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Chapter 3   Time-Dependence and Shocks 
 
 
 None of the hydraulically-driven oceanic or atmospheric flows discussed in the 
introduction to this book are steady, and very few are approximately so.  A striking 
example of unsteadiness was discovered by Worthington (1969) who, in 1967, placed an 
array of 30 moored current meters in the Denmark Strait in order to measure the deep 
velocities of the overflow. When Worthington returned a year later he found that all but 
one of the instruments had been destroyed or could not be recovered. The surviving 
current meter showed a history of rapid velocity fluctuations ranging from near zero to 
2m/s, most likely due to the meandering of the edge of the jet-like overflow back and 
forth across the instrument.  Worthington concluded “the currents associated with the 
overflow water were too strong on this occasion to be measured using existing mooring 
technology”. 
 
 How applicable are the steady models of Chapters 1 and 2 to such flows?  The 
answer to this question depends on how rapid the time fluctuations are. A rough measure 
of rapidity is the ratio of the free response time of the flow over the topographic feature 
to the characteristic time scale Tu of the unsteady motions.  The response time is a 
measure of how long it would take the steady flow to adjust to a sudden change in 
conditions and is equal to the length L of the topographic feature divided by characteristic 
speed c- of a wave propagating upstream. The importance of time-dependence is thus 
measured by the parameter L/(c-Tu).  If L/(c-Tu)<<1, the response of the flow is 
instantaneous compared to the imposed fluctuation time scale and conditions are quasi-
static.  Local time derivatives in the equations of motion may be neglected (see Exercise 
1) and the time variable simply becomes a parameter.  If L/(c-Tu)=O(1) then the time 
dependence is dynamically important and local time derivatives should be retained.  This 
last situation occurs in many oceanographically important straits where steady theory has 
traditionally been applied.  For example, the Bab al Mandab (the strait connecting the 
Indian Ocean with the Red Sea) is about 200km in length and is subject to tides with a 
dominant period (Tu) of about 12 hr.  The typical speed c- of the first internal gravity 
wave in the strait is 1m/s or less1 giving a travel time of at least 55hr.  With these 
numbers L/(c-Tu)≅4.6 and the flow must be considered unsteady.  Even if the length of the 
sill (≅40km) is used in place of the total strait length, L/(c-Tu) remains O(1).    
 
 The development of a general understanding of the hydraulics of flows 
undergoing continuous time variations has proven to be difficult and frustrating.   The 
applicability of concepts such as hydraulic control and upstream influence in these 
situations is not well established, even in the simplest cases.  To gain ground, past 
investigators have concentrated on initial-value problems in which the evolution 
beginning with some simple initial state leads to the establishment of a steady flow.  Such 
models help one to understand how steady solutions are established, how upstream 
                                                
1 The speeds of the lowest internal modes have been calculated by Pratt et al. (2000), taking into 
consideration the continuous stratification and shear. 



  © L.J. Pratt and J. Whitehead    7/10/06 
  Very rough draft. 

influence is exercised, and why hydraulically controlled states are sometimes preferred 
over states that lack control.  Initial-value experiments can also provide a first step 
towards understanding flows that are subject to continuously time-varying forcing, such 
as tidal forcing.  One might think of continuous time variations as a sequence of initial 
value problems. The latter often provide a convenient setting for the study of rotating 
shocks, which tend to arise when sudden transitions are forced by suitable initial 
conditions. 
 
 In this chapter we shall consider two-initial value problems, both grounded in 
classical fluid mechanics.  The first is a rotating version of the dam-break problem 
considered in Sections 1.2 and 1.3, carried out in channel geometry.   Also referred to as 
“Rossby adjustment in a channel”, this problem has received the attention  of a number of 
authors.  The second problem has received less attention but is directly related to the 
models of sill flows discussed in Chapter 2.  It is a rotating version of Long’s experiment, 
in which an obstacle is placed in the path of a steady stream in a rotating channel.  We 
also discuss the special case in which the flow takes place on an infinite plane with no 
channel geometry.  Hydraulic jumps, bores and other rotating shocks appear in all of 
these problems and several sections are devoted to a discussion of these objects.  The 
chapter closes with a brief discussion of flow instability, one of the supposed sources of 
time variability.  
 
