
1.11    Nonlinear Dispersion. 
 
 The hydrostatic approximation is central to everything discussed to this point.  
Nonhydrostatic effects associated with vertical accelerations of the fluid remain small as 
long as the ratio of the depth scale to horizontal length scale is small.  However, special 
circumstances may exist that allow nonhydrostatic effects to become important even 
when this scale separation exists.  For example, when Long’s experiment is performed 
for hm/do<<1 and Fo≅1, wave-like free surface effects arise in certain parts of the flow 
filed.  In fact, certain values of hm/do and Fo produce a situation in which the flow refuses 
to settle into a steady state (Baines, 1995, Sec. 2.4).  Another example is a hydraulic jump 
with an upstream Froude number less than about 1.7.  Instead of an abrupt transition 
between supercritical and subcritical flow extending over a few depth scales, the jump is 
undular and extends over a much longer distance.  
 
 In both of these examples, changes in v and d along the channel are relatively 
small and corresponding advective terms like v!v / !y are weak. Small terms 
likew!v / !z , which have been neglected as a consequence of the nonhydrostatic 
approximation, may now be as large as the retained terms.  The conservation laws for 
momentum and mass now consist of delicate balances between weak hydrostatic and 
nonhydrostatic terms.  Some insight into the form of the governing equation can be 
gained through consideration of the special case of a wave propagating into an 
undisturbed fluid with uniform depth D and positive velocity V.  Let us assume that the 
wave attempts to propagates against the current so that, within the context of shallow 
water theory, its evolution is governed by (1.3.1): 
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The value of the Riemann invariant R+=v+2(gd)1/2 is equal to its value V+2(gD)1/2 in the 
undisturbed fluid and thus v in the above equation can be replaced by V-2(gd)1/2+2(gD)1/2.  
If the depth in the wave is only slightly different than D, we can write d=D+η, where 
η/D<<1. Then (gd)1/2 = (gD)1/2[1+ (! / 2D) + " " "]  and substitution into  (1.11.1) yields  
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where c

o
= V ! (gD)

1/2  
 
 The correction introduced into this equation by nonhydrostatic effects can be 
anticipated through consideration of the dispersion relation! = [gl tanh(lD)]

1/2  for a 
surface gravity wave propagating in a resting fluid of uniform depth D.  The wave has the 



form! = ae
i(ly"# t ) , where ω denotes the frequency and 2π/l the (arbitrarily short) 

wavelength.  If the latter is long compared to D, this relation may be expanded:  
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The linear equation that would produce the two leading terms in this expansion is 
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and thus the nonhydrostatic correction should be! 1
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 If (1.11.2) is modified to include this factor, the result is the celebrated Korteweg-
de Vries (KdV) equation 
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as can be verified by a more careful analysis (Whitham, 1974).   
 
 According to (1.11.3), the wave propagates at the base speed co and evolves 
slowly in response to weak nonlinearity and dispersion.  The competition between the 
two processes can be isolated by expressing the equation in frame of reference moving at 
the base speed. With !y = y " c

o
t , we have 
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It is possible to find steadily-propagating solutions, one of which is the soliton: 
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o
1+

!
o

2D

"
#$

%
&'

.  In this case a balance between steepening and dispersion has 

achieved an isolated disturbance of permanent form that propagates with an amplitude-
dependent speed.  A class of periodic disturbances (‘Cnoidal waves’) is also admitted, as 
explored in Exercise 1.  
 
 



 The KdV equation and its extensions have been successfully used in the analysis 
of undular bores (Peregrine, 1966 and Fornberg and Whitham 1978).   For hydraulic 
applications, a topographically forced version of (1.11.4) may be used.  To remain 
consistency with the assumption of unidirectional propagation, any forcing that is added 
must move at the base speed co of the disturbance. Stationary forcing therefore requires 
that co is zero: that is, the flow is critical to leading order. The obstacle height must also 
be small in order to preserve consistency with the assumption of weak nonlinearity.  The 
evolution equation is then obtained through introduction of the term 1

2
(gD)

1/2
dh / dy on 

the right hand side of (1.11.4).  Long’s towing problem with hm/do<<1 and Fo≅1 (Cole, 
1985 and Grimshaw and Smyth, 1986), and other hydraulic applications. The reader is 
referred to Baines 1995 for a more thorough summary.   
 
 One interesting and simple application is to the problem of steady, shallow flow 
over consecutive obstacles of identical height (Figure 1.11.1).  According to shallow 
water theory, there is no solution that is hydraulically controlled and everwhere stable.  If 
the approach subcritical (solution ab in the figure), a subcritical-to-supercritical transition 
occurs over the first sill.  The approach to the second obstacle is now supercritical and an 
(unstable) transition back to a subcritical state is required.  This transition is shown as a 
dashed section of the ab curve. It is also possible for the flow approaching the first 
obstacle to be supercritical (solution cd) but then an unstable transition is forced over the 
first sill. Nor is it possible to avoid the unstable transitions by introducing a hydraulic 
jump between the obstacles: the resulting energy loss would prevent the flow from 
surmounting the next obstacle. It would seem, then, that shallow water theory fails to 
provide a satisfactory steady solution. 
 
 Laboratory experiments (Figure 1.11.2) have shown, in fact, that the spilling flow 
occurs over the second obstacle and that the flow between the two obstacles is wavelike.  
The heights of the obstacles do not need to be identical for this behavior to occur, and the 
phenomena appears to be more than just a curiosity. A solution with the observed 
properties can be found to the forced KdV equation for nearly critical flow. The reader is 
referred to Exercise 1 for more details. 
 
Exercises 
 
1)  As described in the text, the equation governing steady, weakly nonlinear, weakly 
dispersive flow over a small obstacle is obtained by setting co=0 and adding the term 
(gD)1/2dh/dy to the right-hand side of the steady form of (1.11.3). The result is   
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(a) Integrate (1.11.5) once and show that the result can be written as the following 
dynamical system: 
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and 
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where C is a constant. 
 
(b)  For the case of a flat bottom, note that for each C>0 there are two uniform (d/dy=0) 
flows corresponding to ˆ! = 0 and !̂

±
= ± 2C / 9 .  Draw a picture of the phase plane 

(!̂ ,"̂)  and locate the points corresponding to the two uniform flows.  Show the solutions 
trajectories near (0,!̂

+
) are closed, corresponding to a set of stationary periodic 

waveforms.  These are the ‘cnoidal’ waves referred to in the text. Also show that the 
solution (0,!̂" ) is unstable, corresponding to trajectories that diverge away. 
 
(c)  Also show that one of the trajectories that diverges from (0,!̂" ) forms a closed obit 
that circumnavigates (0,!̂

+
) .  This solution corresponds to a stationary solitary wave. 

 
The addition of the topography term in (1.11.6) allows the actual solution to cross the 
trajectories of the unforced flow and can lead to a satisfactory solution for the two-
obstacle problem.  The reader is referred to Pratt (1984) for more details. 
 
  
Figure Captions 
 
Figure 1. Long-wave solutions for hydraulically controlled flow over two consecutive 
obstacles of identical heights. Dashed curves show segments where the flow is vulnerable 
to a shock-forming instability. 
 
Figure 2.  Laboratory simulation of shallow flow over two obstacles of nearly the same 
height.  The flow is from right to left. (From Pratt, 1984). 
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Figure 1.11.2 (low resolution)


