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2.1 Semigeostrophic Flow in Rotating Channels. 
 
 The original models of rotating, hydraulically-driven currents were motivated by 
observations of deep overflows.  The spillage of dense fluid over the sills of the Denmark 
Strait, the Faroe Bank Channel and other deep passages is suggestive of hydraulic control 
and one hope was that formulae used to estimate the volume outflow from a reservoir 
might be extended to these settings. To this end the whole volume of dense, overflowing 
fluid is treated as a single homogeneous layer with reduced gravity.  In the Denmark 
Strait overflow example (Figures I7 and I8) this layer typically includes all fluid denser 
than σθ=27.9.  The hypothetical homogeneous layer experiences strong, cross-channel 
variations in thickness and velocity, complications that can arise in engineering 
applications but are unavoidable where the earth’s rotation is important.  Much of the 
development of the theory of rotating hydraulics consists of attempts to come to grips 
with this extra degree of freedom. We shall trace this development beginning with early 
models of rotating-channel flow and show that hydraulic control and many of the other 
features reviewed in the first chapter remain present in one form or another.  A number of 
novel features will also arise, including boundary layers, flow reversals, side-wall 
separation. In this presentation, we will use northern hemisphere flows as paradigms. 
 
 Another distinctive aspect of rotating hydraulics concerns the permissible waves. 
Under the usual assumption of gradual variations of the flow along its predominant 
direction, three types of waves arise.  The first is the Kelvin wave, an edge wave closely 
related to the long gravity waves of the last chapter.  The second is the frontal wave, 
which replaces the Kelvin wave when the edge of the flow is free to meander 
independently of sidewall boundaries.  Frontal waves are sometimes referred to as Kelvin 
waves in the literature.  The third is the potential vorticity wave, a disturbance that exists 
when gradients of potential vorticity, defined in this chapter, exist within the fluid.  
Nearly all analytical models of deep overflows assume that the potential vorticity is 
uniform within the flow, thereby eliminating this wave.  We will consider only one model 
that does not.  Free jets in the ocean and atmosphere are more dependent on potential 
vorticity dynamics and will be covered in Chapter 6.  
 
 In contrast to Chapter 1, where nearly all variables were dimensional, the present 
Chapter (and the remainder of the book) will depend primarily on dimensionless 
variables, and will frequently cite the dimensional representation of particular results.  It 
becomes necessary to distinguish between the two formats, and we do so by assigning 
stars to dimensional quantities.  There are some exceptions to this convention. Stars are 
not used, for example, for certain universally recognized dimensional quantities such as 
the Coriolis parameter, f, or for generic scales such D (for depth) and L (for length). 
 
      
 
2.1  The semigeostrophic equations for homogeneous, rotating channel flow. 
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 We consider homogeneous  flows confined to a channel rotating with constant 
angular speed f/2 in the horizontal plane.  The coordinates (x*,y*) denote cross-channel 
and along-channel directions, (u*,v*) the corresponding velocity components,  and 
(d*,h*) the fluid depth and bottom elevation.  Provided the scale of x*- and y*-variations 
of d* are large compared to the typical depth, the shallow water equations continue to 
apply. The dimensional version of these equations is 
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Unspecified forcing and dissipation is contained inF = (F

(x )*
,F

(y)*
) .  For positive f, the 

channel rotation is counterclockwise looking down from above, as in the northern 
hemisphere.  These equations apply to a homogeneous layer with a free surface or to the 
active lower layer of a ‘1 1

2
-layer’ or ‘equivalent barotropic’ model.  In the latter, g is 

reduced in proportion to the fractional density difference between the two layers.  In such 
cases the upper boundary of the active layer will be referred to as ‘the interface’. 
 
 For large-scale oceanic and atmospheric flows away from the equator and away 
from fronts and boundary layers, the forcing and dissipation terms and the terms 
expressing acceleration relative to the rotating earth are generally small in comparison to 
the Coriolis acceleration.  The horizontal velocity for these types of flows is 
approximately geostrophic, or 
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in the context of our shallow water model.  These relations suggest that geostrophic flow 
moves parallel to lines of constant pressure, with high pressure to the right in the northern 
hemisphere.  This situation was quite different for the flows treated in Chapter 1, in 
which the velocity is aligned with the pressure gradient and flow is accelerated from high 
to low pressure.  For the deep overflows and strong atmospheric down-slope winds the 
acceleration of the flow down the pressure gradient is also a characteristic feature, 
suggesting a departure from the geostrophic balance.   
 
