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2.9 Nonuniform potential vorticity. 
 
 
 
 Our discussion of semigeostrophic models has largely been restricted to flows 
with uniform potential vorticity q*.  The only waves supported by such flows are the two 
Kelvin waves, or their frontal relatives.  As noted in Section 2.1, the introduction of a 
potential vorticity gradient gives rise to a new restoring mechanism and a new class of 
waves that are nondispersive at long wave lengths.  We discussed the case of topographic 
Rossby waves in a channel with a constant bottom slope  !h * /!x* = "S  and a rigid 
upper boundary.  The dispersion relation (2.1.30) governing a long wave propagating on 
a background state of rest can be generalized to include a uniform background velocity 
V, in which case the wave speed becomes     
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.  For positive S, !q * /!x* < 0  and higher potential vorticity is found 

on the left-hand side (facing positive y*) of the channel.  In this case the propagation 
tendency of the waves is against the background flow. The latter is hydraulically critical 
(c*=0) when 
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In the opposite case (!q * /!x* > 0 ), all waves propagate towards positive y*. Critical 
flow for this example therefore requires that the potential vorticity increase to the left of 
the flow direction.  
 
 Readers versed in the dynamics of large scale flows in the ocean and atmosphere 
might choose to express (2.9.2) in the form  
 

    V

!L2
= 1 , 

where ! = Ddq * /dx *  is a measure of the potential vorticity gradient and L=w*/nπ is the 
horizontal length scale.  The dimensionless parameter V/βL2, sometimes called the beta 
Froude number, is generally interpreted as a measure of nonlinearlity of the flow field, 
values <<1 indicating linear dynamics. In the present context, the parameter is an 
indication of the importance of advection and its value must be O(1) for hydraulic effects 
to be possible.  Various forms of the beta Froude number will arise throughout the 
remainder of the book in discussions of flows dominated by potential vorticity dynamics. 
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 The presence of a potential vorticity gradient in combination with a free surface 
or interface leads to analytical difficulties in connection with the cross-stream structure 
equation (2.1.14).  The difficulty can be described by first noting the connection between 
ψ and d  implied by the geostrophic relation:  
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If !h /!x = 0 , integration of this equation from the channel side wall at x=w/2 to a point 
in the interior yields 
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where ψ=Q has been imposed at y=w/2. Equation (2.1.14) may now be written as 
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If q is constant (2.9.4) reduces to the familiar linear equations that form the basis for 
models considered earlier. However, a nontrivial dependence of q on ψ introduces a 
nonlinearity that generally precludes analytical solutions for the cross-channel structure. 
 
 
a.  Stern’s criterion. 
 
 Some progress can be made without actually solving the particulars of the cross-
stream structure.  For example, Stern (1974) derives a generalized critical condition with 
no restriction on potential vorticity and with the requirements that the channel cross-
section be rectangular(!h /!x = 0)  and that the flow be unidirectional.  A version of the 
proof, grounded in Stern’s approach but simpler than his original proof, begins with the 
relation 
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which follows from the definition of the semigeostrophic Bernoulli function B(ψ) and 
from (2.9.3). Assume that the velocity is positive, so that the ‘+’ sign is appropriate.  If 
this v is substituted into the geostrophic relation,  essentially  !d / v = !x , and the result 
integrated across the channel width, one obtains 
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The use of d as an integration variable assumes a one-to-one correspondence between x 
and d, and this is guaranteed when v remains positive for -w/2≤x≤w/2.  The lower limit of 
integration is the left wall depth expressed in terms of the flow rate and the right wall 
depth. If B(ψ) is known in advance, then the first and last of (2.9.5) can be combined to 
form the hydraulic functional 
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expressing a relationship between the single dependent variable  d( 1

2
w, y) , the geometric 

variables w and h, and the parameter Q.  A critical condition can thus be obtained by 
taking 

