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2.12 Outflow Plumes  
 
 One of the most important aspects of deep ocean overflows is the mixing and 
water mass modification that occur as dense water spills over a sill and descends down 
the continental slope. Turbulent mixing and entrainment can lead to significant dilution 
and to increases in volume flux by 200% or more. The mixing may be due to bottom 
boundary layer turbulence or to interfacial instability or both.  Bottom and interfacial 
drag may also be particularly important in determining the path that the flow takes. The 
portion of the overflow in which these processes are most active normally extends from 
the sill to some point tens or hundreds of kilometers downstream and is called the plume 
or outflow plume.  It is a sub-region of the overflow, meaning the entire hydraulically-
driven flow that begins at the upstream mouth of the channel and ends at the downstream 
extent of the plume.  The overflows of the Denmark Strait, Faroe-Bank Channel, and 
Strait of Gibraltar all have distinctive plumes. 
 
 We will discuss two elementary models of outflow plumes.  The first is a linear 
model that allows resolution of frictional (Ekman) boundary layers and the secondary 
circulations but ignores the effects of entrainment and inertia.  The second model 
accounts for the latter two, but sacrifices resolution of Ekman layers and other cross-
sectional variations of the flow.  Both models are based simplifications that disallow 
hydraulic effects such as subcritical-to-supercritical transitions. 
 
 
a.  Frictional plumes in a channel. 
 
 Some insights into the structure of an outflow plume can be gained by comparing 
sections taken downstream of the Faroe-Bank Channel flow (Figs. 2.11.4-2.11.6) 
showing the lateral spreading and thinning of the flow in the downstream direction.  As 
the plume descends it becomes thinner and wider and is increasingly confined to the 
right-hand slope of the channel.  These features have been reproduced in a laboratory 
model (Davies et al 2006, figure 2.12.1) with a V-shaped channel that approximates the 
Faroe-Bank Channel bathymetry downstream of the sill. The observer faces upstream and 
the upper and lower frames show upstream and downstream sections of a particular 
realization of the plume. Variations in grey scale correspond to variations in density.  
Three main water masses can be distinguished and these consist of a quiescent overlying 
fluid (middle grey), a dense core region (dark) lying within the plume, and an 
intermediate interfacial region (light grey) consisting of a mixture of the two.  A 
comparison of the upstream and downstream sections shows that the thickest portion of 
the core region has shifted from the bottom of the V-shaped channel to higher up on the 
slope, possibly indicating lateral motion from right to left in the figure.  The lateral 
spreading and thinning of the plume in the downstream section is also evident.  
 
 It is difficult to configure laboratory experiments to match all the relevant 
nondimensional scale ratios that characterize the ocean application.  In the above 
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experiment it is possible to match quantities like the average Froude and Rossby numbers 
V/(g′D)1/2 and V/fW, where V, D, and L are velocity, depth and width scales for the 
plume).  More difficult to match is the Reynolds number Re=VD/ν, where ν is the 
kinematic viscosity of water. The magnitude of Re potentially determines characteristics 
of the turbulence that lead to mixing and entrainment.  Values for the present experiment 
lie in the range 1400-1600 whereas ocean values are O(108).  However the dependence of 
the flow on Re considerably weakens after the threshold value ≅1000 is exceeded (Davies 
et al. 2002) and this criterion is approached in the experiment. 
 
 Deductive analytical models of plumes are generally not available due to the 
difficulty in dealing with the combined effects of friction, entrainment and nonlinear 
advection.  However there are some very helpful models that rely partially on ad hoc 
assumptions.  We will discuss two such models.  The first ignores entrainment but 
includes some elementary Ekman layer effects. The second includes both frictional drag 
and entrainment but does so within the context of a ‘streamtube’ flow that has uniform 
properties across each section. The flow takes place on a uniformly tilting plane.   
 
 In the Davies et al. 2006 model, the flow is confined to a V-shaped channel that 
has side slopes α and -α  (Figure 2.12.2a, viewed from upstream) and that tilts with slope 
S along it axis. The flow grounds on the left and the right slopes at positions x*=xL* and 
x*=xR*, as shown.  If the slopes α and S are constant, the neglect of entrainment allows 
for a second simplifying assumption, namely that the flow is locally uniform in y*.  
Changes in the flow along its path can then occur only as a result of changes in the 
bottom slopes (α or S), which could be allowed to vary gradually with y*.  Finally, it is 
assumed that the plume thickness d* is much greater than the thickness of bottom or 
interfacial frictional layers and that the inviscid core region is in geostrophic balance in 
both directions.  Thus the along-channel inertial effects fundamental to hydraulic 
behavior will be absent. 
 