Exercise 
 
1)   Consider a shallow flow in a channel with a bottom that contains an obstacle 
confined to -L/2<y<L/2 but has a horizontal bottom elsewhere.  The flow consists of a 
steady component that passes over the obstacle plus a small-amplitude, unsteady 
component with characteristic period Tu.  The mean characteristic wave speeds in the 
vicinity of the obstacle are c- and c+.  Show that the local time-derivatives in the shallow 
water equations become negligible over the obstacle when L/(c-Tu)<<1.  What about the 
flow away from the obstacle? 
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3.1 Linear Rossby Adjustment and Geostrophic Control in a Channel. 
 
 The Rossby adjustment problem in a channel belongs to a group of classical 
initial-value problems that includes dam break and the lock exchange flows.  The linear 
version of the problem was first solved by Gill (1976).  Following the nondimensional 
notation and conventions introduced in Chapter 2, consider a rotating channel with 
sidewalls at x=±w/2 and a barrier at y=0.  As shown in Figure 3.1.1a, the barrier separates 
stagnant fluid with uniform depth d=1+a in (y<0) from depth 1-a in (y>0). At t=0 the 
barrier is removed allowing the deeper fluid to spill forwards. If a<<1 the shallow water 
equations can be linearized and solved for the subsequent evolution.   
 
 Assuming a<<1, we first expand the velocity and depth fields as 
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and substitute these expansions into the full shallow water equations.  Because of the 
abrupt nature of the initial conditions, the semigeostrophic approximation will fail, at 
least in the vicinity of y=0 for small t.  We therefore set δ=W/L=1.  With this minor 
change the equations governing the lowest order fields are just the linear shallow water 
equations (2.1.20-2.1.22) with δ=1, or 
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Note that the  ( )(o) notation has been dropped.   
 
 The initial conditions are given by  
 
   !(x, y, 0) = !o = " sgn(y)      (3.1.4) 
 
and u(x,y, 0) = v(x, y, 0) = 0 .  The boundary conditions are 
 
   u(± 1

2 w, y, t) = 0      (3.1.5) 
 
 The linearized statement of potential vorticity conservation (see 2.1.23) for this 
case is 
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The linearized potential vorticity !v
!x

"
!u

!y
" #  is thus conserved at each (x,y), rather than 

following a fluid element.   ‘Forward’ locations (with y>0) thus maintain higher potential 
vorticity than locations with y<0.  In reality, a forward location will see an O(a) change in 
potential vorticity if it is reached by fluid initially lying in y=0.  The consequences must 
be explored within the context of a nonlinear model and this is done in the following 
sections. 
 
 The variables u and v may be eliminated from (3.1.6), resulting in a single 
equation for η: 
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(also see 2.1.24).  It will be of interest to calculate the energy of solutions to this equation 
and compare the kinetic and potential contributions. An expression for the linearized 
energy may be obtained by taking u ! (3.1.1) + v ! (3.1.2) + " ! (3.1.3) , resulting in 
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The left hand term is clearly the time rate of change of the kinetic plus potential energy at 
a point, whereas the right hand term can be interpreted as the divergence of an energy 
flux. 
 
 
 
(a) The Rossby adjustment in an infinite domain. 
  
  The solution procedure for the problem described above is technically involved 
and it is helpful to first consider the special limit of an infinite domain (-∞<x<∞). This 
limiting case is the classical ‘geostrophic adjustment’ problem considered by Rossby 
(1937, 1938).  Since the initial conditions are independent of y and since the governing 
equation contains no x-dependent forcing terms, it follows that ! / !x = 0 for all time.  
This fundamental simplification rules out Kelvin waves. 
 
 Another simplification recognized by Rossby is that potential vorticity 
conservation allows the asymptotic (t→∞) solution to be predicted without the need to 
calculate the time evolution.  Assuming this state to be steady, (3.1.7) reduces to 
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Of course, !" = !

