure 19b). There
is also a saddle corresponding to an orbit with n = 1. If the value of E or Ro is
changed slightly, the centres coalesce, so the n = 2 orbit is associated with a period
doubling bifurcation in either of those parameters. As the disturbance amplitude |xo|
is diminished from 0.02 the figure-eight structure shrinks rapidly (figure 19c,d) but
model resolution makes it difficult to track behaviour down to xo = 0.

The breakup of the central orbit is not governed by previous resonance analysis
since the action–angle–angle coordinates are singular there. However, the overall
behaviour bears some similarity to a bifurcation documented by Dullin & Meiss
(2013, figure 20) in a three-dimensional generalization of the Hénon map. There it is
also confined to a narrow parameter range.

5.6. Aspect ratio
Most oceanographic applications have H/R much less than the O(1) values used above.
We have performed a limited number of simulations with H/R values down to 1/50,
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FIGURE 19. (Colour online) Blown-up portion of figure 10(f ) showing the homoclinic
pattern resulting form the period doubling bifurcation of the central periodic orbit of the
undisturbed flow. Also shown, at the same scale, are sections that result when the amplitude
of the forcing is reduced. In the final frame the periodic (n = 2) trajectory corresponding to
the centres of the ‘figure-eight’ geometry: (a,b) xo =−0.02; (c) xo =−0.01; (d) xo =−0.009.

realistic for shallow, submesoscale or small mesoscale eddies. The results do not differ
qualitatively with those already shown, and the Lagrangian regimes for weak forcing
obtained can be predicted largely on the basis of the anticipated typical values of
Tθ/Tφ . This, in turn, depends on what is held fixed while H/R is changed. Since the
dimensionless cylinder radius is fixed at unity, a decrease in H/R is accomplished
through a decrease in the dimensionless depth. If E and Ro are held steady, this
process leaves the thickness-to-depth ratio of the Ekman layers fixed but decreases the
vertical excursion time of fluid parcels. Thus, Tφ decreases while Tθ remains the same,
and the minimum possible n in (3.7) decreases. On the other hand, fixed values of Ro

and Re imply that E increases as H/R decreases. In figure 20 the values of Ro and Re

remain fixed while H/R is changed from unity to 1/50. According to (2.4) this raises
E from 1/16 384 to 0.15, implying a transition from relatively thin Ekman layers to
moderately thick ones. The regime does in fact switch from type III (rigid interior
with thin resonant layers) to type I (rounded tori, also with thin resonant layers), as
expected from the above arguments.

We note one other result of a decrease in aspect ratio. As shown in the lower frame
of figure 20, a homoclinic structure has appeared near the centre of the nested tori.
Although it resembles the feature described in 5e, it is much larger. Such structures
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FIGURE 20. An example of the results of decreasing the horizontal aspect ratio H/R from 1
(a) to 1/50 (b) for the case Ro = 0.5 and Re = 8192. The corresponding E are 1/16 384 and
0.15. The bottom frame has been vertically stretched for visual purposes. Note that there is
very weak time dependence in both flows.
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FIGURE 21. (Colour online) The tracer distribution corresponding to the flow used to
produce the Poincaré section shown in figure 10(i) and plotted over the same section. The
plot has been made at t = 300, which is long after diffusion has begun to homogenize the
field. The tracer evolution also corresponds to that shown in figure 15, but plotted over a
different section.

appear to be more common at small values of H/R, though they are rarely large. We
have not explored this aspect further.
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6. Applications to the ocean
Non-uniform mixing, transport barriers, islands, etc. would strongly influence

distributions of oceanographically relevant physical, chemical and biological tracers.
However, a number of complications must be addressed before direct comparisons
with ocean features can be meaningful. These include the effects of stratification,
time-dependence, interactions with neighbouring eddies and the diffusive effects of
background turbulence. Each subject merits a substantial investigation. The goal of the
present work has been to provide a benchmark that can be used as a jumping-off point
for such studies. Observational challenges are also considerable due to sparse sampling
and to the difficulty of measuring vertical velocities in the ocean.

