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2.2 Uniform Potential Vorticity: Boundary Layers and Kelvin Waves. 
 
  
 The models of hydraulic behavior in rotating channels that first appeared in the 
1970’s consider flows with uniform potential vorticity: 
  

   q* =
f + !v* /!x*

d *
=

f

D
"

= const.    (2.2.1) 

 
If q* is materially conserved, such flows arise as a result of evolution from an initial state 
of uniform q*.  Or, a steady flow with uniform q* is justified if all streamlines can be 
traced back into a reservoir or other source region with uniform q*.  Either case must be 
free of potential vorticity-altering dissipation or forcing, a situation that is probably not 
representative of deep-ocean overflows.   There is no compelling reason to believe that 
the potential vorticity of such flows should be uniform and, indeed, the observation 
evidence is that it is not.  Despite these objections, uniform potential vorticity models are 
quite tractable and give valuable insight into a dynamically restricted but intriguing 
arena.  The main deficiency of such models is that they lack the ability to support 
potential vorticity waves.  However, it is not clear that the latter are important for flows 
that are primarily driven by gravity.  
 
 Before entering into a detailed discussion of benchmark theories for steady flow 
(particularly Sections 2.4 and 2.5), we make some observations about uniform potential 
vorticity flow in general.  First note that the potential depth D

!
 is now constant 

throughout the fluid and that the potential vorticity, in nondimensional terms, is 
q = (D / f )q*= D / D

!
. The depth scale D is simply a measure of the typical or average 

depth in a region of interest: often a section of the channel near a sill or narrows. The 
dimensionless potential vorticity is therefore a measure of the departure of this scale 
depth from the potential depth.  In many hydraulics problems the average depth varies 
significantly between the sill or narrows and the upstream reservoir. If the average depth 
in the sill region is chosen as D then the nondimensional depth d may be regarded as O(1) 
there.  In this case a small value of q would indicate that the typical depth at the sill depth 
is << D∞, implying the sill region to be one of significant relative vorticity. In addition the 
small value of q can be exploited to further simplify the governing equations in what is 
called the ‘zero potential vorticity’ approximation.  Caution is advised, however, as these 
properties only hold where d remains O(1).  The values of d in the reservoir might be 
>>1, implying a completely different flow regime.  
 
 In most of what follows, the rotating channel is assumed to have rectangular 
cross-section with vertical side walls at x=±w(y)/2, as shown in Figure 2.2.1.  For this 
geometry equation (2.1.14) becomes  
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    !
2d(x,y,t )

!x
2

" qd(x, y, t) = "1 .   (2.2.2) 

 
 The boundary conditions at the edges of the stream depend upon whether the fluid 
depth remains non-zero over the entire cross-section, as in Figure 2.2.1a, or whether the 
depth vanishes at one or more values of x, as in Figure 2.2.1b.  As it turns out, there are a 
limited number of possible configurations.  These may be found by first noting that if 
d→0 at some point (xo,y) then one of the following conditions must hold: 
  
1) (xo,y) lies at a side wall, as in Figure (2.2.2a), 
2)  d is also zero in a neighborhood to the left (x<xo) or the right (x>xo) of (xo,y), as in 
Figure (2.2.2b), or 
3) !d / !x  is discontinuous at (xo,y), as in Figure (2.2.2c). 
 
Most importantly, d cannot vanish smoothly in the interior of the current as shown in 
Figure (2.2.2d). The curvature ! 2d / !x2  is clearly positive at such a point, whereas 
(2.1.14) indicates that it must be negative.  In other words the fluid depth cannot 
smoothly vanish in the interior of the current; it must first vanish at a sidewall.  Gill 
(1977) first showed this result for steady channel flow with uniform q but the same 
clearly applies to time-dependent flows with nonuniform q since (2.2.2?) continues to 
apply.  For northern hemisphere rotation, there are only two configurations we will 
generally have to consider and they are the ones shown in Figures 2.2.1a and 2.2.1b. 
 