 The geostrophic relations for the inviscid core are 
 

    u* =
g

f
S ,     (2.12.1) 

for the cross-channel velocity component, and 
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for the along-channel component. 
 
 The volume flux associated with the core region is 
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in which d * (x

L
*) = d * (x

R
*) = 0 has been used.  The flux in any frictional boundary 

layers at the top or bottom must be added to Q* to get the total volume flux, but these 
contributions are small. 
 
 The effect of bottom friction on the current is to reduce the velocity to �zero at the 
bottom.  In a rotating flow, the reduction occurs within a boundary layer, the Ekman 
layer, which is discussed in most texts on geophysical fluid dynamics [e.g. Pedlosky 
(1987), Ch. 4].   For a laminar flow the Ekman layer thickness is !E = (2" / f )

1/2 , where 
! is the molecular viscosity.  In a turbulent flow, !  must be replaced by a much larger, 
hypothetical turbulent viscosity.  One of the consequences of the Coriolis acceleration 
acting within the Ekman layer is that a volume transport is established transverse to the 
overlying geostrophic flow (Figure 2.12.2b). If the overlying flow is directed primarily in 
the y-direction, which is the case here, then a transport in the negative x* direction equal 
to v *!

E
/ 2  takes place in the boundary layer.  Davies et al. (2006) assume that a similar 

frictional layer occurs at the upper interface and thus the total boundary layer transport 
is! *"

E
.  If  δE is much less than the fluid depth, which is the case assumed here, then the 

water column will consist of thin upper and lower Ekman layers, with combined 
transverse flux ! *"

E
, separated by a relatively thick, geostrophic interior, referred to 

hereafter as the core, with transverse flux u *d * . 
 
 The transverse circulation in the interior and bottom Ekman layer has been 
visualized (Elin Darelius, private communication) in an experiment with the same V-
shape channel (Figure 2.12.3). Dye is injected at the left edge (facing upstream) of the 
flow, directly into the lower Ekman layer.  As seen in the upper part of the figures, the 
dye cross the channel to the viewer’s right and then returns to the left edge in geostrophic 
core region.  Most of the dye then re-enters the bottom Ekman layer and the cycle 
repeats.  The result is a spiral motion of the dye as it descends down the channel. 
 
 
 For constant bottom slopes α and S, the flow is independent of y* and the depth 
integrated mass flux in the x*-direction is therefore nondivergent.  This flux is clearly 
zero at the edges of the plume and the flux must therefore be zero everywhere else:  
 
    u *d *!" *#

E
= 0 .    (2.12.4) 

 
 The use of (2.12.1) and (2.12.2) to substitute for the velocities leads to 
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 The solutions in the two regions are given by 
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The solution on each tilting side slope consists therefore of a uniform region with 
constant layer thickness and an outer boundary layer of width δE/S that brings the 
thickness to zero.  The theory formally breaks down as the depth vanishes1.  The fact that 
the thickness is brought to zero monotonically means that the slope of the interface 
cannot be greater than the slope of the bottom.   
 
 Matching the two solutions across x*=0 leads to 
 
    A = B + 2!"

E
/ S .     

 
In addition, the position of the right-hand outcrop is obtained by setting d*=0 in the first 
relation in (2.12.6): 
 

    B = !
"#

E

S
e
!SxR */#E . 

 
The full solution is therefore 
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 The edge positions xR* and xL* are obtained by setting d*=0 in the second part of 
(2.12.7): 
 
   (2 ! e
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A second relation between xR* and xL* is provided by the formula (2.12.3) for the flux Q: 
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1 The viscous edge regions are described by a alternative theory (Wåhlin and Walin, 2001). 
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in view of (2.12.7).  If Q is specified, xR* can be computed though substitution of  
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which follows from (2.12.8), into (2.12.9).  If xR* increases, so does xL* and the plume 
broadens as a whole. 
 