 
!G / !d( 1

2
w, y) = 0 .  After use of Leibnitz’s Rule and some careful integration by 

parts, one obtains the result  
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Changing the integration variable from d to x (using !d = v!x ) leads to Stern’s result, 
which can be written in dimensional terms as 
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In essence, the local value of the Froude number v * / gd *  must be 1 for some x* across 
the channel in order for the flow to be critical.  It is remarkable that this result does not 
depend on the Coriolis parameter  f.  It is also interesting that (2.9.6) appears to apply to 
potential vorticity waves as well as Kelvin and frontal waves.  However, the restriction to 
unidirectional velocity profiles may disallow certain types of critical states, an issue that 
we will return to.  As an aside, we note that the same reasoning that results in (2.9.6) can 
be used to estimate the speeds of certain long waves a given flow.  This subject is taken 
up in Exercise 3. 
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 Stern’s result can be used to define a type of generalized Froude number 
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     (2.9.7) 

 
having the property that Fd=1 for critical flow and Fd→0 as v*→0. The latter limit 
implies that Fd<1 for subcritical flow, but one should exercise caution in making this 
interpretation.  Flows with nonuniform potential vorticity may admit to many wave 
modes and a particular value of Fd does not, in itself, indicate supercritical or subcritical 
conditions with respect to all possible waves.  We only know that Fd=1 indicates that one 
of the waves is arrested. 
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b.  The solution of Pratt and Armi. 
 
 A detailed example of hydraulic effects in the presence of both gravitational and 
potential vorticity dynamics was worked out by Pratt and Armi (1987).  In order to make 
the problem analytically tractable, they examined a nonrotating flow with the linear 
potential vorticity distribution 
 
   q * (!*) = q

o
*"a! * ,     (2.9.8) 

 
in a channel with rectangular cross section.  Although f=0 this flow supports both gravity 
and potential vorticity waves and therefore contains some of the essential features we 
wish to investigate.  Simplicity is provided by the fact that the d* is uniform across the 
channel, d*=d*(y*), so that the expression for potential vorticity reduces to 
 

   q* =
!v * /!x *

d *
     (2.9.9). 

 
Differentiation with respect to x* and use of (2.9.8) leads to the cross-stream structure 
equation 
 

   !
2
v *

!x *
2
+ ad *

2
v*= 0 .     (2.9.10) 

 



  © L. Pratt and J. Whitehead 
  very rough draft-not for distribution 

 There are two distinct cases to consider.  When a<0, dq * /d! * < 0 and the 
potential vorticity has higher values on the right side of the channel (where ψ*=Q*/2) 
then on the left side (where ψ*=-Q/2), although the variation of q* across the channel 
may not be monotonic.  As suggested in Figure 2.9.1a, this setting would seem to favor 
potential vorticity wave propagation in the same direction as the overall transport. In this 
case the solutions to (2.9.10) will be exponential.  If a>0 the situation is as shown in 
Figure 2.9.1b, with generally higher potential vorticity on the left and possible upstream 
propagation of potential vorticity waves.  Here the solutions to (2.9.10) are oscillatory. 
 
 Consider the case a<0 first. The solution to (2.9.10) can be written as  
 

  v* =
ˆ v * sinh(!x*)

sinh( 1

2!w*)
+

v *cosh(!x*)
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,    (2.9.11) 

where 
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1/ 2
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1
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   ˆ v *(y*) = 1

2 [v(1
2 w*, y*) ! v(! 1

2 w*, y*)]. 
 
As in Gill’s (1977) model the flow has a boundary layer structure, each layer here having 
thickness!"1.  However there are some important differences.  One is that the decay scale 
depends only on the magnitude of the potential vorticity gradient ! = dq * /d" *  and 
the depth d*, and not on gravity.1 Furthermore, the decay scale depends on the dependent 
variable d and is therefore a function of y, whereas Gill’s decay scale (Ld) was 
universally constant. 
 
 The boundary conditions ! * (± 1

2 w*)= ±
1
2Q *may be used to relate v̂*,  v * and 

d* and form a hydraulic functional. The first step is to integrate the product of d* and 
(2.9.11) across the channel, resulting in 
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Next, the potential vorticity equation (2.9.9) is applied at x*=w*/2, leading to 
!v * /!x = d * (qo

*
"
1
2 aQ*) .  The use of (2.9.11) to evaluate !v * /!x *there results in  
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of inertial boundary currents on a beta-plane ocean (Charney, 1955).  Here V is velocity scale and 

!  is the planetary potential vorticity gradient. 
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   v̂* = d *qo *!