o
 is a possible solution to this equation, provided that one is willing to 

overlook the singularity at y=0.  However, we anticipate that the true asymptotic solution 
will be continuous in y at all points.  [This expectation can be made rigorous by replacing 
the initial discontinuity in depth by an abrupt but continuous transition.]  Granted the 
continuity of η∞ at y=0, it follows from integration of (3.1.9) over a small interval about 
y=0 that !"# /!y  must also be continuous.  With these provisos, the solution to (3.1.9) 
becomes 
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while the corresponding geostrophic velocity is 
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 As shown in Figures 3.1.1b,c this solution consists of a cusped jet centered at y=0 
and flowing in the positive-x direction.  In contrast to the nonrotating version of this 
problem (Section 1.2), where the final flow is uniform and in the y-direction, the final 
flow here is parallel to the initial step.  Another significant difference can be identified by 
computation of the total energy of the asymptotic state and comparing it with the initial 
energy.  Integrating (3.1.8) over 0<t<∞ and over a long interval [-L,L] in the y-direction 
leads to  
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The left-hand term is the difference between the energies (per unit x) of the initial and 
asymptotic states.  By direct calculation this difference is unity (see Exercise 1).  Thus 
the asymptotic state contains one unit of energy less than that of the initial state.  This 
deficit is due to the radiation of energy towards ±∞ by Poincaré waves, as measured by 
the final term in (3.1.10).  We next calculate these transient terms. 
 
 For reasons that will prove advantageous in our treatment of the channel 
geometry, we will solve for the transient part of the solution in terms of the variable u, 
rather than y.  A single equation for the former may be obtained by eliminating v and η 
from (3.1.6) (also see exercise 2 of Section 2.1). The result is 
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and we again take ! /!x = 0 .   
 
 Next, let u = uT + u! = uT + e

" y  where uT denotes the transient part of the 
solution.  It follows that  
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where the last relation follows from (3.1.1).   
 
 Since uT(y, 0)  is even in y and since (3.1.12) has ±y symmetry, uT(y,t) must also 
be even.  We therefore seek a solution in the form of a Fourier cosine integral: 
 

   uT(y, t) = ˆ u T(l,t)cos(ly)dl
0

!

"     (3.1.15) 

Taking the Fourier transform

  

ˆ f ( l) =
1

!
f (y)cos(ly )dy

"#

#

$  of (3.1.12-14) leads to  

   !
2 ˆ u 

T

!
2
t

2
" (1 + l

2
)ˆ u 

T
= 0 ,     (3.1.16) 

 

  

ˆ u T (l,0) = ! ˆ u "( l) = !
1

#
e
! y

cos( ly)dy =

!"

"

$ !
2

#
Re{e

( il!1)y
}dy =

0

"

$ !
2

# (1 + l2 )
, (3.1.17) 

and 
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 The solution to (3.1.16) subject to (3.1.17) and (3.1.18) is given by 
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where !(l) = (1 + l2 )1 / 2  is the dispersion relation(2.1.27) for Poincaré waves with w→∞.   

 
In summary 
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 Note that cos[!(l)t]cos(ly) = 1
2 cos(ly +!t) + cos(ly " !t)[ ] , so that the integrand 

of (3.1.19) is a superposition of forward and backward propagating Poincaré waves.  An 
alternative form of (3.1.19) that will be of use later on is 
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(Cahn, 1945).  
 
 The free surface elevation follows from (3.1.6) with ! /!x = 0 .  Thus 
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A sketch of the developing solution (Figure 3.1.1d) shows a wave front and a Poincaré 
wake.   
 
 
B. The channel problem. 
 
 With the channel geometry and boundary condition the asymptotic state η∞ now 
can be expected to depend on both x and y. This state is still constrained by the principle 
of pointwise conservation of potential vorticity (3.1.7) and one might hope to find it by 
solving this equation.   However, doing so would require as boundary conditions the 
values of η∞ along the sidewalls, and there is no clear way of anticipating these values.  
One is therefore forced to consider the entire problem at once. 
 
 The condition of vanishing u on the channel sidewalls makes a solution in terms 
of u convenient and we therefore solve (3.1.11) directly.  However, u is identically zero 
in linear Kelvin waves and so this approach will capture only that part of the solution due 
to Poincaré waves.  The remaining portion of the solution will be addressed in due 
course. 
 
 The initial conditions: 
 
    u(x,y, 0) = 0   
and 

    !u

!t
(x, y, 0) = 0  
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remain the same as above. Since the initial conditions and the forcing term (!"o /!y)  in 
(3.1.11) are x-independent, and since this equation has ±x symmetry, the solution will be 
an even function of x.  Therefore a Fourier cosine series of the form 

u(x,y, t) = um(y, t)cos(am x)
m= 0

!

"        (a
m
= (2m +1)! / w,   m=0,1,2, " " " ) (3.1.22) 

 
is appropriate.  To find um, multiply (3.1.11) by 2w-1cos(amx) and integrate with respect to 
x over the width of the channel.  After several integrations by parts and application of 
boundary conditions, one obtains 
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.  The identity !(y) = c!(cy) has been used in the final step.   