 
 Suppose that along-axis slope S decreases gradually in the y*-direction. Then it is 
easily shown from (2.12.9) that xR* must increase in order that Q remain constant. The 
tendency of the plume to broaden as the slope decreases can be motivated using the 
following crude argument.  Consider a point that lies on the right side (x*>0) of the 
channel, and far enough from the left edge xR* to be outside the corresponding boundary 
layer.  The interface elevation in this region is approximately uniform across the channel 
and v* is proportional to α (see 2.12.2).   If S is diminished, v* therefore remains fixed, as 
does the lateral Ekman layer flux v*δE.  The lateral velocity u* is decreased, however, 
and d must increase in order to maintain zero net volume transport across the channel 
(see 2.12.4).  
 
 We leave it as an exercise for the reader to show that the same broadening occurs 
when α decreases and S is kept constant.  A decrease in α in the downstream direction is 
a crude representation of a widening of the channel that occurs in the Faroe-Bank 
Channel downstream of the sill.  The broadening of the stream that is predicted by the 
model may account, at least in part, for that observed there and in the laboratory 
experiment. 
 

 Equation (2.12.9) suggests 
!
2
g"E

2

fS
2

 as a natural scale for Q.  A plot of the 

corresponding nondimensional transport vs. a nondimensional version of xR* (Figure 
2.12.4) shows that the right side of the plume broadens as the transport increases.  This 
tendency is consistent with what is observed in the experiment (solid symbols), and to 
some extent the Faroe Bank Channel overflow (Δ symbols).  
 
 
(b) Streamtube models for entraining plumes.  
 
 The previous model is restricted in that it requires a channel geometry and does 
not allow for entrainment.  All major outflow plumes undergo entrainment, though it may 
only be significant over certain reaches. The plumes associated with outflows from the 
Mediteranean, the Denmark Strait, and the Weddell Sea’s Filchner Ice Shelf ride along 
continental slopes and gradually descend.  A traditional tools for simulating the combined 
effects of entrainment and bottom friction in these flows is the streamtube model, 
pioneered by Smith (1975) and improved by Killworth (1977), Price and Baringer (1994) 
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and others.  We will discuss the original version of this model and comment on later 
refinements. 
  
 The term ‘streamtube’ implies a coherent flow that can be characterized at any 
cross section by a few variables that define the bulk properties like average velocity.  In 
the case of the Smith (1975) model the flow takes place on a flat surface with uniform 
slope S in the y-direction (Figure 2.12.5).  Natural coordinates (s*,n*) are used to 
measure distance along and normal to the axis of the plume.  The plume properties are 
assumed to vary gradually in the s*-direction.  Different versions of the model make 
different assumptions with regard to the variables used to characterize the flow and the 
way in which entrainment, friction and stratification are handled, but there is one far-
reaching assumption made by all.  The plume is supposed to be sufficiently thin that the 
slope of the interface remains nearly equal to the slope of the bottom in any direction.  
Accordingly, the pressure gradient in the plume is assumed proportional to the bottom 
slope; contributions from the gradient of the plume depth are neglected.  The main 
consequence of this simplification is elimination of gravity wave dynamics from the 
model and thus the transmission of information upstream.  As we will see, the steady 
plume equations can be integrated downstream beginning at some point where the flow 
properties are known without regard for conditions far downstream.  This considerably 
simplifies the computational problem for ocean applications.  However, the local Froude 
numbers in deep plumes are observed to consistently fall below unity, particularly far 
downstream of the source, suggesting that upstream wave propagation is possible.  The 
importance of the consequences is not fully understood at the time of this writing. 
  
 The plume axis makes an angle β with respect to the x-axis and thus the position 
(X*,Y*) of the plume in the Cartesian frame is given by  
 

   
dX *

ds *
= cos!    and    

dY *

ds *
= sin! . 

 
The along- and cross- axis velocities will be denoted V* and U* respectively, with 
U * << V *  and it will be assumed that V* and the plume density ρ are constant across 
the section of the plume at any particular s*. The overlying fluid is stably stratified and 
has density ρa(z), which can alternatively be expressed as a function of s* for a given 
plume path.  
 
 Entrainment into the plume is represented as in Section 1.11 by a cross-interface, 
positive downwards, vertical velocity we*.  If A* is the cross-sectional area of the plume, 
the volume flux A*V* must therefore obey  
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while the total mass flux ρA*V* is subject to  
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Here nR* and nL* denote the grounding positions of the interface on the right and left 
edges of the plume, facing downstream.   
 