"1
tanh( 1

2
!w*) .    (2.9.13)  

 
Finally a functional relation of the required form is obtained by evaluating the Bernoulli 
equation along the right-hand wall: 
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2
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2
+ d *+h* = B

R
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Here BR represents the right-wall value of the Bernoulli function. Substitution for ˆ v * and 
v *  and nondimensionalization of the result leads to  
 

 
 

G (d;h,w) = 1

2
[

1

tanh(! d)
+
tanh(! d)

"q
]
2
+ d + h # BR = 0   (2.9.15) 

 
where (d,h,BR ) = (d * /D,h * /D,BR * /gD)  and 
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and 

   !q =
a Q *

2qo *
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all of which are non-negative. 
 
  G (d;h,w)  contains two parameters !  and !q .  The former is one half the ratio of 
the channel width to the boundary layer width based on the scale depth D. 
It is a measure of the strength of potential vorticity effects over the cross-section of the 
flow.  If ! <<1 potential vorticity effects are relatively weak.  The other parameter !q is a 
measure of the relative importance in the two terms q

o
* and a! *  which comprise the 

potential vorticity.  Specifically, !q  is the difference between the potential vorticity at 
the right and left walls normalized by their sum. 
 
 The critical condition   !G / !d = 0  leads to  
 
   ! sinh(!dc)sech

3
(!dc)[coth

4
(!dc ) " #q

"2
] = 1  (2.9.19) 

 
and the left-hand side of this expression decreases monotonically from positive ∞ to zero, 
indicating at most a single root. A typical solution curve (Figure 2.9.2), based on 
(2.19.15) with the width w held constant, shows a single minimum in the value of BR-h 
plotted as a function of d with . Solutions are constructed in the usual way by 
following the curve as h changes.  A hydraulic transition occurs if the maximum h 
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coincides with the minimum of the curve.  It can be shown that, in the limit of vanishing 
!q  and ! , (2.9.19) reduces to the result for one-dimensional flow: v * = v* = (gd*)

1 / 2 .  In 
this limit the left- and right-hand branches of the solution curves correspond respectively 
to supercritical and subcritical flows. We will assume that this characterization continues 
to hold for non-zero !q  and !  with the caveat that the actual wave speeds along the two 
branches have not been calculated.  
 
 There is nothing so far that dramatically distinguishes the character of the model 
from its one-dimensional counterpart.  However, a closer look at the velocity structure 
reveals an important difference, namely that stagnation points with corresponding 
separating streamlines can exist on the left-hand wall. The required condition is ˆ v * = v *, 
or if (2.9.12) and (2.9.13) are used:   
 
    !q = tanh

2
("ds ) .    (2.9.20) 

 
Here ds denotes the value of d at the section of wall stagnation.  The corresponding right-
wall condition is obtained by reversing the sign of the right-hand term and cannot be 
satisfied for positive !q .  Hence, stagnation can occur only on the left wall. The use of 
(2.9.20) to substitute for !q  in the critical condition, (2.9.19) leads to  
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and thus d

c
 must be <d

s
 (the flow must be subcritical) for separation to occur. This 

stagnation separation should be distinguished from the rotation induced separation in 
which the wall depth vanishes. In Figure 2.9.2, subcritical solutions with d>ds are 
indicated by dashing. In this case, most of the subcritical curve has this property. 
Corresponding velocity profiles (Figure 2.9.3) will have reverse flow along the left-hand 
wall. The three sections correspond to points A, B, and C of the solution curve. 
Immediately upstream of the sill lies the stagnation point and beyond it a counterflow. At 
section A most of the channel contains recirculating fluid; only that passing close to the 
right wall reaches the sill.   
 
