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2.8 Parabolic Bottom 
 
        
 Up to this point we have dealt strictly with channels with rectangular cross-
sections.  The only allowable variation of bottom elevation has been in the longitudinal 
(y) direction.  Although rectangular geometry lends mathematical convenience, it means 
that one must consider attached and detached flows separately.  Were the two states 
dynamically similar, one might be content to put up with the implicit bookkeeping.  The 
fact that there are significant differences raises some doubts concerning the artificial 
nature of rectangular geometry.  For example, differences can be found in the dynamics 
of upstream disturbances; attached flow is controlled by Kelvin waves whereas detached 
flow is controlled by frontal waves.  It has even been suggested that critical flow with 
respect to the latter can be difficult to achieve.  A unifying theory taking into account the 
more realistic, rounded nature of natural straits would be quite advantageous.  Such 
theory would allow a seamless merger between Kelvin and frontal wave dynamics. 
The simplest such model makes use of channel with a parabolic cross-section.  Borenäs 
and Lundberg (1986, 1988) investigated this geometry for the case on finite, uniform 
potential vorticity and later zero potential vorticity.  The following discussion is based 
largely on their work. 
 

Consider a channel with bottom elevation: 
 

 h * (x, y) = h * (0, y) +!(y)x *2 ,     
nondimensionally  
 
   h(x, y) = h(0, y) + x

2
/ r(y) .    (2.8.1) 

 
In the usual manner, D is used as a depth scale and (gD)1/2/f as a length scale. The 
parameter r(y) = f

2
/ g!(y)  can be interpreted as the ratio of the square of two length 

scales.  The first is the half-width wp of the level surface when the channel is filled evenly 
to a depth dp=α wp

2 (Figure 2.8.1a).  The second is a local Rossby radius of deformation 
(gdp )

1/2
/ f = (g! )

1/2
wp / f  based on this depth.  Large values of r occur when the bottom 

curvature α is small compared to g/f2.  As suggested in Figure 2.8.1a this is equivalent to 
a small local deformation radius (gdp )

1/2
/ f  in comparison to the resting width 

wp = (dp /! )
1/2 .   By the same measure, a dynamically narrow channel occurs when the 

curvature is large compared to g/f2  (Figure 2.8.1b).  That this measure of narrowness 
should depend only on the background parameters α, g, and f, and not fluid depth itself, 
is a special feature of the parabolic geometry and its uniform curvature.   

 
The solution to (2.1.14) for the topographic profile (2.8.1) and for constant 

potential vorticity q can be written as 
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d(x, y) =
1+ 2r

!1

qsinhq
1
2 (a + b)

sinhq
1
2 x ! b)( ) ! sinhq

1
2 x + a( )"# $% +

1+ 2r
!1

q
. (2.8.2a) 

 
 The corresponding geostrophic velocity is 
 

v(x, y) =
1+ 2r

!1

q
1/2
sinh[q

1/2
(a + b)]

cosh q
1/2
(x ! b)"# $% ! cosh q

1/2
(x + a)"# $%{ } + 2r!1x .  (2.8.2b) 

 
The surface or interface intersects the bottom at the two points x=b and x=-a (Figure 
2.8.1c).  The wetted width of the flow is therefore a+b. 
 
 In addition to the scales described above, the global deformation radius 
(gD

!
)
1/2
/ f is present but hidden in arguments like q1/2 (x + a) = (x *+a*) f / (gD

!
)
1/2 .  

As before, we might imagine that the potential depth D∞ is set in an upstream reservoir.  
If the range in x* is large in comparison to (gD

!
)
1/2
/ f  at a particular section, the depth 

profile will have a boundary layer structure similar to that of the Gill (1977) model.  If 
the range is small, arguments like q1/2 (x ! a)  remain small, and the boundary layer 
structure is lost.  The limiting case for the latter is the ‘zero potential vorticity’ limit, in 
which the fluid may be imagined to originate in a very deep, quiescent upstream basin.1  
It should be pointed out that the flow may still be ‘wide’ in the sense α << g/f2, as in 
Figure 2.8.1b, while remaining narrow in the sense q1/2 (a + b) << 1 .  The Denmark Strait 
sill has a value r=g/f2α of 10-20, based on the average value of α.  The value of q1/2(a+b) 
based on observations cited in Nikolopoulos et al. (2003) (D∞=600m, g=4.8×10-3m/s2, and 
a*+b*≅50km) is about 2.5.   
 
 The ‘zero potential vorticity’ case is the easiest to explore.  The depth and 
velocity profiles may be obtained by taking the 

� 

q→0 limit of (2.8.2), or simply by direct 
integration of (2.1.12) and (2.1.13) with q=0:  
 
  d =

1

2
(1+ 2r

!1
)(a + x)(b ! x)      (2.8.3) 

 
The accompanying velocity profile has constant shear 
 
  v(x) = ! x + 1

2
(1+ 2r

!1
) a ! b( )"# $%     (2.8.4) 

 
The Bernoulli function  

 
v
2

2
+ d + h(0, y) +

x
2

r
=
D

!