We can anticipate some of the issues that will arise in dealing with these real-
world issues. On the subject of time dependence, Cheng & Sun (1990) show that
in volume-preserving systems such as ours, some invariant tori will survive a time-
periodic perturbation of small amplitude. Preliminary studies using our kinematic and
Navier–Stokes models have confirmed the existence of time-periodic tori. For more
complex time dependence, investigations are largely restricted to two dimensions.
Barriers are also found here, but without the fine scale structures such as islands
(e.g. Haller & Poje 1998; Rogerson et al. 1999; Miller et al. 2002; Rypina et al.
2011; Haller & Beron-Vera 2012). It is quite possible that such will be the case with
time-aperiodic flows in three dimensions.

Of equal importance are the effects of the unresolved turbulence, inevitable in
any ocean model. Since full resolution of turbulence for ocean eddies is beyond the
capability of current models, one must rely on turbulent parameterizations to estimate
the diffusive effects on tori and other barriers. Approaches range from adding noise to
trajectories to large eddy simulations and are beyond the scope of the current study.
However, the tracer diffusivity specified in our tracer release experiments introduces
one element of turbulence, and it is worth considering the extent to which tori or
islands show up in the tracer fields after the diffusive stage of evolution is underway.
A case in point appears in figure 21, which shows the tracer field at t = 300 for the
flow used to produce the Poincaré section of figure 10(i). The latter contains a single
prominent island with n = 1, along with a nest of tori that surrounds the original
central orbit. Both of these features, and especially the large island, are captured in
the figure 21 tracer field. So, despite the fact that much of the tracer variance has
been eroded by diffusion, the barriers still have a presence. The island structure can
be seen with more clarity in a video of the tracer evolution, available at https://www.
dropbox.com/sh/i44jwhykr1loj70/0e8FmqR aR?n=20522545. Although the images lack
the clarity and resolution of Poincaré sections or pinpoint dye release, they apparently
have the potential to reveal the most prominent Lagrangian structures. This result also
provides hope that some barriers may be detectable in the field using tracer release
experiments (Sundermeyer et al. 2007).

These challenges notwithstanding, one can attempt to identify eddy scales over
which the stirring mechanism discussed herein could plausibly apply. Since the
manifestations of chaos are felt over many Lagrangian cycles of motion, the eddy
in question must live sufficiently long for fluid parcels to overturn many times. This
would appear to eliminate large, mesoscale eddies (e.g. Gulf Stream rings) from
consideration. With typical upwelling/downwelling rates or 10–40 cm day−1, and with
depths of 500–1000 m, the overturning times are typically measured in months or
years, the same scale as the life of the feature. Ledwell et al. (2008) infer upwelling
rates of around 0.4 m day−1 in a 700 m deep mode water eddy, but again the
overturning times are several years. In addition, these eddies have tiny Ekman numbers
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and our results indicate that chaotic stirring will be weak relative to shallower features.
A similar limitation holds for hurricanes, which have rapid updrafts but very slow rates
of subsidence. The overturning time of an air parcel is of the order of the life time of
the storm.

For the ocean surface submesoscale, which roughly includes scales ranging from
hundreds of meters up to the Rossby radius of deformation, typically 8–30 km, the
vertical velocities can reach 2 cm s−1, so with depths on the order of 20–50 m, the
overturning times can range from hours to days. Thus, submesoscale features that are
able to remain coherent for several days would qualify. Ekman numbers for these
cases would lie in the range 0.01–1 and our results indicate that chaotic stirring is
larger for these cases. Perhaps the most interesting among these findings are cases
where E = O(1) and the disturbance amplitude is large, which is perhaps most realistic
for the ocean. Stirring rates for this case are the largest of all considered, though
questions remain as to the relative importance of chaos and shear.

Ocean eddies are often generated by a barotropic or baroclinic instability mechanism
acting within a current. Once formed, the eddies maintain their vorticity over scales
ranging from days to years. The horizontal vorticity is set during the formation stage,
and not driven by a surface stress as in our model. However, wind stress does
generate an overturning circulation within them. Ledwell et al. (2008) point out that a
uniform wind blowing over an eddy will create a surface stress of largest magnitude
where the current opposes the wind. The resulting stress divergence will lead to an
upwelling/downwelling pattern that has the structure of a low azimuthal mode. The
disturbances imposed in our model are also contained in a low azimuthal mode,
although the spatial pattern differs. So, although the forcing mechanisms differ, the
overall Eulerian features of the observed and modelled flows bear similarity.