 The along-axis momentum balance for the plume is expressed in terms of the 
depth-integrated shallow-water equations, the Cartesian versions of which are (2.1.17a,b).  
If at a particular section of the plume, the coordinates are aligned such that the former y* 
axis coincides with the present s*-direction, and the former x* points in the minus n* 
direction, then the along-axis momentum equation is  
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where !g = g(" # "

a
) / "

o
.  This result may be compared with the depth-integrated 

momentum equation (1.9.10) for a one-dimensional flow subject to entrainment from 
above. Note that there is no source of momentum from the entrainment since the 
overlying fluid is assumed to be motionless (v1=0 in 1.9.10).  There are sinks of 
momentum from the frictional stresses at the bottom and interface, as represented by τB 
and τI. The Boussinesq approximation has been made, meaning that ρ is replaced by a 
constant reference density ρo where it multiplies inertial terms.  It will be convenient to 
choose ρo as the density of the plume at some source point.  
 
 Following the assumption that the plume is so thin that the pressure gradient is 
due entirely to the bottom slope, the term proportional to d*2 in (2.12.14) is neglected.  
An important consequence is that horizontal pressure gradients due to horizontal 
variations of density along the path of the plume are ignored. The remaining pressure 
gradient (first term on the right-hand side) is proportional to the along-axis component of 
the bottom slope Ssinβ.  In addition fU*d* is neglected on the basis that U* is rendered 
small by the use of the natural coordinate system and the assumption of gradual 
variations in s*. This last assumption is not consistent with the usual semigeostrophic 
approximation, where in spite of gradual variations the term fU* must be retained.  This 
and other non-deductive assumptions place the streamtube theory in the realm of ad hoc 
models.  
 
  Integration of the simplified version of (2.12.14) across the plume and use of 
d*(nR*)= d*(nL*)=0 leads to 
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where A* = (d*)

xR *
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 The cross-stream momentum equation is a form of the geostrophic relation, 
modified to include the effects of curvature along the s*-axis. The equation is identical to 
the n* momentum equation written in a cylindrical coordinate system with n* as the 
radial variable (see Batchelor, 1967, Appendix 2) and with the advective terms ignored.  
(A similar problem will be considered in detail in Section 4.5.)  The resulting momentum 
balance is 
 

   V * f +V *
d!
ds *
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%
&'
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The factor d! / ds * is the curvature of the plume axis and V *d! / ds *  can be thought of 
as an augmentation of the Coriolis acceleration.  
 
 A simple example that provides a reference for further analysis is a non-
entraining, frictionless outflow that moves along isobaths (β=0).  Equation (2.12.16) 
gives the velocity of such a flow as 
 

    V* =
S !g

f
 .     (2.12.17) 

 
This formula applies in more general settings as well. It can be shown (Exercise 3) that 
the right hand side is the average velocity of a geostrophic current flowing along a 
constant slope, provided the interface elevation is properly taken into account in the 
calculation of the pressure.  The same factor was also shown by Nof (1983) to be the 
speed of a geostrophically-balanced, lens-like eddy propagating along a slope. 
 
 Let go′ denote the value of reduced gravity at the source.  The above result 
suggests Sgo′/f as a scale for V* and it is then natural to choose L=Sgo′/f2 as a horizontal 
length scale. We also scale A* with its upstream value Ao*.  The corresponding 
dimensionless forms of (2.12.11-16) are then  
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)  and ρao is the upstream value of ρa.   

 
 The expressions for entrainment and drag   
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must be parameterized. The bottom and interfacial stresses are most commonly specified 
using a quadratic drag law of the form 
 
    F

!
="V

2 .    (2.12.23) 
 
Entrainment is normally parameterized as described in Section 1.9 in terms of a Froude 
number.  Many of the laboratory experiments or field studies that have been used to 
develop empirical formulae involve nonrotating flows in which the local Froude number 
v/(g′d)1/2 is constant across the descending stream. Some of the corresponding data are 
shown in Figure 1.10.4. In the present case the value of v/(g′d)1/2 varies across the stream 
and the parameterization is written in terms of a bulk Froude number characterizing the 
whole cross-section (Price and Barringer, 1995).  For present purposes it is adequate to 
regard En as a function of V and A, and make no further specification. 
 