 
 Equation (3.1.23) is a forced equation for the nth Poincaré channel mode, with 
n = 2m +1. Only odd numbered modes are excited.  The solution for un(y,t) is closely 
related to the solution to (3.1.11) obtained in the case of an infinite domain (! / !x = 0). 
In particular,   (3.1.11) can be transformed into (3.1.23) by replacing y by (1 + am
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solution to the ! / !x = 0  version of (3.1.11) obeys the same initial conditions (un(y,0)=0)  
as are required here, the solution is the transformed version of (3.1.20): 
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 The corresponding solution for η(x,y,t) requires several steps and these are 
navigated in Exercise 4.  The result may be written as  
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  V(y, t) = 1
2 !sgn(y ! t) + sgn(y+ t)[ ]     (3.1.29) 

 
 The function K(x,y,t) contains the Kelvin wave dynamics while P(x,y,t) is a 
superposition of Poincaré modes.  Consider the Kelvin waves first.  The time dependence 
is contained in the coefficients N and V which describe step functions propagating at 
speeds ±1 (dimensionally (gD)1/2, where D is the mean depth).  Furthermore, N and V are 
exactly the surface height perturbation and velocity for the nonrotating version of this 
problem discussed in Section 1.2.  For w>>1, K can be approximated as 
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   (3.1.30) 

 
 The forward moving Kelvin wave therefore consists of a step that propagates 
along the right wall and decays inward over one Rossby radius of deformation (here 
unity).  This wave propagates into the resting fluid (with surface elevation η=-1) and its 
role is to raise the elevation along the right wall to that far upstream (η=1).  The wave 
establishes a current along the right wall that extends from y=0 to y=t. The velocity of 
this current is given by 
 

    v =
!"

!x
= 2e

(x#w / 2) . 

 
In addition (3.1.30) contains a backward moving Kelvin wave trapped to the left wall.  
This wave establishes a boundary current that carries the same volume transport  (=2) as 
the right wall current.  The current extends from y=0 to y=-t. The surface displacement 
along the left wall is reduced from 1 to the initial elevation ( -1) of the downstream 
reservoir. Had we attempted to solve the problem using the semigeostrophic 
approximation,  these Kelvin waves would have described the entire solution. 
 
 The Poincaré waves are contained in the function P.  Since um=0 at x=±w/2, P is 
zero there as well and the Poincaré waves do not affect the value of η  along the walls.  
The Kelvin waves are therefore responsible for fixing the transport of the asymptotic 
solution.  This transport is given by 
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The dimensional equivalent is Q* = 2a * gDf !1 tanh[ fw * /2(gD)1/2 ] , where a*=Da.  As 
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described above. 
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 Despite the fact that Poincaré waves are inconsequential to the bulk transport, 
they are important in establishing the characteristics of the solution near y=0. In 
particular, they set up a jet-like flow along y=0 that carries fluid from the left wall 
boundary layer to the right wall boundary layer.  This structure is particularly striking in 
the case w>>1, where (3.1.24) reduces to the cusped jet expression (3.1.13) obtained in 
the Rossby adjustment problem on an infinite plane. In this limit, the left-wall boundary 
current separates near y=0, forming a jet that crosses the channel and forms the source for 
the right-wall boundary current.  This crossing flow can be seen along with the forward 
and backward Kelvin waves in a picture of the developing flow for w=4 (Figure 3.1.2). 
The Poincaré waves lag behind the Kelvin waves due to their slower group speeds.  
 
 Although the Poincaré waves transport no mass, they do transport energy.  
Calculation of the energy of the asymptotic state is somewhat involved and will not be 
carried out here.  However it can be shown that the difference between initial and 
asymptotic energies per unit width of channel tend to zero as w→0, the result obtained in 
Section 1.2 for the nonrotating version of the problem.  Here all initial energy is 
converted to kinetic energy and there is no wave radiation.  For finite w,  energy radiation 
occurs and the asymptotic state contains a deficit.  As w→∞, this deficit approaches the 
value unity, as we found in Part (a) above for Rossby adjustment on an infinite plane.  
  
 
(c) Geostrophic control 
 
 The crossing of the channel from the left to the right wall is the basis for the 
concept of ‘geostrophic control’ (Toulany and Garrett, 1984).  Imagine two wide basins 
separated by a strait and suppose that a steady flow exists from basin A into basin B.  
Also assume that the dynamical setting (f-plane, horizontal bottom, homogeneous fluid, 
etc.) is the same as in the problem considered above.  Then, if the flow is set up by the 
removal of a barrier that initially separates fluid of depth d

A
*  in A from fluid of depth 

d
B
*<d

A
*  in B, we expect that a similar outcome will occur.  The flow originating in A 

will be confined to a boundary current along the ‘left’ wall and this current will cross to 
the right wall within the strait and continue into basin B along that wall.   
 
