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1.2  The shallow water equations and one-dimensional wave propagation. 
 
 
 Traditional discussions of hydraulic effects such as those found in engineering 
text books are often based on analyses of steady flows.  At the same time, interpretation 
of these effects almost always involves waves and wave propagation.  We therefore 
preface our discussion of steady hydraulics with a conversation about wave propagation 
in shallow water.  Attention is restricted to flows governed by the shallow water 
equations in one spatial dimension: 
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 For a homogeneous fluid, g is the ordinary gravitational acceleration.  In oceanic 
and atmospheric models, we often consider flow in a layer that has uniform density and 
that is overlain by a much thicker and inactive layer of slightly lower (but still uniform) 
density.  In such cases, the above equations remain valid provided that g is interpreted as 
the reduced gravity: the ordinary g multiplied by the fractional difference in density 
between the two layers.  Such a model is alternately referred to as having a ‘1 1

2
! layer ’, 

‘reduced gravity’ or ‘equivalent barotropic’ stratification.  The reduced gravitational 
constant is usually denoted g′, but we will allow the original g to be interpreted as either.   
 
 Now consider a steady flow with uniform velocity V and depth D over a 
horizontal bottom (dh/dy = 0).  Infinitesimal disturbances to this flow, denoted v′ and η, 
can be introduced by setting v = V+v′ and d = D+η, where v′ << V and η << D.  
Substitution into (1.2.1) and (1.2.2) and neglect of quadratic terms in the primed 
variables, leads to the linear shallow water equations 
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 The most general solution is given by 
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where  
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 Equations (1.2.5) and (1.2.6) describe waveforms traveling at speeds c+ and c-. 
The propagation speeds are made up of two components: the unidirectional background 
flow velocity V and a bi-directional propagation velocity ±(gD)1/2, equivalent to the 
propagation speed in a fluid at rest.  For V > 0 the two types of disturbance travel in 
opposite directions when (gD)1/2 > V.  We call the background flow subcritical  in this 
case.  The quiet and smooth currents common in rivers away from dams or rapids are 
generally subcritical.  Propagation in the positive y-direction occurs for both waves when 
(gD)1/2 < V, in which case the background flow is called supercritical.  Flows in 
spillways, waterfalls, and in parts of rapids are supercritical.  If (gD)1/2 = V,  one wave 
propagates in the direction of the background flow and the other is stationary: c- = 0. In 
this case the background flow is critical and can support stationary disturbances.  Critical 
flow is normally a local phenomenon that occurs near the crests of dams and spillways. 
Because of the long wave approximation, there is no distinction between the speeds of 
phase propagation and energy propagation. 
 
 The Froude number, Fd, defined by  
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is often used to characterize the relative importance of inertia and gravity in the dynamics 
of a particular flow. Fd is clearly the ratio of the advective component to the intrinsic 
‘propagation’ component of the phase speed and is < 1, = 1, > 1 for subcritical, critical, 
and supercritical flow, respectively. 
 
 With more complicated flows, it may be difficult to unambiguously define 
upstream and downstream.  Such is the case when the fluid is stratified and has positive 
and negative horizontal velocities at different depths.  In such cases, we reserve the term 
subcritical to mean that signal speeds c+ and c- belonging to a particular pair of waves are 
of opposite sign: c+c- < 0.  Information carried by the waves can therefore travel in both 
directions.  Supercritical flow is defined by c+c- > 0 and corresponds to information flow 
in one direction only.  Critical flow is defined by c+c- = 0 and corresponds to the arrest of 
one or both of the waves.  Note that this definition applies to the homogeneous flow 
under consideration and is independent of the sign of V. 
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 A simple example of wave generation that will be built on throughout this book is 
the linear dam-break problem.  Consider two bodies of resting fluid with slightly different 
depthsD ± a , separated by a barrier located at y = 0 (Figure 1.2.1a).  At t = 0 the barrier 
is removed, allowing the deeper fluid to move towards positive y.  Assuming a << D, the 
subsequent motion can be approximated by solving (1.2.3) and (1.2.4) with V = 0 and 
subject to the initial conditions 
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As shown in Figure 1.2.1b, the solution 
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consists of two step-like wave fronts propagating away from y = 0 at the speeds c± = 
±(gD)1/2. Left behind is a uniform stream with velocity a(g / D)1/2  and with depth equal 
to the mean initial depth.  It is apparent that, between the two wave fronts, the available 
potential energy associated with the initial mismatch in fluid depths has been entirely 
converted to kinetic energy (see Exercise 1). The complete removal of available potential 
energy is a feature that does not persist in the presence of rotation.  
 
 Another view of linear, long-wave propagation, one that will be helpful in 
understanding nonlinear waves, comes from the method of characteristics.  A formal 
discussion of this method appears in Appendix B, but many readers will be satisfied with 
the less formal derivations that appear in the main text.  If (1.2.4) is multiplied by (g/D)1/2 
and the product is added to (1.2.3), the resulting equation can be arranged in the form: 
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Subtraction of the two results in  
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 The operator in (1.2.10) can be interpreted as the time derivative seen by an 
observer moving at the wave speed c

+
= V + gD( )

1/2 .  To that observer, the value of the 
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linearized Riemann invariant !v + g / D( )
1/2

"( )  remains fixed.  A similar interpretation 

holds for (1.2.11), with an observer moving at speed c
!
= V ! (gD)

1/2 seeing a fixed value 
of !v " g / D( )

1/2

#( ) .  In this context, c- and c+ are called characteristic speeds.  The 
general solutions (1.2.5) and (1.2.6) can be deduced directly from the characteristic forms 
(1.2.10) and (1.2.11) of the linear shallow water equations. 
 