  For q=constant (2.2.2) can easily be solved and a convenient representation of the 
solution is given by 
 

d(x, y, t) = q
!1
+ ˆ d (y, t)

sinh(q1/ 2 x)

sinh(1

2 q
1 / 2

w)
+ (d (y, t) ! q

!1
)

cosh(q1 / 2 x)

cosh( 1

2 q
1/ 2

w)
,  (2.2.3) 

 
following a form first used by Gill(1977). The geostrophic velocity associated with this 
depth is  
 

 v = q
1 / 2 ˆ d (y, t)

cosh(q1/ 2x)

sinh(1

2 q
1 / 2

w)
+ q

1/ 2
(d (y,t) ! q

!1
)

sinh(q1/ 2x)

cosh(1

2 q
1/ 2

w)
, (2.2.4) 

 
in view of (2.1.12). 
 
 The quantities ˆ d  and d  represent half the difference and sum of the depth along 
the sidewalls: 
 
  d = 1

2 [d(
1
2 w, y, t) + d(! 1

2 w, y, t)]     (2.2.5) 
and  
  ˆ d = 1

2 [d(1
2 w, y, t) ! d(! 1

2 w, y, t)] .    (2.2.6) 
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Using (2.2.4) these can also be related to the average and difference of the wall 
velocities: 
 
  v = 1

2 [v( 1
2 w, y, t) + v(! 1

2 w, y, t)] = q
1 / 2

T
!1 ˆ d    (2.2.7) 

and 
  ˆ v = 1

2 [v(1
2 w, y, t) ! v(! 1

2 w, y,t )] = q
1/ 2

T (d ! q
!1

) ,  (2.2.8) 
where 
 
   T = tanh( 12 q

1/ 2
w)      (2.2.9) 

 
 The dimensional form of the depth profile (2.2.3) is 
 
 d* = dD = D

!
+ ˆ d *

sinh(x * / L
d
)

sinh(w * / 2L
d
)
+ (d *"D

!
)

cosh(x * / L
d
)

cosh(w * / 2L
d
)

,  (2.2.10) 

where 
 

    Ld =
(gD

!
)1/ 2

f
     (2.2.11) 

 
is the Rossby radius of deformation based on the potential depth D

!
. In the limit 

w * / L
d
!"  (2.2.10) becomes  

 
d* = D

!
+ [d(w * / 2, y*,t*)" D

!
]e
( x*" 1

2
w*) / Ld

+ [d * ("w * / 2, y*,t*)" D
!
]e

"( x*+ 1
2
w*) / Ld , 

          (2.2.12) 
 
and thus the solution takes on a boundary layer structure with the side-wall depths 
tending to the interior value D

!
 over the length Ld.  The situation is depicted in Figure 

2.2.3. 
 
 In the other extreme, a sufficiently narrow channel should allow us to return to the 
one-dimensional equations describing non-rotating flow.  This limit is more subtle than 
what one might guess.  Consider a channel whose width w* is ! L

d
 so that w* becomes 

the cross-channel length scale.  Then a good indication of the strength of rotation is the 
change in the interface elevation across the channel divided by the average depth, equal 
to ˆ d * / d *  in the present model.  An estimate for this quantity can be obtained by 
approximating ! 2d / !x2by ˆ d / w

2 in (2.2.2) and writing the result in dimensional form. 
After a little rearrangement, one finds 
 

   
ˆ d *

d *
= O

w *
2

Ld

2

! 

" 
# 

$ 

% 
& + O

w *
2 f 2

gD

! 

" 
# 

$ 

% 
& , 

 
implying that the channel width must be much less that two different scales in order for 
rotation to be neglibible. The first is the Rossby radius of deformation based on the 
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potential depth D
!

, also with width of the boundary layers discussed above. The second 
is the Rossby radius based on the local depth scale D.  In most applications D will be 
O(D

!
)  or less and therefore a good rule of thumb is to ignore rotation if w* is << 

(gD)1/2/f. In nondimensional terms, the latter is equivalent to w<<1. 
 
 The importance of two deformation radii may seem confusing to the reader who 
has observed that Ld appears to be the only intrinsic lateral length scale in the depth and 
velocity profiles (e.g. 2.2.12).  The situation can be clarified by reference to Figure 2.2.3 
which shows a cross-section for a case where w* is somewhat larger than Ld. As 
suggested by (2.2.12) the depth near the center of the channel is ! D

"
.  The overall depth 

scale D is also ! D
"

.  Rotation is clearly important here as both Ld and (gD)1/2/f are <w*.  
However, we could consider a second flow consisting of a short section of the depth 
profile near the left wall, as shown in the inset.  An imaginary right wall is inserted a 
short distance from the left wall so that a new channel is formed.  Although the width of 
the hypothetical channel is << Ld rotation continues to be important because the new 
depth scale D is <<D

!
 and the deformation radius based on the new D approximates this 

width. 
 
