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1.7 Solution to the Initial-Value Problem 
 
 
 The shock joining relations developed in the previous section make it possible to 
solve the initial-value problem posed by Long’s experiment.  The term ‘solve’ is used 
advisedly here for we do not actually calculate the evolving flow during its early 
development.  Instead, we wait until the various transients have separated from one 
another, at which point the flow field consists of steady segments separated by isolated 
bores and rarefaction waves.  The formal solution is thereby guided by the experiment.  
Piecing together the different steady segments of flow permits a solution to be 
constructed and, more importantly, allows the calculation of the obstacle heights required 
to initiate partial or total blockage or establishment of a hydraulic jump.  
 
 Let us continue to view the problem as the adjustment to the sudden introduction 
of a stationary obstacle into a uniform stream.  As noted in the previous section, 
permanent upstream effects (partial blockage) occur when the obstacle is sufficiently 
high that the initial flow has insufficient energy to ascend the crest or sill, at least 
according to a steady-state calculation.  The critical obstacle height hc is given by (1.6.1).  
Figure 1.7.1a shows the developing upstream flow for hm>hc.  The flow state (v0,d0) far 
upstream, also the initial flow, is approached by a bore that moves at speed c1 and 
establishes a new upstream state (va,da). Equations (1.6.4) and (1.6.5) can be used to link 
the two steady flows across the bore, leading to  
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 In addition, conservation of energy and mass connect the sill flow with the steady 
flow immediately upstream of the obstacle according to  
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 Adding the condition that the sill flow is critical, 
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results in five equations for the unknowns c
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 The locations of the different solution regimes can be plotted (Figure 1.7.2) in 
terms of the dimensionless obstacle height h

m
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0
 and initial Froude number F0.  The 

curve BAE gives the critical obstacle height hc/d0 in terms of F0 and is determined by 
(1.6.1). To the left of this curve the obstacle is shorter than the critical height and the 
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steady flow established is completely supercritical or subcritical, depending on the initial 
Froude number.  No upstream influence exists.  To the right of this curve, upstream (and 
downstream) influence occurs and the flow adjusts to a hydraulically controlled steady 
state.  As we have shown, the upstream influence takes the form of a bore that partially 
blocks the flow. Note that any bore that propagates upstream must decrease the volume 
transport, a property that can be deduced from conservation of mass (1.7.1) in the form: 
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Since c1<0 and da>do the final transport is less than the initial transport (v
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we say that the flow is partially blocked.  Various properties of the solution including the 
bore speed and the final transport can be obtained by solving (1.7.1-1.7.5) and some of 
these properties are presented in Baines (1995, figures 2.10 and 2.12). 
 
 Further to the right in the diagram curve BC gives the value of hm/d0 needed to 
completely block the flow.  The governing relation (see Exercise 1) is given by 
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 The wedge shaped region EAF in Figure 1.7.2 represents special initial conditions 
for which two final steady states are possible, depending on how the experiment is 
carried out.  Consider the curve AF, which indicates upstream values of Fd and hm/d0 
where a stationary bore is possible in the flow approaching the obstacle.  For these 
upstream conditions the steady flow near the obstacle can either be entirely supercritical, 
or have the stationary bore upstream of the obstacle leading to hydraulically controlled 
flow over the obstacle.  The curve is obtained by setting c1=0 in (1.7.1)-(1.7.5), resulting 
in 
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If one performs the original version of Long’s experiment in EAF, no upstream bore is 
found and the final steady state is the entirely supercritical flow, as in the upper left inset 
of Figure 1.7.2.  The other alternative can be realized by starting with an obstacle of 
height hm>hc (to the right of curve AE) and waiting until a hydraulically controlled flow 
is established.  If the obstacle height is then gradually reduced to a value in the region 
EAF, the hydraulically controlled solution will persist.   
 
