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1.5  Hydraulics in Abstract. 
 
 
 In the example of the previous section, solutions in terms of the fluid depth d were 
obtained using conservation laws for the volume transport Q and the energy per unit mass 
B.  For set values of these parameters, d depends only on the local bottom elevation h and 
channel width w, though several choices of d may be possible.  There is no dependence 
on the values of h or w, or on the flow itself, at neighboring sections.  As pointed out by 
Gill (1977), these elements are shared by a wide class of “hydraulic-type” systems. By 
taking advantage of the common elements, it is possible to develop machinery that allows 
a wide class of flows to be analyzed systematically. 
 
 The first hydraulic-type flow to be formally analyzed was probably the movement 
of a compressible gas through an orifice.  The crucial result that the fluid velocity v in the 
orifice equals the speed of sound was derived independently by Reynolds (1886) and 
Hugoniot (1886).  The statements of conservation of mass and energy are given by 
 

   !vA = M and  v
2

2
+

dp

!

p

" = B . 

 
These are supplemented by an equation of state! = F(p) .  Here A is the cross-sectional 
area of the conduit and M is the (constant) mass flux.  The equations are analogous to our 
shallow-water model, with d playing the role of density ρ.  Hugoniot was aware of 
experiments in which the velocity of the gas was observed to monotonically increase 
through an orifice, where A first decreases and then increases. This upstream/downstream 
asymmetry with respect to A is analogous to the asymmetry of d with respect to h and is 
characteristic of hydraulic transitions.  Reynolds knew of an experiment in which the 
upstream propagation of information appeared to be blocked within the orifice:  
 
 “Amongst the results of Mr. Wilde’s experiments on the flow of gas, one, to which 
attention is particularly called, is that when gas is flowing from a discharging vessel 
through an orifice into a receiving vessel, the rate at which the pressure falls in the 
discharging vessel is independent of the pressure in the receiving vessel until this 
becomes greater than about five tenths the pressure in the discharging vessel.”  
 
 The critical condition in the orifice was derived by both authors, essentially by 
considering the pressure decrease in a continuously narrowing conduit.  They showed 
that a minimal possible pressure (Reynolds) or maximum possible!v  (Hugoniot) is 
reached when A is sufficiently small and they both observed that the implied v is equal to 
the speed of sound in the gas. (The details of the derivation are explored in Exercise 1.) 
The minimum in pressure found by Reynolds is analogous to the minimum in specific 
energy  !B ! !h exhibited by the curves in Figures 1.4.1.  The existence of a minimum or 
maximum implies that more than one v is possible for a given A, at least within a certain 
range of A.  The minimization or maximization of properties as a way of obtaining a 
control criterion is sometimes referred to as a Hugoniot condition.  The existence of more 
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than one possible solution at a given cross section is characteristic of hydraulics problems 
in general. 
 
 
(a)   Gill’s Original Approach 
 

In the gas dynamics model and the shallow-water analogy, the state of the flow at 
any section of the channel can be specified in terms of a single dependent variable.  This 
variable, which we denote γ, is related to the local geometry h, w, etc along with the 
parameters Q, B, etc. by a conservation law of the form1 
 
   

    G (! ( y);h( y),w( y)," " "; B,Q,!) = const. 2  (1.5.1) 
 
B and Q could be the energy and flow rate, or they could represent other conserved 
properties of the system. The value of γ  at a particular y determines all other attributes of 
the flow at that section. The position y does not appear explicitly. The constant on the 
right-hand side, which appears in Gill’s original formulation, may be disposed by 
redefining G.  We may therefore take the constant to be zero with no loss of generality. 
 
  In the shallow water example of the Section 1.4, γ(y) is the fluid depth d.  In 
particular the Bernoulli equation (1.4.6) may be written as  
 

     G = Q
2

2! 2
w
2
+ g! + gh " gB .  

 
Other form of G could be written down by using variables like v instead of d. 
 

