
2.10  Transport Bounds 
 
 
 We have seen how difficult it is to calculate the volume flux Q of a hydraulically 
controlled, rotating flow when idealizations such as uniform potential vorticity and 
rectangular cross section are relaxed.  Although calculations are still possible through 
numerical means, one might first ask whether any general statements about Q can be 
made without regard to the details of q and h.   An approach developed by Killworth and 
McDonald (1993) and Killworth (1994) is to seek bounds on Q in terms of simple 
measures of the upstream flow and the channel geometry.  Given some information about 
the available energy, one simply attempts to find the maximum Q that can be forced 
through a section of a channel with a given geometry.  Although the bounds are 
formulated without reference to hydraulic control, the result bears a remarkable similarity 
to hydraulic laws developed in early sections. 
 
 The topographic cross section is arbitrary and it is only assumed that the bottom is 
wetted continuously across, so that the flow occurs in one coherent stream.  In contrast to 
the situation in typical hydraulic models, B(ψ) need not be conserved from one section to 
the next.  However, it is most meaningful to imagine that all the streamlines that cross 
through the section originate in an upstream basin where the maximum B is equal to E. 
This maximum applies only to those basin streamlines that make their way to the sill 
section.  If non-conservative processes are then limited to a quadratic bottom drag, B(ψ) 
can only decrease along a particular ψ and the maximum B at any downstream section 
must be equal to or less than E.  These ideas require some modification if the streamlines 
originate far downstream (as in Figure 2.9.4) or are part of a local closed gyre (Section 
2.7).  Although the section in question may lie anywhere, the tightest bound is obtained at 
the sill, meaning the section with the highest minimum bottom elevation across the flow,  
hmin.  The smallest possible value that B (nondimensionally v2 / 2 + d + h ) can possibly 
have occurs when the depth d and velocity v are zero at h= hmin.  It follows that 
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In addition to geostrophy, the chief assumption made is that the potential vorticity of the 
flow is non-negative.   
 
 Now consider a hypothetical flow at the sill section (Figure 2.10.1a).  The layer 
thickness is assumed to go to zero at the edges x=-a and x=b of the stream, but the side 
walls could just as well be vertical.  The surface or interface may have segments of 
negative slope indicating v<0.  The bound on Q is formulated by making a sequence of 
changes to the flow, each of which maintains or increases the original flux.  This will lead 
to a simplified state for which a bound may be formulated.  
 
 The first step is to excise any segments of reverse flow along the side walls, so 
that the new edges of the current lie at x=b′ and x=-a′  (Frame b).  A vertical wall now 
exists at x=b′ . We next alter the bottom topography the left of x=-a′ such that it becomes 



flat and has the elevation hmin (Frame c). Over this flat portion we add a positive region of 
flow that brings the layer depth smoothly to zero at a point x=-a′′. The width of the side 
region is arbitrary.  None of the alterations thus far could decrease the volume flux.  The 
flux of the altered flow is given by 
  

 dvdx
!a

b

" = (zs ! h)vdx
!a

b

" = 1

2
zs
2
b( ) ! zs

2 !a( )( ) ! h
#zs
#x

!a

b

" dx $Q   (2.10.2) 

 
where z

s
= d + h .  

 
 We next eliminate any interior minima in zs slicing off the top of the mound of 
water to the left of any such minima (Frames c and d).  The segment extending from x=x1 
to x=x2 in the figure is therefore replaced by a quiescent region, and the same is done to 
the left of any remaining minima. To prove that this operation cannot increase the flux 
note that for the Figure 2.10.1.c flow we have  
 
   z

s
x
2( ) = B ! x

2( )( )      (2.10.3) 
and 
   1

2
v x

1( )
2

+ z
s
x
1( ) = B ! x

1( )( ) .    (2.10.4) 
 
Since z(x1)= z(x2), 
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Finally, the previous assumption of positive potential vorticity q along with the 
relationship dB/dψ=q means that B must increase with ψ and thus  
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The flux to be removed must therefore be non-positive. 
 
 
 The end result of this surgery is a water surface rising monotonically to the right, 
so the stream has positive or zero velocity everywhere across the channel with flux equal 
to or greater than the original.  A bound on the altered flow can be formulated beginning 
using definition (2.10.2) of flux: 
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Since !z

s
/ !x is non-negative, the integral in the above expression cannot be less than  
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The original flux Q is therefore bounded according to 
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 Now zs(b′) cannot exceed the maximum value E of the Bernoulli function, and 
therefore Q !
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.  Also, if we associate with E an equivalent surface elevation 
hmin+ΔzE, then the transport bound becomes Q !
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 There are a number of examples, all with rectangular cross sections and all with 
separated sill flow, for which the right-hand side of (2.10.10) gives the exact flux.  The 
first is the case of flow from an infinitely deep and quiescent basin across a sill (Section 
2.4).  Here ΔzE* is just the reservoir head, Δz of (2.4.15), and is a constant over the 
upstream basin.  We also argued in Section 2.6 that any separated sill flow that stagnates 
along the right wall is critical and that the corresponding flux is given by interpreting 
ΔzE* as ΔzR*, the upstream elevation along the right wall.  If q (=dB/dψ) is non-negative, 
and the reservoir flow is unidirectional, then ΔzR* does indeed represent the maximum 
upstream value of the Bernoulli function and (2.10.10) is exact.  In both of these cases the 
flow is either positive or zero at the edges, so that no fluid need be excised from the end 
points (Figure 2.10.1a,b).  Also, since the bottom is horizontal, the shaving off of mounds 
of fluid (Figure 2.10.1c) does not alter the volume flux.  Therefore the sequence of steps 
taken to formulate the bound results in no decrease in transport. The cases serve notice 
that the bound is achievable.  
 
 The fact that (2.10.10) is achievable in two examples with rectangular cross-
sections suggests that departures from this geometry might generally tend to reduce the 
flux.  However, if the geometry is sufficiently irregular that the flow becomes divided 
into two or more streams, then the combined flux can exceed the bound, though (2.10.10) 
continues to hold for each individual stream.  Whitehead (2003) presents an example.  
Simply put, the formation of multiple streams is similar to the existence of multiple 
openings through which fluid may drain from the basin. 
 



 Killworth and Mcdonald (1993) have shown that the bound can be extended to a 
fluid with N layers, each with its own uniform density, and all lying below a deep and 
inactive upper fluid.  The volume flux Qn in layer n is according to 
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where gn is the reduced gravity and En is the maximum Bernoulli function for that layer, 
the latter defined with the same restriction as the single-layer case. 
 
 
Figure Captions 
 
Figure 2.10.1  Series of surgical procedures used to alter a given flow (a) in order to 
produce a simpler flow (d) whose transport is known.  The transport cannot be decreased 
in any step and thus the transport of (d) acts as a bound.  (Based on a figure in Killworth 
and MacDonald, 1993). 
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