Other intriguing applications include the deep convection cells that occur in winter
in the Labrador Sea, the northern Mediterranean, and the Nordic Seas. Marshall
& Schott (1999) gave review of model results and observations. With their weak
stratification, O(1) aspect ratios, Rossby numbers in the range 0.1–0.2, vertical
velocities 5–10 cm s−1 and depth scales of 1–2 km, these features have much in
common with the circulations modelled here, and overturning can occur several times
in the course a day. They are also unstable and may break up and/or interact with
neighbouring cells, but chaotic advection may be relevant during the formation stage.
These cells are forced by a buoyancy loss to the atmosphere, and not by wind stress,
so any model must replace the top Ekman layer of our cylinder flow with a rotational
buoyancy layer. However, the net vertical volume transport in models of convection
cells is very small compared with the overturning transport, so the overall overturning
circulations of the two cases may be similar.

7. Discussion
Using a combination of analytical and numerical techniques, we have constructed a

scenario that explains some, but certainly not all, aspects of chaotic stirring in a three-
dimensional cylinder flow in which Ekman dynamics are crucial. The investigation
is carried out over a parameter range that is oceanographically relevant for eddies
ranging from submesoscale to mesoscale. This is one aspect that distinguishes the
Eulerian dynamics considered in our studies from earlier work. In particular, moderate
to strong background rotation plays a dominant role in our study.

For weak disturbance amplitude, the observed extent and measured intensity of
chaotic stirring is consistent with expectations based on analytical Ekman layer
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solutions. For E = O(1) viscous Ekman layers extend through the water column,
the top and bottom are in viscous contact, the vertical velocity is suppressed, and the
overturning time period is long. The azimuthal velocity is O(1) for all E and therefore
trajectories cycle horizontally many times over each overturning cycle. Resonances
produced under these conditions contain braided chains with many small islands. The
structures of resulting high-wavenumber, periodic trajectories do not project efficiently
onto the forced disturbance, which varies gradually in space. The result is that the
chaos generated around resonant tori is confined to very thin layers, as suggested by
(3.13).

When the cylinder depth is increased moderately (or the viscosity reduced), the
top and bottom Ekman layers separate. The top and bottom are no longer in strong
viscous contact and there is more room for stronger vertical motion to develop and
the typical overturning time decreases markedly. Some periodic trajectories execute
only 1–3 azimuthal cycles over each period and this simplified structure leads to a
stronger resonance with disturbance. Resonant layers are thicker and the stirring rate
(for weak forcing) is greater. As the cylinder is made even deeper the dimensional
vertical velocity approaches a fixed value and so the overturning time lengthens, the
interior become more vertically rigid, resonant layers become thinner, and the stirring
rate decreases.

For the chaotic region generated by the breakup of the vertical streamline at
r = 0, the qualitative structure of the stable and unstable manifolds over one or two
overturning cycles mirror the trajectory structures described above. For E = O(1)
or E � 1, fluid parcels lying close to the unstable manifold will cycle rapidly
in the horizontal direction but will be brought into the proximity of the top lid
‘stagnation’ point only occasionally. Nearby trajectories can be expected to undergo
slower separation in these cases than for E in the range 1/20 < E < 1/100, where
overturning is more rapid and parcels encounter the divergent stagnation region more
frequently.

The observed peaks in the bulk stirring rate for various cases of weak forcing are
proximal to the peak in the vertical velocity predicted by a linear Ekman layer theory.

Interestingly, some of the above trends disappear when the forcing amplitude
becomes large. Most significantly, cases with E = O(1), which have very small stirring
rates at small amplitude, experience rapid increase in stirring, despite the fact that
chaos remains confined to thin resonant layers. At moderately small E, the stirring
rates saturate as the forcing amplitude increases. Saturation roughly coincides with the
destruction of the most prominent barriers and the onset of nearly global chaos. For
very small E, the increase in disturbance amplitude has little effect on the stirring rates,
which remain the lowest of all settings. The overall trend for large disturbances, then,
is that the stirring rate decreases monotonically from a maximum at E = O(1) down to
E = 1/2000.