 Recalling that the argument q1/2w in the velocity and depth profiles (2.2.3,4) is 
equivalent to w*/Ld, and that w=w*f/(gD)1/2 we can now distinguish between two 
‘narrow’ channel limits.  In the first, w*<<Ld but rotation is still important  (w=O(1)), so 
that 
 
    q << 1   and  w =O(1) . 
 
This case is sometimes called the zero potential vorticity limit and will be explored 
shortly.  The second, more severe limit is that of negligible rotation: 
 
    q ! O(1)  and w << 1 . 
 
The distinguishing features of these limits are hidden by the fact that q1/2w is vanishingly 
small in each case. 
 
 The y- and t- dependence of the solutions can be obtained by first evaluating the 
y-momentum equation (2.1.6) at both channel sidewalls.  After some manipulation, 
which is left as Exercise (2.2.3), the wall version of the momentum equations can be 
written as 
 

   !v(±w / 2, y, t)

!t
+
!B(±w(y) / 2, y, t)

!y
= 0   (2.2.13) 

where  
 
    

  

B =
1

2
v
2

+ d + h     (2.2.14) 
 
is the semigeostrophic Bernoulli function.   
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 The difference and sum of the two sidewall equations in (2.2.13) are next taken 
and the relations v = q

1
2T

!1 ˆ d  and ˆ v = q
1 / 2

T (d ! q
!1

) used to obtain 
 

   2q
!1/ 2 " (Td )

"t
+
"Q

"y
= 0     (2.2.15) 

and 
 

   q
1 / 2 !(T "1 ˆ d )

!t
+
!B 

!y
= 0 ,    (2.2.16) 

 
where 
 

  
B = [B(w / 2, y, t) + B(!w / 2, y, t)]/ 2

   = 1

2
q[T

!2 ˆ d 
2
+ T

2
(d ! q

!1
)

2
] + d + h

    (2.2.17) 

 
is the average of the Bernoulli function on the two side walls and  
 
    Q = 2d ˆ d      (2.2.18) 
 
is the volume transport over the channel cross-section.  The latter follows from 
multiplication of the geostrophic relation by v and integration of the result across the 
channel: 
 

  

Q = (vd)dx
! 1

2
w

1
2 w

" = d
#d

#x
dx

! 1

2
w

1
2 w

" =
1

2
[d

2
(1

2
w, y,t) ! d

2
(! 1

2
w, y,t)] = 2 ˆ d d . (2.2.19) 

 
Thus (2.2.15) is a statement of mass conservation and (2.2.16) is an expression of 
momentum conservation.  (The latter is made more evident if (2.2.7) is used to show that 
the first term in (2.2.16) is just !v / !t .) 
 
 The notation and algebra should not distract the reader from the close relation that 
(2.2.15) and (2.2.16) bear to the one-dimensional momentum and continuity equations 
(1.2.1 and 1.2.2).  As with the latter, the essential aspects of wave propagation and other 
transient behavior can be discussed by casting the equations in characteristic form. When 
the channel width and bottom elevation are constant, conserved Riemann invariants can 
be found by following a general procedure laid out in Appendix B (or Exercise 1 of 
Section 1.3).  If the channel width is assumed constant, (2.2.15) and (2.2.16) can be can 
written as 
 

     d
±
R

±

dt
= !

dh

dy
,    (2.2.20) 

where 
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    d
±

dt
=
!

!t
+ c

±

!

!y
,    (2.2.21) 

 
   c

±
= q

1 / 2
T

!1 ˆ d ± d 
1 / 2

[1! T
2
(1 ! qd )]

1/ 2  
        = v ± d 

1/ 2
[1! T

2
(1 ! qd )]

1 / 2 ,   (2.2.22) 
 
    R

±
= q

1/ 2
T

!1 ˆ d ± r(" )d"
d 

# ,   (2.2.23) 

and 
    r(d ) = d 

!1/ 2
[1 ! T

2
(1! qd )]

1/ 2 .  (2.2.24) 
 
The procedure used to obtaining these expressions is discussed in Appendix B and the 
derivation itself appears in Pratt (1983). 
 