 To explore this issue further it is helpful to nondimensionalize variables.  Define 
D as a scale characterizing the typical depth and L as a measure of the horizontal distance 
over which along-channel variations take place.  Also take (gD)1/2 as a scale for v*, 
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anticipating that the gravity wave speed will continue to be a factor in the dynamics of 
hydraulically controlled states and that such states will require velocities as large as this 
speed.  A natural scale for t* is therefore L/(gD)1/2.   As a width scale, we pick (gD)1/2/f, 
which is the Rossby radius of deformation based on the depth scale D. For readers not 
familiar with the theory of rotating fluids, 2π(gD)1/2/f is the distance a long gravity wave 
[with speed (gD)1/2] will travel in an inertial period 2π/f.  It is the distance the wave must 
travel before it is influenced by the earth’s rotation.  Motions with much smaller length or 
time scales are generally not influenced by rotation.  The Rossby radius appears as a 
natural width scale for boundary currents and boundary-trapped waves.   With these 
choices, the cross-channel velocity scale (gD)/fL is suggested by balancing the second 
and third terms in (2.1.3).  The dimensionless variables are therefore 
 

   x =
x * f

(gD)
1/2

,    y =
y *

L
,    t =

t * (gD)
1/2

L
   

          (2.1.4) 

  v =
v *

(gD)
1/2

,    u =
fLu *

gD
,    d =

d *

D
,   h =

h *

D
,   F =

LF *

gD
. 

 
 
Substitution into (2.1.1-3) leads to  
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where ! = (gD)

1/2
/ fL  is the ratio of the width scale of the flow to L: a horizontal aspect 

ratio.   
 
 The limit! " 0 leads to a geostrophic balance in the cross-channel (x-) direction 
but not the along channel direction.  The along-channel velocity v is geostrophically 
balanced but the cross-channel velocity u is not.  The flow in this limit is therefore 
referred to as semigeostrophic.  The semigeostrophic approximation requires that 
variations of the flow along the channel are gradual in comparison with variations across 
the channel.  In particular, the interface may slope steeply across the channel but can do 
so only mildly along the channel.  The along channel velocity component v is therefore 
directed nearly perpendicular to the pressure gradient.  As (2.1.6) suggests, the (weaker) 
along-channel pressure gradient does lead to acceleration in the same direction, but this 
occurs over a distance L large compared to the cross-stream scale δL. 
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 Semigeostrophic and quasigeostrophic models should not be confused. In the 
latter, both of the horizontal velocity components are geostrophically balanced, at least to 
a first approximation, and variations in the depth or layer thickness are required to be 
slight.  Time variations occur on a scale much longer than 1/f.   Quasigeostophic models 
form the basis for much of the theory of broad scale waves and circulation in the ocean 
and atmosphere (e.g. Pedlosky, 1987).  Hydraulic effects with respect gravity waves 
cannot occur because these waves are filtered by the quasigeostrophic approximation. 
 
 Vorticity and potential vorticity are conceptually and computationally central to 
rotating flows.  For shallow homogeneous flow, the discussion is simplified by the fact 
that the horizontal velocity is z-independent, so that the fluid moves in vertical columns.  
Vorticity and potential vorticity are therefore assigned to fluid columns as a whole.   If 
the curl of the shallow water momentum equations (i.e.!(2.1.2) / !x *"!(2.1.1) / !y * ) is 
taken and (2.1.3) is used to eliminate the divergence of the horizontal velocity from the 
resulting expression, the following conservation law for potential vorticity can be 
obtained: 
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The relative vorticity !* = "v *

"x *
#
"u *

"y *
 is the vorticity of a fluid column as seen in the 

rotating frame of reference.  The absolute vorticity is the total vorticity ζ*+ f of the 
column.  The potential vorticity q* is simply the absolute vorticity divided by the column 
thickness d*.  If the forcing and dissipation have no curl (! *"F* = 0 ) the potential 
vorticity of the material column remains constant.  Conservation of potential vorticity is a 
consequence of angular momentum conservation; if the column thickness d* increases, 
conservation of mass requires the cross-sectional area of the column to decrease, and the 
column must spin more rapidly to compensate for a decreased moment of inertia.  
 