 The principle of geostrophic control states that the dimensional transport between 
the basins is bounded by the difference in interior depths d

A
* !d

B
*according to  

 

    Q* !
g

2 f
(dA

*2
" dB

*2
) .    (3.1.32) 

 
The depths d

A
*and d

B
*  (or, equivalently, the layer thickness in a reduced gravity 

model) must be measured in interior regions, away from the boundary currents. The 
right-hand side of (3.1.32) is the geostrophic transport of a current flowing along a 
horizontal bottom with depths d

A
*and d

B
*on either side.  The basic idea is that the 

throughflow cannot exceed the geostrophic transport of the current that crosses the 



  © L.J. Pratt and J. Whitehead    7/10/06 
  Very rough draft. 

channel. If the depth difference is relatively small, (3.1.30) can be approximated by the 
linearized formula 
 

    Q* !
gD

f
(dA *"dB*) ,    (3.1.33) 

where D is the mean depth. 
 
 In the linearized Rossby adjustment problem we can identify the channel sectors 
y<0 and y>0 as basins A and B.  In the limit w→∞ the predicted transport  (2gDα*f--1), is 
exactly given by the linearized version (3.1.33) of the bound (with d

A
* !d

B
* = 2a * ). In 

this case the geostrophic control bound gives the exact transport.  
 
 The concept of geostrophic control is most easily supported when the two basins 
are very wide and extend infinitely far from the separating strait.  Problems arise when 
these conditions are not satisfied.  If the upstream basin is finite, for example, the Kelvin 
wave that sets up the left-wall boundary current in the upstream basin would travel 
around the perimeter and return to the strait along the right wall, setting up a boundary 
flow there. Even when the basin has infinite area, ambiguities arise if its width is not 
large in comparison with the Rossby radius of deformation.  An example is the channel 
adjustment problem with finite width.  The upstream and downstream basins are simply 
the y<0 and y>0 sectors of the straight channel.  The exact transport in this case 
isQ* = (dA *!dB*)gDf

!1
tanh[ fw * /2(gD)

1/2
] , where d

A
*and d

B
*are to be interpreted as 

the initial surface elevations upstream and downstream of the barrier.  Although it is true 
that this transport lies below the geostrophic control bound (3.1.33), it is the steady 
upstream values of d

A
*and d

B
* , and not the initial values, that are typically given in 

practical applications.   Alternatively, one might interpret d
A
*and d

B
*   as characterizing  

the steady, upstream and downstream surface elevations of the final adjusted state.  This 
interpretation work if w>>1, for then the two depths can be measured in the channel 
interior, away from boundary layers.  In the case of moderate channel width, d

A
*and 

d
B
*  cannot be defined unambiguously. Finally, one might also question whether the 

channel crossing calculated in the linear adjustment problem will persist if the full 
nonlinearities are retained.  This topic is taken up in the next section where we will also 
revisit the subject of geostrophic control. 
 
 In summary, we have seen the separate roles played by Kelvin and Poincaré 
waves in the linear adjustment problem for a rotating channel.  Kelvin waves are 
responsible for setting up boundary currents that carry all of the volume flux.  Although 
the Poincaré waves carry no volume flux they do transport energy.  The associated 
energy radiation is relatively important when the channel is narrow (w<<1); the 
narrowness of the channel leaves no room for Poincaré waves to be generated.  However, 
energy radiation increases as w becomes larger, and eventually half of the initial energy is 
radiated away.  They also establish the jet-like flow that crosses the channel at the 
position of the initial barrier.  The picture that develops, with upstream flow confined to a 
left-wall boundary layer and downstream flow in a right-wall layer, both having widths 
equal to the Rossby radius of deformation, motivates the concept of geostrophic control.   
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Exercises 
 
1.    Show by direct calculation that the nondimensional initial energy for the linear 
Rossby adjustment problem in an unbounded domain exceeds that of the final steady 
state by one unit. 
 
2.    For the Rossby adjustment problem in an unbounded domain, calculate the final 
steady state without using linearization of the equations of motion. (Hint: Use the x-
momentum, written in Lagrangian form, to help find the final position of the front 
separating the two water main water masses.) 
 