 We now turn to the more interesting case a>0, which is favorable for potential 
vorticity wave propagation against the mean flow. The solution to (2.9.10) is 
 

  v* = v̂ *
sin(!x*)

sin(!w * /2)
+ v *

cos(!x*)

cos(!w * /2)
,   (2.9.22) 

 
so that the velocity profile is oscillatory.   Repetition of the earlier procedure leads to  
 

   v* =
!Q * cot(!w * /2)

2d *
    (2.9.23) 

and 
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   v̂* =
qo
*
d * tan(!w * /2)

!
.    (2.9.24) 

 
 Substitution of (2.9.23) and (2.9.24) into the Bernoulli equation (2.9.14) and 
nondimensionalization gives 
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2
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where γ and !q  are defined as before and are considered positive.  Note that the squared 
term has the value +∞ for ! d =

1

2
n"  

 
(n = 0,1,2,!) , suggesting that the solution ‘curve’ 

consists of a series of disconnected lobes.  This is confirmed by a plot (Figure 2.9.4) 
showing B

R
! h as a function of d for ! = "q = 1 . Note that the minimum value of 

B
R
! h  increases as the lobe number increases.  For a given upstream state (here 

determined by B
R

) and a given topographic elevation h, there may be more than two 
possible steady states.  For example the value B

R
! h =10 corresponds to 12 possible 

states.  However, once a particular solution lobe is determined, perhaps on the basis of 
further information about the upstream state, then at most two states are possible for any 
given h.  Of course, a hydraulic jump or some other non-conservative feature might allow 
the solution to switch from one lobe to another, thereby allowing more possibilities. 
 
 Stagnation along the left wall is also possible and occurs when ˆ v * = v *, or  
 
    !q = tan

2
("ds ) .    (2.9.26) 

 
As before, separation along the right wall is not possible for non-zero !q . 
 
 At the minimum of each lobe the flow is critical and the corresponding depth dc 
can be calculated from the condition   !G / !d = 0 , which yields 
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)] =1  .  (2.9.27) 

 
It can be shown using (2.9.6) and (2.9.7) that d

s
> d

c
 within each lobe.    

 
 The most obvious qualitative difference between solutions corresponding to 
different lobes is in the number of zero crossings of the cross-channel profile of v. 
It can be shown that the solutions corresponding to lobe n have either n or n-1 zero 
crossings, the greater number occurring for larger values of d.  Thus the higher lobes 
correspond to intricate flows with multiple bands of fluid moving upstream and 
downstream. Figures 2.9.5 and 2.9.6 show examples taken from lobes #1 and #2.   
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 There remains some mystery concerning solutions corresponding to different 
solution lobes. If the cross-channel solution is reduced by taking the limits γ and Δq→0, 
lobe #1 tends toward the solution curve for a one-dimensional, nonrotating flow (e.g. 
Figure 1.4.1).  The inset of Figure 2.9.4 shows how this limit is approached: as γ and 
!q are reduced, the depth range of the first lobe grows and the remaining lobes are 
pushed off to infinity.  Controlled solutions belonging to the first lobe appear then to be 
governed by the dynamics of a shear-modified, long gravity wave.  For the other 
solutions, it is evident that the relative change in depth across the sill are relatively small 
and becomes vanishingly so for the higher lobes.   The change in the flow as it passes 
through a critical section is primarily one of horizontal structure.  This idea can be 
formalized by clculation of the cross sectional enstrophy  
 

  En* =
1

2
!v * /!x *( )

2

dx
"w*/2

w*/w

# = 1

2
d *

2
q *

2
dx

"w*/2
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# ,  (2.9.28) 

 
a measure of the horizontal shear across a particular section.  As explored in Exercise 3 it 
can be shown that the change in En* caused by a small change in depth as the flow passes 
through a critical section increases as the lobe number becomes higher.  This indicates 
that control of the flow corresponding to higher lobes primarily affects the horizontal 
shear and not the depth.  Because of this feature, and because the higher lobes owe their 
presence entirely to a finite potential vorticity gradient, it is evident that the 
corresponding solutions are controlled by a potential vorticity wave. 
 