 It is sometimes convenient to represent the potential vorticity as  
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where D

!
 is known as the potential depth.  In the absence of forcing or dissipation, each 

fluid column owns its own time-independent potential depth.  To interpret this quantity, 
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consider a column with relative vorticity ζ* (also =q*d*-f by the definition of q*).  Next 
alter the column thickness d* to the value f/q*, so that ζ* vanishes.  This new thickness is 
the potential thicknessD

!
.  This interpretation is limited by the fact that D

!
 may be 

negative, making it physically impossible to remove ζ* by stretching.  Most of the 
applications we will deal with have positive potential depth. 
 
 The nondimensional versions of (2.1.8) and (2.1.9) 
are 
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 In the semigeostrophic limit! " 0 :  
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The last two relations can be combined, yielding an equation for the x-variation in depth 
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If q=constant the above equation can easily be solved, reducing the calculation to a two-
dimensional problem (in y and t).  This situation arises if q is initially uniform throughout 
the fluid and no forcing or dissipation is present. 
 
 Two other forms of the shallow water momentum equations that will prove very 
helpful.  One is 
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where  
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is the two-dimensional Bernoulli function.  The dimensionless form of the latter 
isB = B * /gD =

1

2
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) + d + h . In the semigeostrophic limit B formally reduces to 

its one-dimensional equivalent v2 / 2 + g(d + h) . The second version of interest is the 
depth-integrated or ‘flux’ form, obtained by multiplication of (2.1.1) and (2.1.2) by d*, 
rearrangement of some derivatives, and use (2.1.3).  The results: 
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are used in the analysis of hydraulic jumps, form drag and other applications where the 
total momentum over the water column is at issue. 
    
  If the flow is steady (! / !t* = 0) ,  the continuity equation (2.1.3) implies the 
existence of a transport stream function ψ*(x,y) such that 
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The total volume transport Q* is the value of ψ* on the right-hand edge of the flow 
(facing positive y*) minus ψ* on the left wall.  If, in addition, there is no forcing or 
dissipation (F*=0) then (2.1.15) can be written 
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or q *!"* = !B * .  Thus the Bernoulli function is conserved along streamlines: 
 
    B*=B*(ψ*)  
 
and  
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    q* =
dB *

d! *
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This remarkable link between energy and potential vorticity is one of the central 
constraints used in hydraulic theories for two-dimensional flow.  As shown by Crocco 
(1937), the relationship (2.1.19) holds in more general settings.   
 
 In the steady sill flows discussed in Chapter 1, the reservoir state is specified by 
the values of Q* and B*, the fundamental conserved quantities of the one-dimensional 
flow. Discussion of the present generalization often centers on three conserved quantities: 
the functions B*(ψ*), q*(ψ*) and the constant Q*.  Crocco’s theorem shows that these 
three are not independent; specification of B*(ψ*) and of the range of ψ* allows q*(ψ*) 
to be completely determined. 
 
 We have already touched on the different types of long (semigeostrophic) waves 
that arise in rotating channel flows.  Kelvin waves and their frontal relatives depend on 
the combined effects of rotation and gravity and are important to the hydraulics of 
gravity-driven flows. Potential vorticity waves can exist in flows with neither gravity nor 
background rotation.  Their dynamics involve vortex induction mechanics that can arise 
when the potential vorticity of the fluid flow varies spatially. If the long-wave assumption 
is relaxed, inertia-gravity (Poincaré) waves come into play. They are not important in 
traditional models of rotating hydraulics, but they are important for a range of transient 
phenomena generally considered to be part of hydraulics. We now discuss some of the 
linear properties of these waves where they arise as small perturbations from a resting 
state.   Nonlinear steepening and other finite amplitude effects will be treated in later 
sections.  
 
 Consider the shallow water equations, linearized about a state of rest with d=1 and 
F=h=0.  Take d = 1+! , with ! <<1; assume u<<1 and v<<1; and neglect terms 
quadratic in η, v etc. in (2.1.5-2.1.7) to obtain 
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 The corresponding potential vorticity equation, which can be obtained directly  
from the above or simply by linearizing the nondissipative version of (2.1.8), is 
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where ( )o indicates an initial value. The last equation indicates that the linearized 
potential vorticity, equal to the relative vorticity !v / !x " # 2!u / !y  plus the stretching 
contribution!" ,  is conserved at each (x,y).  
 