 The presence of frictional drag causes a flow that would otherwise follow isobaths 
to descend. Suppose that entrainment is ignored (En=0,ρ=ρo), the overlying fluid is 
homogeneous (ρa=ρao, and therefore γ=1) and a uniform (in s) solution is sought.  If the 
friction parameterization (2.12.23) is used, the velocity and angle of descent are found by 
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setting ! / !s = 0 in equations (2.12.19-20) and setting A to its upstream value of unity.  
Thus 
 
    sin! ="V 2     (2.12.24) 
and 
 
    cos! = V ,    (2.12.25) 
 
 
 These relations summarize the force balance (Figure 2.12.6) in which gravity 
attempts to pull the plume down the fall line, friction tends to retard the flow, and the 
Coriolis effect tends to accelerate the plume to the right of the flow direction. Only the 
frictional and gravitational forces act parallel to the plume axis and the velocity must 
have a down slope component (β>0) in order for the two to balance.  In the direction 
normal to the axis the tendency of gravity to accelerate the fluid down the fall line is 
balanced by the Coriolis acceleration in the opposite direction. If V is eliminated between 
the above two relations, it follows that  
     

     
sin!

cos
2 !

=" ,   (2.12.26) 

 
and thus the angle of descent increases as the friction coefficient increases. If perturbed 
from this parallel state the plume executes stable meanders about its original path (see 
Exercise 4).  
 
 When entrainment is present, the flow can no longer be uniform in s, making 
simple solutions harder to come by. However, if the overlying fluid is homogeneous 
(ρa=constant) then the problem can be simplified somewhat.  To begin with, subtraction 
of the product of ρa and (1.12.18) from (1.12.19) yields 
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showing that the buoyancy flux  
 
    B = [(! " !

a
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o
]AV   (2.12.28) 

 
is conserved.  At its point of origin (s=0) we will assume that the plume flows parallel to 
the isobaths (β=0), as it would if entrainment and friction were nil. The upstream values 
of the plume variables at this point are then A(0)=V(0)=1, β(0)=0, ρ(0)=ρo, and ρa(0)=ρao.  
Downstream of this point we will track the evolution of the flow, proceding on the  
assumption that entrainment and friction are finite but weak (En<<1 and κ<<1).  The 
entrainment may vary with V and A, and it is assumed only that it retains the same 
general nondimensional size as the friction term, i.e. E

n
(V ,A) = O(! ) .  
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 Next expand the dependent variables according to  
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Substitution into (2.12.17,19,20 and 27) and retention of only O(κ) terms leads to  
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Thus the combined influence of friction and entrainment causes the plume to turn 
downslope (β(1) becomes positive). The velocity V decreases but the area A increases at 
twice the rate, this in order for the volume flux to increase.  The plume is diluted (

 
!!(1)  

becomes negative) in proportion to the entrainment rate En(1,1) but in inverse proportion 
to the drag coefficient.  Along with these trends, the plume undergoes a meandering 
motion with wave length 2π, dimensionally 2πSgo′/f 2, caused when the path overshoots 
the equilibrium angle β(1)=1 or β=κ.  The linear solution remains valid only for distances 
of order κ -1 downstream of the point of origin; the secular growth associated with the 
terms proportional to s invalidate the asymptotic expansion further downstream. 
 
 Application of streamtube models to specific outflows have resulted in a number 
of refinements, including variable bottom slope and separate treatments of temperature 
and salinity. In his simulation of the Weddell Sea plume, which is observed to spill to the 
bottom of the slope, Killworth (1977) notes that the simulated flow will not reach the 
bottom without inclusion of the thermobaric effect, the increase with depth of the 
coefficient of thermal expansion.  A less subtle process is entrainment, which is 
addressed by the Price and Barringer (1995) model.  Since the entrainment velocity is 
parameterized by the Froude number, an explicit treatment of the plume width and depth, 
and not just the cross section area, is required.  Price and Barringer base their treatment 
on a spreading law in which the downstream rate of increase of the plume width is 
proportional to the bottom drag. 
 