This work also identifies several challenges for theory. The behaviour of the stable
and unstable manifolds resulting from breakup of streamline at r = 0 intuitively
suggests chaos, but we have been unable to find a body of work that formalizes this
result or that suggest any value in computing the manifolds. Similarly, the horizontal
orbit that lies at the centre of the nested tori in the undisturbed state is periodic
and therefore potentially resonant. However our studies suggest stability, even at large
disturbance amplitude, for all but a small region in (E,Ro) parameter space. Further
inquiry is hindered by the fact that the action–angle–angle variable set is singular there.
Dullin & Meiss (2013) find similar behaviour for a different system. Finally, one must
ask what sort of analysis toolset is available for three-dimensional flows with complex
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time dependence, where Poincaré sections are not relevant. FTLEs currently provide
the most popular approach in two-dimensional, but detailed agreement with Poincaré
sections in our steady, three-dimensional flow requires integration times equivalent to
hundreds or differential rotation periods. Thus, the interpretation of FTLEs could be
tricky in three-dimensional flows undergo even moderately rapid time evolution.

The results from this study certainly create the possibility that hidden, complex
Lagrangian structures may exists in oceanic eddies. The corresponding stirring and
mixing processes could have significant implications for how heat and salt and other
quantities of critical importance for the climate dynamics are transported in three-
dimensional within the global-scale ocean circulation.
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Appendix A. Linear solutions for undisturbed states
A.1. Scaling

Let R and H denote the dimensional cylinder radius and depth, and let δΩ be a scale
for the differential lid rotation. Then U = δΩR and P = ρHΩU can serve as velocity
and pressure scales, suggesting the following non-dimensionalizations:

u∗ = Uu= RoΩu, (x, y, z)∗ = (xR, yR, zH), t∗ =Ωt, p∗ = Pp (A 1)

where asterisks denote dimensional quantities and Ro = δΩ/Ω . For linear (Ro � 1),
steady, azimuthally uniform (∂/∂θ = 0) flow with H = R, the governing equations
(Greenspan 1969) in cylindrical coordinates are

−2v =−∂p

∂r
+ E

(
∇

2 − 1
r2

)
u (A 2)

2u= E

(
∇

2 − 1
r2

)
v (A 3)

0=−∂p

∂z
+ E∇2w (A 4)

∂u

∂r
+ u

r
+ ∂w

∂z
= 0. (A 5)

A.2. Asymptotic solution with zero lid velocity/stress at outer rim
The boundary conditions require that the zonal, azimuthal and vertical velocity
components (u, v, z) vanish at the cylinder wall (r = 1) and at the bottom z= 0. At the
top lid (z = 1), u = w = 0 but v = vT(r), where vT(r)→ 0 as r→ 1. Since v goes to
zero at the outer edge of the lid, there is no radial Ekman flux there and Ekman layer
must return fluid downward into the interior before it reaches the outer wall. There is
no need for sidewall (Stewardson) layers to close the overturning circulation or bring
the azimuthal velocity to zero. Strictly speaking, a sidewall layer is required to bring w
to zero there, but if this requirement is ignored the asymptotic solution for E� 1 is

u(r, z)= vT(r)

2
[sin ξTe−ξT − sin ξBe−ξB] + E

4r

∂

∂r

(
r
∂vT

∂r

)
(A 6)
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v(r, z)= vT(r)

2
[1+ cos ξTe−ξT − cos ξBe−ξB] (A 7)

w(r, z)= E1/2

4r

∂

∂r
(rvT(r))[1− (sin ξT + cos ξT)e−ξT − (sin ξB + cos ξB)e−ξB]. (A 8)

Note that for the boundary condition (2.4), vT(r)= 4r(1− r).

A.3. Flow between to infinite plates, arbitrary E

If we return to the traditional case with vT = r and consider a domain that is
unbounded in r, then it is not difficult to solve the problem for arbitrary E. We
will also seek a solution that is many Ekman thicknesses away from the central axis
(r∗� (ν/Ω)1/2) so that ∂/∂r� ∂/∂z and 1/r� ∂/∂z. Then (A 2)–(A 4) become

−2v =−∂p

∂r
+ E

∂2u

∂z2
, 2u= E

∂2v

∂z2
and 0=−∂p

∂z
+ E

∂2w

∂z2
. (A 9a–c)