 The left hand side of (2.1.23) can be expressed in any of the three variables u,v, or 
!by using (2.1.20-2.1.22) to eliminate the remaining two.  For example the equation for 
! is 
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For an arbitrary initial disturbance the resulting flow will consist of two parts.  The first is 
a steady flow whose potential vorticity is given by the potential vorticity of the initial 
disturbance.  This flow is obtained by finding a steady solution to (2.1.24).  The second 
component consists of waves that are generated as a result of the unbalanced part of the 
initial flow. Individually, these waves are solutions to the homogeneous version of 
(2.1.24) subject to the boundary condition 
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obtained by evaluating  (2.1.20) and (2.1.21) at the sidewalls, where u=0, and eliminating 
v from the result. 
 Assuming traveling waves of the form! = Re aN(x)e

i(ly"# t )$% &' , where ω is the 
frequency and l is the longitudinal wave number, one finds two distinct solutions (Gill, 
1982 or Pedlosky 2003), both of which were discovered by Kelvin (1879). The first, 
named after Poincaré (1910), has an oscillatory structure in x: 
 
   N

n
(x) = cos(k

n
x) + b

n
sin(k

n
x)    (2.1.26) 

 
where k

n
= n! / w , and b

n
= !"

n
k
n
/ l  (n=odd) or b

n
= l /!

n
k
n

 (n=even).  The frequency 
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the dimesional form of which is 
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where D is the background depth.   
 
 Poincaré waves can be better understood by first considering a long gravity wave 
propagating in an arbitrary direction on an infinite, nonrotating  plane.  The form of the 
wave is given by!* = Re a * e

i(k*x*+l*y"#*t*)$% &' , where k* and l* represent the wave 
numbers.  The dispersion relation for this wave is given in dimensional terms by (2.1.27) 
with f=0 and with k* replaced by the discrete wave number (n2π2/w*)2.  Next consider a 
second wave with wave numbers (-k *,l*) and therefore having the same frequency as the 
first wave.  If the second wave has the same amplitude a as the first, a superposition of 
the two leads to a u* field proportional 
toRe a(e

i(k*x*+l*y*!"*t*) ! ei(!k*x*+l*y*!"*t*) )#$ %& = Re 2aie
i(l*y*!"*t*)

sin k * x *#$ %& .  Since u* is 
zero whenever k*x* is an integer multiple of π, the waves satisfy the side-wall boundary  
conditions  in a channel with side walls at  x* = ±w * /2  provided that  k* is chosen to be 
2nπ/w*.  These waves are sometimes called oblique gravity waves and their cross-
channel structure is said to be standing.  Poincaré waves are rotationally modified 
versions of these waves.  
 
 
 The second class consists of edge waves named after Kelvin himself.  The cross-
channel structure and dispersion relation are given by 
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 Kelvin waves have a boundary layer structure that becomes apparent when the 
channel width is much wider than the deformation radius.  Taking the limit  w>>1 
(equivalentlyw* >> (gD)1/2 / f ) in (2.1.28) leads to 
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The first solution corresponds to a wave propagating in the positive y-direction at speed 
(gD)1/2 and trapped to the wall at x*=w*/2.  The trapping distance is the Rossby radius of 
deformation based on the background depth D.  The other wave moves in the opposite 
direction and is trapped to the wall at x*=-w*/2.  In the limit of weak rotation, N±* 
becomes constant and the Kelvin waves reduce to x-independent,  long gravity waves 
propagating along the channel.  A further distinguishing property of linear Kelvin waves 
is that the cross-channel velocity u is identically zero. 
 
 Kelvin waves are nondispersive, meaning that the phase speed c* does not depend 
on the wave number l*.  The wave frequency ω*=c*l* is proportional to l* and therefore 
the group velocity !" * /!l * is equal to c*.  In Chapter 1, we described the topographic 
resonance that  can occur when a background  flow is critical c*=0  with respect to a 
nondispersive wave.  A bottom slope or other stationary forcing introduces disturbance 
energy that cannot propagate away.  The disturbance amplitude grows and becomes large 
and sufficiently nonlinear to break away, leading to fundamental changes in the upstream 
flow.  We expect that Kelvin waves will play an important role in the upstream influence 
of rotating channels flows.    
 