 The Riemann invariants can be used to measure the distribution of ‘forward’ and 
‘backward’ propagating waves in a time-dependent flow field. Consider a single, forward 
wave (with speed c+) have the form! = sin[y " c

+
t] .  In view of (1.2.6) the corresponding 

perturbation velocity is given by !v = (g / D)
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wave crest to !2(g / D)1/2  at a trough, whereas the value of !v " g / D( )
1/2

#( )  is 
uniformly zero over the same interval.  The reverse is true for a ‘backward’ wave (with 
speed c-).  One could use this property to decompose a more complicated wave field into 
backward and forward components (see Exercise 3); forward waves project entirely onto 
the forward Riemann invariant and vice versa.  It will be important to keep this 
interpretation in mind when reading the next section, where nonlinear generalizations of 
the Riemann functions will be introduced. 
 
 Now consider an initial value problem for which !v  and η  are specified for all y 
at t = 0.  In determining a solution for t > 0, it is useful to think about the propagation of 
this information forward in time.  Consider the space -∞ < y < ∞ and t ≥ 0, also known as 
the characteristic plane.  An observer moving at the speed c

+
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through this space along one of the characteristic curves (or characteristics) indicated by 
a ‘+’ in Figure 1.2.2a.  The value of !v + g / D( )
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"( )  is conserved along such curves.  A 
similar result holds for the characteristic curves labeled ‘-‘, along which 
!v " g / D( )

1/2

#( )  is conserved.  The characteristic curves therefore represent paths along 
which specific information travels. 
 
 As an example of the use of the method of characteristics, reconsider the dam 
break problem.  The initial conditions are sketched below the characteristic plane in 
Figure 1.2.2a.  Begin by considering a ‘+’ characteristic curve originating at a point e on 
the y-axis at t = 0.  Here the initial conditions are !v = 0  and η = -a.  The value of the 
Riemann invariant that is carried forward in time along the curve ef is given by  
    
   !v + (g / D)

1/2" = #(g / D)1/2a   (along ef).  (1.2.12) 
 
The same is true for all the solid curves originating from the positive portion of the y-
axis.  A similar argument establishes the values of !v " g / D( )

1/2

#( ) , which are carried 
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along the dashed characteristics.  For example, the value along the curve e′f is determined 
from the initial conditions as 
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a   (along e′f).    (1.2.13) 
 

 To determine the individual values of v′ and η at a point in the characteristic 
plane, we use the values of the Riemann invariants given along the characteristic curves 
that intersect that point. At the intersection point f, for example, Equations (1.2.12) and 
(1.2.13) lead to v′ = 0 and η = -a.  This result will hold at all points within region I of the 
characteristic plane, as indicated in Figure 1.2.2b.  This region of the flow has not yet 
been reached by the forward propagating wave front that is generated by the step in 
surface elevation. The reader may wish to verify that a similar result holds in Region II, 
which lies to the left of the wave front advancing to the left and where the values v′ = 0 
and η = a remain equal to the initial values.  
 
 Each point in Region III of the characteristic plane is intersected by dashed 
characteristic curves emanating from the positive y-axis and by solid curved emanating 
from the negative y-axis.  The corresponding Riemann invariants are given by 
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behind a steady flow with velocity g / D( )
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a .  The paths of the fronts themselves are the 
characteristic curves that form the boundaries between the three regions.  
 
     
 
  
 
   
 
 
 
Exercises 
 
1) Energy conversion in the linear dam-break problem.  Multiply (1.2.3) by Dv ' and 
(1.2.4) by g! and add the results to obtain the energy equation 
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For the solution to linear dam break problem (Figure 1.2.1b) integrate the above equation 
(with V = 0) with respect to y over any fixed interval I = (-yo < y < yo).  Then integrate the 
resulting relation with respect to t from 0 to ∞.  Show from the final result that the 
available potential energy in I is converted entirely into kinetic energy.  This finding is 
consistent with the fact that the energy radiated away from I by the gravity waves (as 
measured by v '!( )

yo
" v '!( )" yo

#
$

%
&dt0

'

( ) is zero.  
 
 
2) Consider the initial condition v = 0 and  
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y
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Discuss the evolution of this disturbance according to linear theory. 
 
3)        Using Riemann invariants, decompose the following flow field into ‘forward’ and 
‘backward’ waves: 
               !(y,t) = " sin[y]cos[t]  and !v = (g / D)

1/2
cos[y]sin[t] . 

 
4)        Linear wave speeds in the presence of vertical shear.  Consider the wave problem 
for a free surface flow with uniform depth D and velocity V(z).  Define v = V(z)+v′(y,z,t) 
and show that the linearized y-momentum and continuity equations are 
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 (a)  Assuming the waveforms
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relation 
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Divide this equation by (c-V)2 and integrate the result from the bottom (here z = 0) to the 
free surface (z = D by the linear approximation) to obtain 
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(b)  Apply the kinematic boundary conditions at the bottom and free surface to 
obtain the result. 
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Show that the case V = constant results in c = V±(gD)1/2.  For nonconstant V observe that 
real values of c must lie outside the range of variation of V.   
 

(c)  Finally, show that if the variations of V are weak: V = V
o
+ !V̂ (z)with ε << 1 

and V̂dz
0
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! = 0 , that 
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and therefore a section at which Vo = (gD)1/2 allows upstream propagation.   
 
 Further discussion of the implications of these results can be found in Garrett and 
Gerdes (2003).  The derivation of the wave speeds appears in Freeman and Johnson 
(1970). 
 
Figure Captions 
 
1.2.1  The linear dam break problem. 
 
1.2.2  Characteristic curves (a) and regions of influence (b) for the linear dam break. 
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