 As before, there are two wave modes characterized by the Riemann invariants R±.  
If the channel bottom is horizontal (dh/dy=0), R± are conserved following the 
corresponding characteristic speeds c±. The presence of a particular mode is indicated by 
variations with y in its Riemann invariant.  If R+ is uniform, for example, there is no 
‘forward propagating’ wave; that is, no wave with speed c+. The term ‘wave’ should be 
interpreted in a very general way to mean signals that propagate within a flow field that 
may be rapidly changing and strongly nonlinear.  If one follows a particular signal (that is 
a particular value of R+ or R-) the speed of that signal depends only on the local properties 
of the flow field and may itself vary rapidly in space and time. 
 
 The expression (2.2.22) for c± tempts one to interpret v  as an advective speed due 
to the current, and ±d 

1/ 2
[1 ! T

2
(1! qd )]

1/ 2 as a propagation speed relative to the current.  
This interpretation is not entirely correct, as can be seen by taking the limit 
q

1/ 2
w! " (or T! 1) , resulting in c

±
= v ± d q

1 / 2 .  Substituting ˆ v + q
!1/ 2 for d q

1 / 2 , which 
follows from (2.2.8), leads to c

±
= v ± ( ˆ v + q

!1/ 2
) , or  c

+
= v(w / 2, y,t) + q

!1/ 2and 
c
!
= v(!w / 2, y,t) ! q

!1/ 2 .  The expression ±d 
1/ 2
[1 ! T

2
(1! qd )]

1/ 2  therefore contains a 
hidden advection component.   
 
 If (2.2.4-2.2.6) are used to express the wall velocities in terms of the wall depths, 
the characteristic speeds for wide channels can be further simplified and written, in 
dimensional form, as 
  

 

  

c
+
* = v* (w * /2, y*,t*)+ (gD!)

1/ 2
=

g

D!

" 

# 
$ 

% 

& 
' 

1/ 2

d *(w * /2, y*,t*)  (2.2.25) 

and 

 

  

c!* = v* (!w * /2,y*,t*)! (gD" )
1/2

= !
g

D"

# 

$ 
% 

& 

' 
( 

1/2

d *(!w * /2,y*,t*)  (2.2.26) 
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The two modes can now be identified as nonlinear Kelvin waves trapped along the two 
sidewalls.  As shown by the cross-sectional depth profile (2.2.12) the trapping scale is Ld. 
For the wave trapped on the right-hand wall (facing in the positive y-direction) the 
characteristic speed is positive provided the depth at that wall is non-zero (the flow is 
attached). The left wall counterpart propagates towards negative y provided the flow 
there is attached.  All wide channel flows of finite depth are therefore subcritical in the 
sense that the two long waves propagate in opposite directions. In order to reverse the 
propagation speed of one of the waves, it is therefore necessary for the flow to separate or 
for the channel width to be less than several Ld, forcing the Kelvin waves to overlap.  
Finally, note that the linear case can be obtained by allowing d*(-w*/2,y*,t*) or d*(-
w*/2,y*,t*) to approach D∞.  This limit causes the velocity field of vanish, so that the 
wave propagate on a uniform, quiescent state with depth D∞ at speeds ±(gD∞). 
 
 The right-wall Kelvin wave will steepen if the wall depth, and therefore c+, 
decreases with positive y. It can be shown that R

+
= c

+
  (and R

!
= c

!
)  and therefore the 

right-wall depth is conserved following the characteristic speeds.  From (2.1.6) it can also 
be shown that the cross-channel velocity in an evolving right-wall wave is given by 
 

 

  

u* =
g

2 fd*
(1! e

(x*!w*/2)/ Ld )e
(x*!w*/2) /L d

"[d *(w * /2,y*,t*) ! D
#
]
2

"y
. (2.2.27) 

 
The quantity 

  

d *(w * /2, y*,t*)! D
"

 is the height of the free surface at the right wall 
above the resting interior depth, and can be thought of as a wave amplitude.  The fact that 
the square of this amplitude appears in (2.2.27) is an indication that the cross-channel 
velocities are generated by nonlinear advection.  In fact, it is well known that linear 
Kelvin waves have u ! 0 .  As a wave steepens, the y-derivative of the square of the 
amplitude increases and strong cross-channel velocities are generated.  For a wave of 
elevation propagating into a quiescent region, the square of the amplitude decreases with 
y and the steepening generates strong u* away from the wall.  The combination of 
diminishing along-channel scales and increasing u* may be expected to eventually lead to 
violations of the semigeostrophic (and perhaps even the hydrostatic) approximation.   
 