D
 

                                                 
1 To be self consistent, the reservoir must have vertical side walls, else the depth would 
go to zero at the edges. 
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is uniform in the present limit.  Substitution of (2.8.3) and (2.8.4) into this relation leads 
to  
 

  1+ 2r
!1( )

a ! b( )
2

r
+
a + b( )

2

2

"

#
$
$

%

&
'
'
= 4(z ,   (2.8.5) 

 
where !z = D

"
D # h(0, y) is the elevation of stagnant water in the upstream basin above 

the deepest point of the parabolic bottom. 
 

The volume flux is found with the help of (2.8.5) to be 
 

 Q = d(x)v(x)dx =
!a

b

"
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  (2.8.6) 

 
and the right-hand side has the required form for a hydraulic functional in the single 
variable  a + b( ) .  Setting the derivative of this expression with respect to a + b( ) to zero 
leads to the critical condition.  It can be verified in the usual manner that critical flow 
must occur at the sill and h must therefore be evaluated at the corresponding position 
y=ys. The resulting critical condition is 
 

   a + b( ) =
6r!z

2 + r( )
,      

 
or, which the help of (2.8.5), 
 
   6(a ! b)

2
= r(a + b)

2      (2.8.7) 
 
 The corresponding controlled flux is given by 
  

Q =
!z

2

2 + r

3r

2
,     (2.8.8) 

 
or 
 

   Q
!
=
"z *

2

2 + r

3g

2#
.     (2.8.9) 

 
 This ‘weir’ formula can be compared with the case of a separated flow with 
rectangular cross-section (2.4.15) with the result 
 



© L. Pratt and J. Whitehead 6/25/06 

   
Q *parabolic

Q *rectangular
=

2

(2 + r)

3r

2
.    (2.8.10) 

 
The comparison is meaningful for moderate or large values of r (wide channels) since the 
flow in the rectangular section is assumed to be separated.  For large r it can be seen that 
the flux in the parabolic channel is less than the rectangular case by a factor proportional 
to r!1/2 .  One of the reasons for this mismatch is that wide parabolic openings tend to 
favor reversals in velocity along the right edge, even when the flow is critical.  In fact, it 
can be shown that flow reversals occur at the sill when r > 2

3 .  
 

The wide channel or weak curvature case (r>>1) can be developed a bit further 
by noting that (2.8.3) reduces to 

 
  d =

1

2
(a + x)(b ! x) . 

 
The curvature of the interface is unity, dimensionally the Rossby radius based on the 
local depth.  Such profiles tend to have flow and counterflow with positive velocity on 
the left and a return flow almost as great to the right (Figure 2.8.2). Since the velocity at 
the top of the profile is zero, the interface elevation must equal that in the quiescent 
upstream reservoir. All possible solutions for a given reservoir interface elevation are 
therefore found by simply sliding a parabola with fixed curvature and fixed maximum 
elevation back, as suggested in the figure.  Upstream of the sill section, the profile must 
be centered slightly to the right of x=0 in order to achieve positive Q.  At the shallower 
sill section, the interface profile is obtained by sliding the parabola to the right and this 
results in a weaker counterflow.  Downstream of the sill, the parabola is slid further to the 
right and the resulting supercritical flow is unidirectional. 
 

The existence of a counterflow at a critical (or supercritical) section would appear 
to confound the notion of upstream influence.  Such flows seem to be sensitive 
downstream information despite the fact that no upstream wave propagation is possible.  
The situation may be made clearer by remembering that simple advection is quite 
different from propagation of mechanical information due to waves.  One could place a 
drop of dye into a counterflow downstream of a controlling sill and follow its motion 
upstream and into the subcritical reaches of the current.   However, the dye would not 
alter the transport or energy of the upstream flow, so there would be no real upstream 
influence.  Rotating channel flows with counter currents are just one example of 
physically realizable, geophysically relevant flows that can have velocity reversals at the 
critical sections.  Another example is the two-layer exchange flow (Chapter 5). 

 
So far the discussion has revealed an important difference between the rectangular 

and rounded cases.  Critical flow in a rectangular section must be unidirectional, provided 
the potential vorticity is uniform.  At a parabolic section of sufficiently low curvature, 
critical flow will experience a velocity reversal and this leads to relatively small fluxes.  
Whether reversals actually occur at wide sills such as the Denmark Strait is not well 
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known; observations there suggest a stagnant region along the right edge  (see Figure 
I8a).    
 