3.    In the limit w>>1, show that the velocity field set up by Poincaré waves in the 
vicinity of y=0 is exactly the cusped jet found in the Rossby adjustment problem on an 
infinite plane.  Solution:  look at the limit of  (3.1.24) for finite y and infinite t.  
 
4.    Calculation of the surface displacement η(x,y,t) given u(x,y,t).  Here we follow a 
procedure used by Gill (1976) which exploits the fact that u(x,y,t) is an even function of 
x.  
 
(a) Show that (3.1.1-3.1.3 and 3.1.6) can be separated into even and odd parts as 
follows 

  !u

!t
" v

ev
= "

!#odd

!x
   vodd = !" ev

!x
    (3.1.34a,b) 

  !vev

!t
+u = "

!# ev

!y
  !v

odd

!t
= "

!#odd

!y
    (3.1.35a,b) 

  !" ev

!t
+
!vev

!y
= 0     !"

odd

!t
+
!u

!x
+
!vodd

!y
= 0    (3.1.36a,b) 

  !vodd

!x
"
!u

!y
" #

ev
= "#o  !v

ev

!x
= "

odd    (3.1.37a,b) 

where ! = !
ev
+!

odd , !ev
=

1
2 !(x, y, t) + !("x , y, t)[ ] , and !odd

=
1
2 !(x, y, t) " !("x,y,t )[ ] , 

and similar decompositions apply to u and v. 
 
(b) From the result in (a) show that  

   ! 2"ev

!x
2
# "

ev
=
!u

!y
#"o       

   !
2
v
ev

!x
2

" v
ev

= "
!u

!t
      

Show that the general solutions to these equations can be expressed as 
 

!
ev
(x, y, t) = "

# m sgn(y) + $um /$y

(1 + am
2
)

cos(amx) + N(y, t)
cosh(x)

cosh(w/ 2)m=0

%

&   (3.1.38) 

and 
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v
ev
(x, y, t) =

!um /!t

(1 + am
2
)
cos(amx) + V (y, t)

cosh(x)

cosh(w / 2)m=0

"

#    (3.1.39) 

where again!
m
= (2m +1)" / w . 

 
(c)  Show that the functions N and V can be determined through substitution of these last 
solutions into (3.1.35a) and (3.1.36a) leading to  
 

   !V

!t
+
!N

!y
= 0   and  !N

!t
+
!V

!y
= 0    (3.1.40) 

 
(d) From the results of (b) show that an initial condition on V is V(y,0)=0 whereas N(y,0) 
is determined by the relation 
  ! sgn(y) = !A(x)sgn(y) + N(y, 0)

cosh(x)

cosh(w / 2)
   

where 

   A(x) =
!
m
cos(a

m
x)

(1+ a
m

2
)m=0

"

# .    (3.1.41) 

 
 To help evaluate A(x), use the above series to show that 
  

   d
2
A

dx
2
! A = ! "

m
cos(a

m
x) = !1

m=0

#

$ . 

 
From this equation and from the boundary conditions  A(w/2)=A(-w/2)=0, which follow 
from (3.1.41), deduce thatA = 1!

cosh(x)

cosh(w / 2)
  and thereforeN(y, 0) = ! sgn(y) . From 

(3.1.40) and the initial conditions just described, deduce the solutions (3.1.28) and 
(3.1.29).   
 
(e) Finally, show using (3.1.37b) that  

  !
odd

= "
a
m

(1 + a
m

2
)m= 0

#

$
%u

m

%t
sin(a

m
x)  

 
Figures 
 
3.1.1 (a): Initial condition for Rossby adjustment problem. (b) and (c): Interface elevation 
and velocity u(y) for t→∞ state on infinite plane. (d): Radiation of Poincaré waves at t=5 
as computed from (3.1.21). 
 
3.1.2  Contours of surface elevation for the linear Rossby adjustment problem in channel 
with w=4  at t=4. The contour values range from -.9 to +.9 in even increments as the 
channel is crossed.  (Constructed from Figure 10.7 in Gill, 1982). 
 



Ld

a
a

η=0

y=0

(a)

(b)

(c)

(d)

x

y

Figure 3.1

-10 -5 5

-1

1

  10

y

z

η(y,∞)

y

-u(y,∞)



x=0

x=2

x=-2

0 2 4-2-4

Figure 3.1.2

y