 A numerical demonstration of the implied hysteresis is shown in Figure 1.7.3. In 
frame (a) the obstacle of height hm>hc is introduced, exciting an upstream bore. In (b) the 
obstacle has been lowered to a height hm<hc such that hm/do lies in region EAF. Here the 
bore continues to propagate upstream and the flow over the sill remains critical.  Next the 
obstacle is lowered to point to the left of curve AF, causing the bore to reverse directions 
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and move downstream towards the obstacle (c).  Eventually the bore moves past the 
obstacle (d) and a supercritical state is achieved.  
 
 Finally, the curve AD separates flows with and without hydraulic jumps attached 
to the downstream slope of the obstacle. For initial conditions lying below AD the jump 
would be positioned on the downstream slope of the obstacle.  Above AD the jump 
would move downstream leaving supercritical flow behind.  On AD the hydraulic jump 
will become stationary at the foot of the obstacle, as shown in Figure 1.7.1b.  In order to 
find the obstacle height at which this last situation occurs one must piece together the 
segments of steady flow shown at sections ‘a’, ‘b’, ‘c’ and ‘d’ in the figure. There are 10 
unknowns, including the depths and velocities at these four sections, the upstream bore 
speed, and the obstacle height.  Four constraints are provided by the shock joining 
conditions across the bore and hydraulic jump.  Also volume transport and energy 
(Bernoulli function) are conserved between sections ‘a’ and ‘c’ and between ‘c’ and ‘b’, 
providing 4 additional constraints.  The final two constraints are provided by the 
condition of critical flow at the sill and the conservation of R-=vo-2(gdo)1/2 across the 
rarefaction wave that moves downstream of the obstacle.  The algebra involved in the 
determination of the obstacle height from these ten relations is formidable.  
 
 The same sequence of events are seen in a laboratory demonstration that directs a 
supercritical current up a sloping channel with an open end (Figure 1.7.4).  For a small 
channel slope, the current of dyed water remains in the supercritical state sketched in 
Slowly tilting the channel to progressively greater slopes is equivalent to gradually 
increasing h

m
d
0

 with F
0

 constant.  If the slope is increased to the point where hm>hc, a 
bore forms at the edge of the open end (Panel b). The bore propagates to the left, down 
the slope, and establishes subcritical flow in the channel with critically controlled flow at 
the exit (Panel c).  If the slope is then gradually decreased, this subcritical state persists.  
Eventually the slope is reduced to the point where bore forms at the source (Panel d). The 
bore and moves to the right, up the slope, a re-establishes supercritical flow in the 
channel (Panel e).  This experiment is easy to set up in the classroom.  All that is required 
is a small, handheld channel, and a system for circulating the water. The demonstration 
will show that the stationary upstream jump predicted along the curve AD of Figure 1.7.2 
is unstable but can be manually balanced in the sloping channel with a little practice. 
 
 
Exercises 
 
1.  Obtain equation 1.7.7 for the blocking height of the obstacle. 
 
Figure Captions 
 
1.7.1  The various transients generated by the introduction of an obstacle into a uniform 
stream when ho exceeds the critical value hc for upstream influence. 
 
1.7.2  The various asymptotic regimes of the Long-type initial-value experiment in terms 
of the initial conditions.  
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1.7.3  Frame a shows the evolution of a shallow stream when an obstacle of height hm is 
introduced into a moving stream of depth do, such that the initial conditions lie to the 
right of curve AE in Figure 1.7.2.  The obstacle height is then lowered (Frame b) so that 
hm/do lies in region EAF.  Later hm/do is decreased so as to lie to the left of curve AF (c 
and d). (From Pratt, 1983.) 
 
1.7.4.  Photograph of dyed water flowing up a sloping channel and spilling out at the 
right-hand end.  The water is fed by a sluice gate with F

0
= 5.6  from a reservoir on the 

left.  (a) Supercritical flow with h
m
d
0
= 7.9 .  (b) A hydraulic jump moving upstream 

trailed by subcritical flow h
m
d
0
= 8.0 .  (c) Subcritical flow in the entire channel 

h
m
d
0
= 6.0 .  (d) A hydraulic jump moving downstream trailed by supercritical flow 

h
m
d
0
= 4.4 .  (e)  Supercritical flow in the entire channel a few seconds later.  (From 

Baines and Whitehead, 2003.) 
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