A useful identity  
 

   
 

dG

dy
=
!G

!"

d"

dy
+
!G

!h

dh

dy
+
!G

!w

dw

dy
+ # # # = 0 ,  (1.5.2) 

 
is obtained by differentiation of (1.5.1). This result is often just the differential form of a 
momentum or continuity equation. The reader may wish to verify that application of 
(1.5.2) to the previous shallow-water example leads back to the y-momentum equation. 
 
 Now consider the conditions under which free, stationary, long waves of small 
amplitude exist.  By ‘long’ we mean disturbances that vary gradually in the y-direction, 

                                                
1 Perhaps out of modesty, Gill used the symbol J to represent the function in (1.5.1).  To honor him, and to 
avoid confusion with the Jacobian operator, we use the symbol   G . 
2 The constant on the right-hand side, which appears in Gill’s original formulation, may be disposed by 
redefining G.  We may therefore take the constant to be zero with no loss of generality. 
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just as the steady flow does.  By ‘free’ we mean disturbances that occur spontaneously 
and are independent of any forcing mechanism such as bottom slope.  When a steady 
flow becomes hydraulically critical at a particular section y = yc, it can support a free, 
stationary disturbance at that section.  In other words, the steady state can be locally 
altered without changing either the conduit geometry or the upstream conditions.  The 
altered flow must therefore have the same volume flux, energy, etc. as the undisturbed 
flow.  Let γc represent the undisturbed state at the critical section and let !"  represent the 
disturbance. Then the altered flow γc+ !"  must also satisfy (1.5.1): 
 
   

    
G (!

c
+ "! ;h( y

c
),w( y

c
),# # #; B,Q,!) = const. . 

 
Taylor expansion of this relation leads to 
 

 
   

G (!
c
+ "! ;h( y

c
), w( y

c
),##) =G (!

c
;h( y

c
),w( y

c
),##) + "!

$G

$!
%
&'

(
)* ! =!

c

+ # # # = const.. 

Since the undisturbed flow must satisfy (1.5.10) the first term on the right-hand side is 
zero.  It follows that  
 

    
 

!G

!"
=0      (1.5.3) 

 
at the critical section.  In plane words, criticality implies that the steady flow at a fixed 
location (fixed h, w, etc.) can be altered by an infinitesimal amount !" such at that (1.5.1) 
remains satisfied (G  equals the same constant).  
 
 One of the important aspects of (1.5.3) is that it formally links the minimization 
(or maximization) used by Reynolds and Hugoniot.  In the example of the previous 
section, (1.5.3) implies that  
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and thus ‘specific energy’ Q2

/ 2d
2
w
2
+ gd is minimized when the flow is critical.   

Engineering texts often used this minimization as a basis for defining critical flow, even 
though the physical motivation is not always transparent.   
 
 The flow state at a particular section can be computed by solving (1.5.1) with the 
specific constant for the values of γ.  In hydraulic applications, more than one root is 
possible; the cubic equation (1.4.7) admits as many as two roots for the depth of the 
shallow flow at each h.  The two depths can be seen in Figure 1.4.3, where the Bernoulli 
constant  !B  may be regarded as C.  The condition (1.5.3) implies that the roots coalesce, 
as occurs at the sill.  All of the behavior described above is thus linked to the tendency of 
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the hydraulic function G  to admit multiple roots.  It is important to note that this property 
will be lost when the shallow-water (or other) governing equations are linearized.  
  

A further constraint implied by flow criticality follows from setting   !G / !" = 0  
in (1.5.2) leading to 
   

    
 

!G

!h
dh

dy
+
!G

!w
dw

dy
+ " " "

#
$%

&
'(
y= yc

= 0 .  (1.5.4) 

 
This condition restricts the locations y=yc at which critical flow can occur. The locations 
at which critical flow actually occurs are sometimes called control sections.  To obtain 
(1.5.4), it has been assumed that the flow remains smooth at y=yc, so that dγ /dy is finite 
there.  Thus (1.5.4) is often referred to as a regularity condition. In fact, the satisfaction 
of (1.5.4) is equivalent in shallow water theory to the requirement that the numerator in 
(1.4.3) vanishes.  It can readily be seen from that equation that the requirement is a 
necessary condition that the slope of the free surface remain bounded. 
 