 We will discuss only a few aspects of the case of constant, non-zero potential 
vorticity.  To begin with, the characteristic speeds are given by: 
 
c
±
= v̂ ± ! 2

T
"2
(ŵ " 2Tq"1/2

)̂ ŵ " 2Tq"1/2
+ (T

2 " 1) ŵ " (1+ 2! )T!"1
q

"1/2( )#$ %&{ }
1/2

. (2.8.12) 
 
(Pratt and Helfrich, 2005). Here v̂ = !(b " a) , T = tanh(q

1/2
ŵ / 2)  and ŵ = a + b . The 

corresponding Froude number 
 

Fp
2
=

T
2
(b ! a)2

(ŵ ! 2Tq!1/2
) ŵ ! 2Tq!1/2

+ (T
2 !1) ŵ ! (1+ 2" )T"!1
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!1/2( )#

$
%
&

  (2.8.13) 

 
can be useful in assessing the hydraulic criticality of an observed flow, provided that the 
potential vorticity q can be estimated and the bottom shape can be reasonably fit to a 
parabola.  Girton et al. (in press) discuss an example of application to the Faroe Bank 
Channel.  Equation (2.8.13) can also be guessed directly from the condition for steady, 
critical flow (Borenäs and Lundberg,1986).  Finally, we note that long wave speeds, 
Froude numbers and critical conditions for zero potential vorticity flow across a section 
of arbitrary topography can be written down.  The derivation arises in the consideration 
of the stability of such flows and is presented in Section 3.9. 
 
 The differences between the zero- and finte-potential vorticity cases is particularly 
evident when the parabola is wide (r>>1).  As shown by (2.8.3), the zero potential 
vorticity profile occupies a width b+a that is comparable to the Rossby radius based on 
the maximum depth within the profile.  On the other hand, a flow with finite potential 
vorticity (see 2.8.2a) may be spread over a much larger width.  The interior of the depth 
profile consists of a wide region having constant depth q-1, the nondimensional potential 
depth.  The free surface or interface therefore parallels the bottom, implying a broad 
geostrophic flow with local velocity proportional to the cross-channel bottom slope.  
Where this slope is negative, the velocity is also so.  The depth is brought to zero at the 
edges by boundary layers with width equal to the potential-depth based Rossby radius, 
nondimensionally q-1/2.  Negative flow occurs in the right-hand boundary layer. 
 
 Killworth (1992) has argued that the picture of a broad flow with a sluggish 
interior, high-velocity boundary layers, and flow reversals (Figure 2.8.3a) is characteristic 
of wide channels with more general shapes and potential vorticity distributions.  Some of 
the elements of his elaborate argument are as follows.  The channel is considered 
dynamically wide in the sense that changes in h with x occur over a scale much greater 
than boundary width scale q-1/2.  For this definition to have meaning, q(ψ) must remain 
non-zero across the breadth of the flow.  Now consider an upstream region in which the 
flow is sluggish (v<<1), so that B(! ) " d + h and q(! ) " 1 / d .  It follows that, d = d(! ) , 



© L. Pratt and J. Whitehead 6/25/06 

h = h(! ) and therefore d=d(h), at least to a first approximation. The depth at any 
particular x in the interior region is therefore given by the potential depth q-1(ψ) for the 
value of ψ at that point.  Since d=d(h), the potential depth is determined by the local 
value of h.  These features are characteristic of the planetary geostrophic dynamics, in 
which inertia is neglected but large variations in depth are allowed.  In this limit, 
streamlines follow contours of constant h. 
 
 If streamlines originating in the sluggish region are followed downstream to the 
sill section, and if the topography remains gradually varying in x, then the streamlines 
will simply follow isobaths and the flow will remain sluggish.  It is not possible, for 
example, for an isolated band of rapid geostrophic flow (v=O(1), Figure 2.8.3b) to arise 
in the interior of the stream. There the geostrophic relation would require and O(1) depth 
change, from d1 to d2, over an distance q-1/2, already assumed to be O(1). However, the 
change in h across this distance is negligible for the assumed, gradually-varying 
topography, and thus the relation d=d(h) is clearly violated.  It therefore would seem that 
rapid bands of flow can only occur at the edges.  The flow in the right-hand boundary 
layer will tend to be negative, since it must bring the depth to zero over a short distance.  
 
 It is not hard to construct examples of geostrophic flow across a broad sill that 
varies rapidly in the interior.  The above arguments point out the difficulty in achieving 
such a state as the result of evolution from a slow, gradually varying upstream state.  

 
 
 

Exercises 

1)  Compare the weir formula (2.8.9) to the case of attached, zero potential vorticity flow 

in a rectangular channel. Do the two formulas agree for r<<1?  Should they? 

 

2)  Prove that a velocity reversal at a critical section with parabolic geometry and q=0 can 

only occur if r>2/3. 

 
Figure Captions 
 
Figure 2.8.1  The narrow and wide limits of a parabolic channel.   

 
Figure 2.8.2  Example of zero potential vorticity flow in a wide parabolic channel at three 
sections.  The upper thick curve represents the bottom at the sill section, whereas the 
lower thick curve represents the bottom at sections upstream and downstream of the sill.  
At the upstream section the subcritical solution (thinner curve) exists. Other solutions, 
including the critical solution at the sill and the supercritical solutions downstream, are 
obtained by sliding the parabola sideways.  The apex of the parabola, where the velocity 
goes to zero, must remain at the same elevation. 
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Figure 2.8.3  (a) Slow across a section in which the topography varies gradually with x.  
The depth at each point is equal to the potential depth for that particular streamlines, and 
streamlines flow along contours of constant h. (b) A hypothetical band of flow with 
v=O(1).  
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