 Further to the ongoing discussion, it can be shown that Stern’s condition for 
criticality (2.9.6) succeeds in predicting the control condition for the first lobe, but fails 
for the remaining lobes.  Failure is due to the fact that the higher lobe solutions all have 
velocity reversals, whereas the derivation of (2.9.6) assumes unidirectional flow.  Flows 
with potential vorticity gradients may therefore experience a multiplicity of controlled 
configurations, not all of which obey Stern’s criterion. 
 
 A final consideration, one that could render much of the above discussion 
academic, is stability.  The most pertinent theorem for the present case is Fjortoft’s 
necessary condition for instability (see Drazin and Reid, 1981), which does not strictly 
apply to our flow in general, but would be applicable if the flow were bounded by a rigid 
lid.   Instability is possible when dq*/dψ*<0, or a>0, the case permitting multiple 
solutions.   
 
 There remains uncertainty regarding the interpretation of the a>0 solutions, how 
they are established, which branches of the higher lobes are supercritical and subcritical, 
and what their stability is.  One of the difficulties is that the model contains a mix of 
potential vorticity and gravity wave dynamics.  More recent investigations of hydraulic 
effects in the presence of potential vorticity gradients have utilized models that expunge 
gravity waves by placing a rigid lid on the surface.  Also, piecewise constant (rather than 
continuous) distributions of q* can reduce the number of wave modes to just one or two, 
further simplifying the problem and allowing the peculiar dynamics to be investigated in 
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isolation.  These models take us away from the topics and applications of the current 
chapter, but they are revisited in Chapter 6. 
 
c. Killworth’s solution.  
 
 
 Abyssal flows that occur in deep ocean basins tend to be slow and nearly 
geostrophic, and perhaps not of the character envisioned by WLK and Gill in the 
upstream basins of their models. In an attempt to pose more realistic upstream conditions,  
Kllworth (1992) considered an inviscid model with a broad, geostrophically balanced 
basin flow over a horizontal bottom.   As it turns out, this assumption is sufficient to 
determine the potential vorticity of the flow, which turns out to be nonuniform.  
 
 The starting point is the assumption that the upstream velocity is 
nondimensionally small (v<<1).  The expressions for the potential vorticity and Bernoulli 
functions then reduce as follow: 
 

   q(! ) =
1+ "v / "x

d
#
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d
 

and 
 

   B(! ) =
v
2

2
+ d + h " d , 

 
assuming that h=0 in the upstream reservoir.  When combined with (2.9.3), these two 
relations yield 
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   (2.9.29) 
and 
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where d( 1

2
w,!")  is the depth at the right wall of the reservoir.  

 
 If the flow drains into a narrow and/or shallow channel and develops O(1) 
velocities, it is constrained by the semigeostrophic equations.  In particular, the flow must 
obey the integral constraint (2.9.5), or 
   
 

   w =
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2
1/2
d[B(! ) " d " h]

d!
0

Q

#    (2.9.30) 

 
With B(ψ) given by (2.9.29), and d given in terms of ψ by (2.9.3), (2.9.30) forms an 
implicit relation between w, h, and the right-wall depth d(w/2,y), the single remaining 
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flow variable. The reader is reminded, however, that the derivation of this relation 
requires one-to-one relation between x and ψ, and thus flow reversals are not permitted. 
 
 Killworth (1992) solved a version of (2.9.30) and obtained standard hydraulic 
curves relating d(w/2,y) to either h or w.  All such curves are similar to those shown in 
Figure 2.9.4 in having a single maxima or minima, and the corresponding control is 
associated with Kelvin wave dynamics.  The author speculates that solutions with 
potential vorticity wave controls may be possible, but the model would have to be 
extended to allow flow reversals.  This is left as a project for an interested student.  
 
d.  Summary 
 
 The role of potential vorticity waves and controls in deep overflows and other 
gravity-driven flows remains imperfectly understood.  If the potential vorticity gradient is 
single signed, and if high values of q lie to the left, facing downstream, then the waves 
attempt to propagate against the current and hydraulically critical flow is possible.  The 
implied critical control appear to effect the horizontal vorticity of the flow field, rather 
than the surface or interface height.  Solutions with a potential vorticity wave control 
appear to be disconnected from solutions that exhibit control by a gravity or Kelvin wave, 
or by a potential vorticity wave with a different modal structure.  If the Pratt and Armi 
(1987) model is any indication, it does not seem to be possible to combine two types of 
controls within the same conservative current system.  The fact that deep-ocean 
overflows appear to exhibit gravitational control may disqualify potential vorticity 
controls.  The latter may, however, act in broad ocean jets or strait flows that are not 
controlled with respect to gravity waves.   All of these comments involve conjecture, 
begging further investigation.  
 