 As in Figure 1.4.3, critical flow generally occurs at a section (or sections) y = yc 
marking the transition between states supporting wave propagation in different directions.  
Strictly speaking, the flow is able to support stationary disturbances only at yc and not at 
points immediately upstream and downstream.  The stationary disturbances are therefore 
possible in theory but are difficult to visualize in most applications.  They should not be 
confused with stationary lee waves, which involve waves of finite length.    
 
 The purely local dependence of the functional G  on y is a product of the 
conservative nature of the flow and of the gradually-varying geometry.  When dissipation 
or rapid variations are present, the y-dependence generally becomes non-local.  Such 
systems can still exhibit forms of hydraulic behavior.  Examples are discussed in Exercise 
4 of this section and in Section 3.8.   
 
 We have seen that critical flow can form at a maximum in h (a sill) and it is 
natural to ask whether the same is true of a minimum in h.  Guidance comes from 
differentiating (1.5.1) twice with respect to y and applying the critical condition (1.5.3), 
leading to  
 

  
  

! 2G
!" 2

d"
dy

#
$%

&
'(
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In order for real values of d!
dy

 to exist at the critical section, 

  

!
!y

!G

!h
dh

dy
+
!G

!w
dw

dy
+!

"
#$

%
&'

and 
 

! 2G

!" 2
 must have opposite signs. This condition 

generalizes the concepts of expansions and contractions in the channel geometry.  In the 
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example of the previous section, 
 

! 2G

!" 2
=
3Q

2

d
4

> 0 , 

whereas
  

!
!y

!G

!h
dh

dy
+
!G

!w
dw

dy
+!

"
#$

%
&'
= g

d
2
h

dy
2

, so the bottom curvature d2h/dy2 must be < 0.  

Negative curvature is characteristic of a sill but not a depression in the bottom and the 
implication is that physically meaningful critical solutions require a sill geometry.   At 

the sill, d!
dy

"
#$

%
&'

2

=
gd

4

3Q
2

d
2
h

dy
2

, indicating two possible free surface slopes.  The two slopes 

are simply those of the intersecting solutions (both with  !B = 2.5) shown in Figure 1.4.3.   
Computation of a continuous solution through a critical section therefore requires a 
hydraulic transition in which subcritical upstream flow joins with supercritical 
downstream flow (or vice versa).  One may not move through the critical point and 
remain on the subcritical branches. 
 
 
b)  Multiple Variables 

 

 Reduction of the problem to the single-variable format envisioned by Gill (1977) 
is not always easy.  It is often more convenient, and sometimes necessary, to work with 
two independent relations in two variables γ1 and γ2: 
  
   

  G1
(!

1
,!

2
;h,w,!;B,Q," " ") = C

1
   (1.5.5) 

and  
   

  G2
(!

1
,!

2
;h,w,!;B,Q," " ") = C

2
.   (1.5.6) 

 
The approach to dealing with this system is laid out by Pratt and Armi (1988) and Dalziel 
(1991) and the generalization to an arbitrary number of variables is discussed by Lane-
Serff et al. (2000) and Pratt and Helfrich (2005).  
 

For the system (1.5.5 and 1.5.6), the existence of a stationary wave requires that 
small perturbations γ1′ and γ2′ of the flow exist at a fixed location such that the new 
altered flow remains a solution.  Taylor expansion of G1 and G2 for fixed h, w, etc. about 
the unperturbed state leads to 
 

    
 

!G
1

!"
1

"
1
# +

!G
1

!"
2

"
2
# = 0     (1.5.7) 

 

    
 

!G
2

!"
1

"
1
# +

!G
2

!"
2

"
2
# = 0 .   (1.5.8) 

 
The critical condition is just the solvability condition for this pair:  
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!G
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1

!G
2
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2

#
!G

1

!"
2

!G
2

!"
1

= 0 .   (1.5.9) 

 
 Stationary waves then involve the displacement (dγ1, dγ2) as given by (1.5.7) or 
(1.5.8): 
 

    
  

!
!" = "

1
! 1, #

$G
1
/ $"

1

$G
2
/ $"

2

%

&
'

(

)
*
y= yc

+

,
--

.