 For channel widths of the order of Ld or less, each Kelvin wave is felt all across 
the channel.   A limiting case of this behavior is that of zero potential vorticity: q→0 and 
w=O(1). With q = D / D

!
<<1, the limit is approached when the channel flow is fed by 

fluid originating from a relatively deep, quiescent reservoir.  The reservoir depth is 
therefore the potential depth D∞ and the process of squashing fluid columns to the scale 
depth D implies that  
 

    f + !v * /!x *
f

= O
D

D"

# 

$ 
% 

& 

' 
( < <1,  (2.2.28) 

 
in view of (2.2.1). Thus the relative vorticity 

  

!v * /!x *  of the fluid in the channel is 
nearly equal and opposite to the planetary vorticity f, and the absolute vorticity is much 
less than f.   
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 The cross-channel structure for this case can be found by taking the limit q→0 
while assuming that w, ˆ d ,  and d remain O(1) in (2.2.3) and (2.2.4), or simply by solving 
the cross-channel structure equation (2.1.14) with q=0.  In either case one obtains 
 

   d = d (y, t) +
2 ˆ d (y, t)x

w
!

x2
! (w / 2)2

2
   (2.2.29) 

and 
    v = v (y, t) ! x ,     (2.2.30) 
 
where v = 2 ˆ d / w .The velocity therefore varies linearly across the channel while the depth 
variation is quadratic. It is important to realize that (2.2.29) and (2.2.30) are not 
uniformly valid over the entire length of channel.  If one moves upstream into the 
reservoir, d !"  the assumption that d remains O(1) as q→0 no longer holds. (The term 
qd in the cross-channel structure equation remains finite and the full depth and velocity 
profiles (2.2.3) and (2.2.4) would hold.) 
 
 The zero potential vorticity characteristic wave speeds and Riemann invariants are 
 
    c

±
= v ± d 

1/ 2      (2.2.31) 
and  
    R

±
= v ± 2d 

1 / 2 ,    (2.2.32) 
 
the same as the expressions for nonrotating, one-dimensional flow if the v and d are 
replaced by the average of their wall values. Steepening and rarefacation of disturbances 
can therefore be treated the same as in the nonrotating limit. However, when a shock 
(intersection of characteristic curves) occurs, the subsequent development is potentially 
much different. 
 
 
Exercises: 
 
1) If q is uniform and non-negative, and the channel flow is semigeostrophic, show that 
there can be at most one point of flow reversal (v=0 where !v /!x " 0 ) across any channel 
section. 
 
2)  Derive equation (2.2.15) by integrating the continuity equation across the channel. (Be 
sure to allow for the possibility that w varies with y.) 
 
3)  Derive (2.2.13) by writing the semigeostrophic momentum equations along the side 
walls of the channel.  (Hint: use the kinematic boundary conditions 
u(±w / 2, y,t) = v(±w / 2, y, t)!(±w / 2) /!y .  Also make the replacement  
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!v(x, y, t)
!y

" 

# 
$ 

% 

& 
' 

x=±w / 2

=
!v(±w(y) / 2, y,t)

!y
!
!v
!x

!(w / 2)
!y

,  (2.2.33) 

 
which expresses the y-derivative of v at constant x in terms of the y-derivative of the wall 
value of v.) 
 
4)  Derive (2.2.20-2.2.24) by following the same procedure for obtaining characteristics 
and Riemann invariants laid out in Exercise 1 of Section 1.3 
 
Figure Captions 
 
2.2.1)  Cross sections for attached and separated flows, facing downstream. 
 
2.2.2)  Hypothetical states of separation. 
 
2.2.3)  The cross section for the case in which the deformation radius Ld based on D∞ is 
small compared to the channel width.  The inset shows a segment of the flow that has 
been cut out and placed in an imaginary channel.  The new flow is clearly influenced by 
rotation even though its width is << Ld. 
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