Elimination of p and v from this set and from (A 5) leads to

E2

(
∂4u

∂z4
+ ∂

∂r

(
1
r

∂

∂r

(
r
∂2u

∂z2

)))
+ 4u= 0. (A 10)

The top lid boundary condition suggests solutions proportional to r so we take
v = rV(z), and by extension u = rU(z) (where U is not to be confused with the
previous velocity scale). Equation (A 10) then reduces to

∂4U

∂z4
+ 4E−2U = 0, (A 11)

with U(0) = U(1) = 0. The boundary conditions and requirement of zero net radial
volume flux suggest a solution that is antisymmetric about the mid-depth (z= 1/2):

U(z)= A sin(ζ ) cosh(ζ )+ B cos(ζ ) sinh(ζ ), (A 12)

where ζ = (z− 1/2)/E1/2.
Integration of (A 9b) then provides a solution for V , which is

V(z)= C1 + B sin(ζ ) cosh(ζ )− A cos(ζ ) sinh(ζ ). (A 13)

Finally, the vertical velocity can be found from integration of (A 9c):

w(r, z)=−E1/2

{
A[sin(ζ ) sinh(ζ )− cos(ζ ) cosh(ζ )]
+B[cos(ζ ) cosh(ζ )+ sin(ζ ) sinh(ζ )] − D

}
. (A 14)

Satisfaction of the boundary conditions w(0) = w(1) = 0, v(0) = 0, v(1) = r, and
u(1)= u(0)= 0 leads to

A=−1
2

cS

s2C2 + c2S2
, B= 1

2
sC

s2C2 + c2S2
, C1 = 1

2
, (A 15)

D= A(sS− cC)+ B(cC + sS) (A 16)

s= sin
(

1
2E1/2

)
, c= cos

(
1

2E1/2

)
,

S= sinh
(

1
2E1/2

)
, C = cosh

(
1

2E1/2

)
.

 (A 17)
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Appendix B. Kinematic model
It is convenient to use both Cartesian coordinates (x, y, z), with corresponding

velocity components (v(x), v(y),w), and cylindrical coordinates (r, θ, z) with velocity
components (u, v,w). The former are required in order to specify a finite and well-
defined velocity at the origin r = 0. The kinematic model is given by

v(x) = V (x)(x, y, z)+ ṽ(x)(x, y, z, t), (B 1a)

v(y) = V (y)(x, y, z)+ ṽ(y)(x, y, z, t), (B 1b)
w=W(x, y, z)+ w̃(x, y, z, t). (B 1c)

The azimuthally symmetric background state is defined

V (x)(x, y, z)=− x

3
(1− 2z)(a− r)− αy, (B 2a)

V (y)(x, y, z)=− y

3
(1− 2z)(a− r)+ αx, (B 2b)

W(x, y, z)= z(1− z)

(
2
3

a− r

)
, (B 2c)

and the cylinder boundaries lie at z = 0, z = 1 and r = a, where a is the non-
dimensional radius. This set is equivalent to (2.8).

The perturbation to the background is contained entirely in the horizontal velocity
and is described by the streamfunction ψ̃ given by (2.10). The velocity perturbations
are therefore

ṽ(x) =−∂ψ̃
∂y
= ε1(1− βz)y(x− xo)

− 1
2
ε2(1− βz)

[
2y(a2 − 2r2) cos(nθθ)− nθx(a

2 − r2) sin(nθθ)
]

(B 3a)

ṽ(y) = ∂ψ̃
∂x
= ε1(1− βz)

[
1
2
(a2 − r2)− x(y− xo)

]
+ 1

2
ε2(1− βz)

[
2x(a2 − 2r2) cos(nθθ)+ nθy(a

2 − r2) sin(nθθ)
]

(B 3b)

and w̃= 0.