/
00

,  (1.5.10) 

 
where dγ1 is small but arbitrary.  The displacement vector contains information about the 
structure of the stationary wave (see Exercise 3).  
 
  The generalization of the regularity condition (2.5) can be found by 
writing out the identities dG1/dy = 0 and dG2/dy = 0: 
 

 

dG
1

dy
=
!G

1

!"
1

d"
1

dy
+
!G

1

!"
2

d"
2

dy
+
!G

1
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=
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Solving for d!

1
/ dy leads to  
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where 
 

!( )

!y
"
#$

%
&' ( 1 ,( 2

=
!( )

!w
!w
!y

+
!( )

!h
!h
!y

+! is a derivative taken with γ1 and γ2 held 

constant.  Critical flow requires that the denominator vanish and the numerator must then 
vanish if the flow is to remain well behaved.  The regularity condition is thus 
   
 

  
 

!G
1

!" i

!G
2

!y
#
$%

&
'( " 1 ," 2

)
!G

2

!" i

!G
1

!y
#
$%

&
'( " 1 ," 2

= 0   (i=1 or  i=2) ,  (1.5.11) 

 
(The i = 2 version, which follows from developing an expression ford!

2
/ dy , is not 

independent of the i = 1 version.) 
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 The machinery is easily extended to problems governed by N relations for N 
independent variables: 
 
 

  G1
(!

1
(y),!

2
(y),!

3
(y)," " ",! N (y);h(y),w(y)," " ";B,Q,!) = C1  

 
  G2
(!

1
(y),!

2
(y),!

3
(y)," " ",! N (y);h(y),w(y)," " ";B,Q,!) = C2

   (1.5.12) 
    . 
    . 
    . 
 

  GN (! 1(y),! 2 (y),! 3(y)," " ",! N (y);h(y),w(y)," " ";B,Q,!) = CN . 
 
  
 
 The condition for stationary waves is now 
 

    
 

!G
i

!"
jj=1

N

# "
j
$=0      (i = 1, 2, ⋅⋅⋅N),  (1.5.13) 

 
   
and the corresponding solvability condition is the vanishing of the generalized Jacobian: 
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.   (1.5.15) 

 
The tangent displacement vector (dγ1,dγ2,...)c, which is computed from any member of  
(1.5.13), again determines the transverse structure of the stationary wave.   
 
 It can also be shown (see Exercise 6) that the generalized regularity condition is 
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= 0     (1.5.16) 

where 
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. 

 
  When formulating hydraulic functionals 

  
G

1
, 

  
G

2
, etc. for a particular system, 

there is a disadvantage in reducing the system to a single functional in a single unknown. 
Namely, certain kinds of critical states may be missed in the evaluation of the critical 
condition (1.5.3) for the single-variable formulation.  This difficulty arises when the 
stationary wave in question has no displacement in terms of the chosen single variable.  
That is, the tangent displacement vector 

 
(!

1
" ,!

2
" ,!) for a particular stationary 

disturbance may have a zero constituent, say !
2
" .  If the system is reduced such that γ2 is 

the only variable, then the critical condition for this disturbance will not be identified by 
(1.5.3).  The missing critical condition will, however, be identified by the multivariate 
formula (1.5.14).  An example will be given in Section 2.4. 
 
 
Exercises 
 
1)  Transonic flow in an isotropic gas.  Consider an inviscid and diffusion-free, 
compressible gas whose motion is governed by the following equations: 
 

 

!
du

dt
= "#p + !$

d!

dt
+ !# %u = 0

p = !RT

!cv
dT

dt
+ p# %u = 0

 

 
where T is the absolute temperature, cv is the specific heat at constant volume, and !  is 
the body force per unit mass.  
  

 (a)  Show that d
dt

p

!"̂

#
$%

&
'(
= 0 , where cv

R
=

1

!̂ "1
. [Hint: one starting point is 

elimination of ! "  u from the second and fourth equations.] 
 