 One of the most important factors determining the fate of ocean plumes is the 
density of the overlying water. It is well known that the densest source waters come from 
the Mediterranean Sea, but the densest product waters (after entrainment) come from the 
high latitude overflows (Weddell Sea, FBC and Denmark Strait).  For these applications, 
the least dense source waters tend to produce the densest product waters (Table 2).  This 
is largely due to the fact that the density of the overlying water is greatest where the 
product water density is greatest. 
 
 Table 2.1  Densities (σθ) of the average source, product and overlying water for 
four major outflow plumes.  (Data from Price and Baringer, 1995).   
 
     Location                                            source          product      ambient 
                                                                                                    (overlying) 
  
Filchner Ice Shelf  (Weddell Sea)           27.93           27.89         27.82 
Denmark Strait                   28.04           27.92         27.72 
Faroe Bank Channel           28.07           27.90         27.56  
Mediterranean          28.95           27.70         27.06 
 
    
 
Exercises.   
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1)  Show that the theory that leads to (2.12.7) fails to provide a solution for the case in 
which the plume rides entirely over the positively sloping portion of bottom (x*>0), i.e. a 
solution for with xL*>0. 
 
2)  For the Davies et al. (2006) model, show that the plume broadens when the cross-
channel slope α is decreased but S remains fixed. 
 
3)  Show that the velocity defined by (2.12.17) is the average velocity of a geostrophic 
current flowing along a constant slope if the interface elevation is properly taken into 
account in the calculation of the pressure. 
 
4)  The meandering of a non-entraining plume. Consider the Smith (1975) streamtube 
model for the case in which there is no entrainment and where the overlying density is 
uniform.  
 
 (a)  Show that the two momentum equations (2.12.19 and 2.12.20)  can be written 
for this case in the form 
 

    Q
dV

ds
=
Qsin!

V
"#V 2 , 

and 
    

    V
d!

ds
= cos! "V , 

 
where Q=AV is the (now constant) volume flux. 
 
 (b)  For a given Q, show that the fixed point  (i.e. ! / !s =0) solutions, which are 
just the parallel flows discussed earlier, are given by (2.2.26) and  
 
    !

2
V
4
Q

"2
+V

2
"1 = 0 . 

 
 (c)  By linearizing the momentum equations about this solution, show that small 
departures from the parallel state consists of meanders of the flow axis and calculate the 
meander wavelength. 
 
 (d)  Show that motions not restricted to small amplitude perturbations of the 
parallel state are described by the relationship 
 

   
d!

dV
=
Q(cos! "V )

Qsin! "#V 3
. 

 
Sketch some of the corresponding solutions in the (V,β) plane and show that they consist 
of periodic orbits that surround the fixed point calculated in (b). 
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Figure Captions   
 
2.12.1  Dye images at two sections of a laboratory plume in a V-shape channel. Different 
shades of gray correspond to different densities, though there is no calibration.  The 
viewer faces upstream. The lighter fluid is a mix between deeper (dark) and upper 
(middle gray) fluid.  (From Davies, et al. 2006)  
 
2.12.2  Definition sketch for Davies et al. 2006 model. 
 
2.12.3  The spiral motion of a dye stream in a descending laboratory flow, facing 
upstream. The dye is introduced at the upper left, directly into the lower Ekman layer.  It 
crosses the channel to the right in the bottom Ekman layer, returns to the left in the 
geostrophic core region, and repeats the cycle.  (2006 photo by Elin Darelius)  
 

2.12.4 The  dimensionless width 
x
R
*!

"
E
cos#

. of the right-hand (x>0) portion of the current 

as a function of dimensionless transport Q/Qs, where Qs = !
2
g"E

2
/ fS

2  . The curve 
shows the predicted width based on (2.11.19) The solid symbols represent data from the 
Davies et al. (2006) experiment with  [go′ (cm s-2), f (s-1)] given by  [8.82,0.37];  
[8.82,0.50]; and  [23.50; 0.37].  The symbols Δ represent Faroe-Bank Channel field 
data from Mauritzen et al (2005).  (From Davies et al. 2006).   
 
2.12.5  Definition sketch for streamtube model. 
 
2.12.6  The equilibrium state of a descending, non-entraining plume in a homogeneous 
environment.  The dashed arrows show the normal and tangential components of the 
gravitational force; these must be balanced by the Coriolis acceleration and the frictional 
drag vectors. 
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