 Another feature suggested by this small body of work is that the presence of a 
potential vorticity control requires velocity reversals across the control section.  This may 
be connected to the modal structure of the stationary wave, which is itself wiggly. The 
presence of velocity reversals means that certain analytical results, including Stern’s 
critical condition and Killworth’s model, both of allow for non-uniform potential 
vorticity, do not allow for potential vorticity wave control.  Both rely on an x-to-ψ 
coordinate transform, which requires a unidirectional flow.  
 
 A further cloud on the horizon is instability, which by Fjortort’s theorem, is 
favored by the same potential vorticity distributions that allow potential vorticity wave 
criticality.   
 
   
 
 
Exercises 
 
1)  Obtain the result (2.9.6) starting with the trivial relation 
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   w = dx

!w /2

w /2

"  

and change the integration variable x to ψ.  (What does the use of this last tranformation 
assume about the flow?).  Attempt to cast the new integral as a Gill-type functional in a 
single variable and use the result to obtain a critical condition. 
 
 
3)  Show that the velocity profile (2.9.22) can be written in the nondimensional form  
 
 

   v =
sin(! dx)

"qsin(! d)
+
cos(! dx)

cos(! d)
, 

 
where v = 2v * / a 1/2

q , d=d*/D,  x*=x/(w*/2) and γ is as defined above.  Using this 
expression, calculate the nondimensional version En of the enstrophy En* (first equality in 
2.9.28). Now take the derivative of the result with respect to d and evaluate it at the 
critical depth.  From the result, show that  
 
   

 
(!E

n
/ !d)

d=dc
! d

c

2   (dc→∞), 
 
and therefore the change in enstrophy relative to a change in depth increases as the 
critical depth (and therefore the lobe number) increases. 
 
3.  Using the results from Part a, show that the phase speed c* of a long wave 
propagating along the (rectangular) channel is given by 
 

  1

(v *!c*)2d *
1!

(v *!c)2

gd *

"
#$

%
&'!w*/2

w*/2

( dx* = 0 , 

 
provided that c* does not lie in the range of the variation of v*. Note for given v*(y*) and 
d*(y*), c* will obey a quadratic equation.  There are therefore only two such waves.  
Speculate on why the integral constraint does not capture the remaining waves.  
 
 
 
Figure Captions 
 
Figure 2.9.1   The direction of potential vorticity wave propagation, relative to 
background flow advection, for potential vorticity gradients of different signs.  The 
channel is nonrotating and the potential vorticity gradient is determined entirely by the 
gradients in horizontal shear. 
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Figure 2.9.2  A plot of BR-h as a function of d for a channel of constant width, and with 
a<0. The solution is based on equation (2.9.15) with !q = " = 1 .  The dashed section of 
curve corresponds to bidirectional flow.  In the inset plot, γ  has been reduced to 0.1. 
 
Figure 2.9.3  Plan view of a hydraulically controlled flow. Sections A, B and C 
correspond to the points indicated in Figure 2.9.2. 
 
Figure 2.9.4. A plot of BR-h as a function of d for a channel of constant width, and with 
a>0. The solution is based on equation (2.9.25) with γ=Δq=1. The dashed section of 
curves corresponds to flows with velocity reversals.  In the inset plot, γ and Δq have been 
reduced to 0.2. 
 
Figure 2.9.5  Plan view of a controlled solution based on Lobe 1 of the Figure 2.9.4 
solution curve.  Lettered sections match points in Figure 2.9.4. 
 
Figure 2.9.6.  Same as for the previous figure, but now the solution is based on lobe 2 of 
the Figure 2.9.3 solution curve. 
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