 (b)  Next consider the generalized form of the Bernoulli function for steady 
compressible flow:  



© L. Pratt and J. Whitehead 5/23/06 
very rough draft-not for distribution 

 

   dp

!
+" +

u

2#
2

= constant along streamlines  

where Ω is the body force potential. Applying this and the steady form of the result in 
(a) to a one-dimensional flow in a wind-tunnel of slowly varying cross-sectional area 
A(y), derive a hydraulic functional of the form G (!;A) = C .  (The body force potential 
may be neglected.) 
 
 (c)  From the result of (b), obtain a critical condition and deduce that the intrinsic 
signal speed (here the speed of sound) is !̂ p / "[ ]

1/2 . 
 
2.  Homogeneous, free-surface flow with shear.  Following Garrett and Gerdes (2003) 
consider a steady, shallow, homogeneous flow with vertical shear (!v / !z = 0 ).  The flow 
is described by a stream function ψ(y,z) such that!" / !z = v , ! (y,h(y)) = 0 , 
and! (y,h(y) + d(y)) = Q .  The Bernoulli function is given by 
 

   B(! ) =
v
2

2
+ gd + gh . 

 
Construct a hydraulic functional for the flow by following these steps: 
 

 (a)  Show that d =
d!
v0

Q

"  and therefore 

 

   d =
1

2

d!

B(! ) " g(d + h)[ ]
1/2

0

Q

# . 

 
 (b) Define a hydraulic functional 

  G2
(d(y),v (y);h(y),w(y),! ! !;B,Q,!) = 0  based 

on the above relation.  Show that setting  !G / !d = 0 leads to the critical condition: 
 

    g
dz

v
2h

h+d

! = 1 

and compare this with the result of Exercise 4 of section 1.2. 
 
    
 
3.  Cast the hydraulic problem for homogeneous, free-surface flow in terms of two 
functionals  G1

(d(y),v(y);h(y),w(y)) = Q and  G2
(d(y),v(y);h(y),w(y)) = B representing 

the continuity and Bernoulli equations. Show that the critical and regularity conditions 
obtained using the two-variable (d,v) machinery is the same if the single-variable 
representation were used.  Using (1.5.10), show that the displacement vector specifies a 
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relationship between the depth and velocity perturbations, and that this relationship is the 
same as that implied by (1.2.5) and (1.2.6) for the ‘-‘ wave. 
 
 
 

4) Non-local dependence on y.  Consider the functional  
 

 

GP (d(y), f (d)d !y
yo

y

" ;h(y);q, y
o
!) =

Q
2

2d
2
w
2
+ d + h +#

Q
2

w
2

d
$3
d !y

yo

y

" = B(y
o
)  (A.1) 

 
governing a shallow flow under the influence of bottom drag (Pratt, 1986).  Fixed 
parameters include the drag parameter α.   The presence of drag introduces an integration 
from an upstream location y = yo where the depth and velocity v are known, to the section 
under consideration. Consider the possibility that a free, small amplitude, stationary 
disturbance exists at a section at y = yc but at no other upstream point.  Show that a 
necessary condition for existence is 
 

 

lim
!d"0

GP d + !d, f (d + !d)d #y
yo

yc

$ ;h(yc ),q, yo!( ) % GP d, f (d)d #y
yo

yc

$ ;h(yc ),q, yo!( )
!d

&

'

(
(
(

)

*

+
+
+

= 0 , 

 
Show that evaluation of this limit leads to the critical condition v = d1/2.  
 

5)   Suppose that the dimensionless obstacle height in (1.4.7)
 
!h(y) = aĥ(y) , where a << 1.  

Let  

 
!d = !d

(0)
+ a !d

(1)
+O(a

2
)  

where  !d (0) is the solution for  !h  = 0.  Formulate a Gill function for the variable !d (1) , but 
show that there can be no hydraulic transitions.  Why does linearization of the problem 

prevent this phenomenon? 
 

6)   By taking the y-derivatives of (1.5.12) and applying the critical condition, show, 
using Cramer’s rule, that  
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Deduce the regularity condition (1.5.16). 

 
 