  Poincaré waves are not admitted under semigeostrophic dynamics, a result that 

can be shown by taking (δ→0) in (2.1.27).  The limiting condition (n
2
!
2

w
2

+1 = 0)  cannot 

be satisfied for real n. Since most simple models of the hydraulics of rotating flow in a 
channel or along a coast use the semigeostrophic approximation, Poincaré waves do not 
arise.  However, there are a few models of unbounded flows for which hydraulic effects 
arise (e.g. Section 3.8).  These effects involve Poincaré waves with short wave lengths 
(l→∞), for which (2.1.27) reduces to c =! / l = ±1  (or!* = ±(gD)

1/2 ).  In this limit the 
waves behave like nonrotating gravity waves and can be considered nondispersive if 
propagation is somehow limited to a single direction. 
 
 
 The restoring mechanism for Poincaré and Kelvin relies on gravity and a free 
surface or interface.  Potential vorticity waves, on the other hand, rely on gradients of 
potential vorticity within the fluid.   One can describe this effect by modifying the above 
example to include a lateral bottom slope !h * /!x* = "S = const. For simplicity, we will 
eliminate the gravitational restoring mechanism by placing a rigid lid on the top of the 
fluid. The resting basic state now contains a potential vorticity gradient associated with 
the variable depth alone. If D is the layer thickness at mid-channel (x*=0) and if the 
bottom and surface tilt lead to only slight variations of h* about D, then the potential 
vorticity of the ambient fluid is 
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f + !v * /!x *
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Under these conditions the flow will support potential vorticity waves with phase speeds 
given by 
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In the long wave limit (w*l*→0) the waves are nondispersive: 
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where w* is the channel width and dq *
dx *

= !
Sf

D
2

.  This example is discussed fully by 

Pedlosky (2003).  For positive S, !q * /!x* < 0 and higher potential vorticity is found on 
the left-hand side (facing positive y*) of the channel.  In this case the propagation 
tendency of the waves is towards negative y*. 
       
 
 The waves produced in the last example are called topographic Rossby waves 
since the background potential vorticity gradient was created by a sloping bottom.  More 
generally, steady flows with nontrivial depth and vorticity distributions have potential 
vorticity gradients and will support potential vorticity waves, although some of these may 
be unstable.  The nondispersive character of the long waves is indicative of their ability to 
transmit upstream influence, an effect that will be demonstrated in later sections.  
 
   
 
Exercises 
 
1)  Dissipation and vorticity flux. 
 
(a)  By taking the curl of the shallow water momentum equations (2.1.15) obtain the 
vorticity equation 
 

  !"
a
*

!t *
+# $ (u *"

a
*) = k $ (# % F*) ,   (2.1.31) 

 
where !a* = f +! * is the total (or absolute) vorticity of a fluid column. 
 
(b)  Define Jn*=k×F* and write k ! (" # F*) = $" ! J

n
* , so that (2.1.31) becomes 
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The quantity u *!
a
*+J

n
*may be interpreted as the total flux of absolute vorticity, the 

term u *!
a
*  accounting for the advective part of the flux and the term J

n
* accounting 

for the dissipative flux. 
 
(c)  By taking the cross product of k with the steady version of (2.1.15) obtain the 
relation 
 
   k ! "B* = u *#

a
*+J

n
* .   (2.1.33) 

 
By comparing this with the relation k ! "#* = u *  interpret B* as a streamfunction for 
the total vorticity flux. Further show that the derivative of B* along streamlines gives a 
vorticity flux that is entirely due to dissipation, whereas the derivative of B* in the 
direction normal to streamlines gives a flux that is partly due to dissipation and partly due 
to advection. 
 
[The main ideas developed in this exercise are due to Schär and Smith (1993).] 
 
2)  Equation (2.1.24) paves the way for solution to the linear shallow water equations in 
terms of! .  Show that the equivalent equations for u and v are given by 
 

  ! 2u
!x2

+ " 2
! 2u
!y2

# " 2
! 2u
!t 2

# u = #
!
!y

!v
o

!x
# " 2

!u
o

!y
#$

o

%

&
'

(

)
*  (2.1.34) 

and  
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# " 2
! 2v
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* . (2.1.35) 