Appendix C. Action–angle–angle coordinates
Following Mezic & Wiggins (1994, (31)–(34)) we equate I with the cross-sectional

area in the (r, z) plane of the torus in question. For each I, we define an angle-
like coordinate φ that measures meridional position, as suggested in figure 4. The
coordinate φ is defined as

φ = 2π
Tφ(I)

t (0 6 t 6 Tφ(I)), (C 1)

where Tφ = 2π/Ωφ(I) is the period, and Ωφ(I) the frequency, of motion for an orbit
around the torus (in the r–z plane). To establish φ one must first calculate the period
Tφ , by following a trajectory (beginning at some reference values of z and r) through
one cycle in the (r, z) plane. Then φ is defined to vary linearly with time from zero
to 2π over this circuit. Note that φ is generally not a meridional angle, measured (say)
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from the centre of the tori. It is rather a stretched, angle-like coordinate measuring
position around the tube of the torus and remains well defined even when the tube
surface is complicated. (It is usually difficult to relate φ to r and z analytically; to do
so, one must to solve for the positions r(t) and z(t) as the trajectory winds round the
torus, invert these relate these relations to get t(r, z), then substitute into (C 1).) The
equations governing trajectories in the undisturbed state can now be written as

dθ
dt
= v(I, φ)

r(I, φ)
,

dφ
dt
=Ωφ(I) and

dI

dt
= 0. (C 2a–c)

The definition of a period of motion in the θ -direction is more difficult since the
period between successive crossings of the (r, z) plane is not constant. However, a
fixed period Tθ can be defined in terms of a new azimuthal coordinate:

θ̃ = θ − θo(φ, I), (C 3)

where

θo(φ, I)=
∫
φ

v(I, φ′)
r(I, φ′)Ωφ(I)

dφ′ − φ

2π

∫ 2π

0

v(I, φ)

r(I, φ)Ωφ(I)
dφ. (C 4)

Thus, θ̃ is just a shifted version of θ , with the origin depending on φ for a particular
torus I (see figure 4). It can easily be verified that (C 2a) now becomes

dθ̃
dt
=
∫ 2π

0

v(I, φ)

r(I, φ)
dφ =Ωθ(I), (C 5)

so that a period Tθ(I)= 2π/Ωθ(I), equal to the time between successive zero crossings
of θ̃ , can be defined for all trajectories on a torus. In the new (non-orthogonal)
coordinate set (φ, θ̃ , I), the equations for trajectories in the undisturbed flow are given
by (C 2b,c) and (C 5).

Appendix D. Verification of tendencies in the resonance width formula (3.13)
In order to check the dependence of 1I on disturbance amplitude, we have carried

out a sequence of experiments based on (2.8) and (2.10), and for which the parameter
ε1, which functions as the amplitude parameter ε above, is varied. As ε1 increases,
the width of the four-island chain (figure 5) increases and the corresponding 1I is
calculated as the difference in cross-sectional area between the undisturbed tori whose
positions correspond to the outer extrema of the islands. As shown in figure 22(a) the
results show behaviour very close to the expected

√
ε1 dependence.

Isolation of the dependence of 1I on dΩφ/dI or dΩθ/dI is more difficult owing
to the difficulty in fixing n and I as these frequency gradients are varied. In the
kinematic model, the azimuthal velocity varies linearly with r,Ωθ is constant, and
therefore dΩθ/dI = 0, so we only explore the dependence on dΩφ/dI. The first
equality in (3.13) suggest that 1I varies in proportion to (dΩφ/dI)−1/2. To facilitate
this calculation we generalize the unperturbed state (2.6) by adding an amplitude
factor A to the overturning circulation. The undisturbed velocity field, now expressed
in cylindrical coordinates, becomes

u=−A
(1− 2z)r(R− r)

3
(D 1)

v = α (D 2)

w=−Az(1− z)

(
2
3

r − R

)
. (D 3)
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FIGURE 22. (Colour online) Test of tendencies contained in the resonant width formula
(3.13). (a) Plot of resonance width 1I versus the square root of forcing amplitude ε1 for
the period 4 resonant layer/island chain seen in the kinematic model with parameters as in
figure 5: α = 0.35, yo = −0.25, β = 1 and ε2 = ε3 = 0. (b) Plot of 1I versus |dΩφ/dI|−1/2

based on the kinematic model with the modified unperturbed state given by (D 1)–(D 3). The
model parameters are the same as in (a) but with ε1 = 0.025 and variable α.

For our standard choice of parameters A= 1 and α = 0.35, a resonant torus with n= 4
is present. We now change both parameters through 20 different pairings in a way
that preserves the I value of the n = 4 torus but allows dΩφ/dI to vary. As shown in
figure 22(b) the resulting 1I are consistent with a |dΩφ/dI|−1/2 dependence.
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