
  © L.J. Pratt and J. Whitehead 7/10/06 
  very rough draft 

 
3.2  Rossby Adjustment: Weakly Nonlinear Behavior (advanced). 
 
 
 The nonlinear terms neglected in Gill’s solution can be expected to remain small 
over a time of O(a-1), where 2a is the dimensionless amplitude of the initial discontinuity 
in fluid depth, assumed <<1.  We now discuss some new processes that arise after this 
time period is exceeded.  One is the motion of the front that separates the regions of high 
and low potential vorticity and that initially lies at the position of the barrier. There is 
also a variety of nonlinear processes that act on the forward and backward Kelvin waves 
that establish the boundary currents.  For a<<1 the Kelvin waves become well separated 
from the potential vorticity front and the evolution of the two features may be treated 
separately.  When a is O(1), nonlinearities arise immediately after the barrier is removed 
and it become more difficult to treat specific processes in isolation.  This topic is taken up 
in Section 3.3. 
 
 
a. Motion of the potential vorticity front: contour dynamics. 
 
  Since advection of linear potential vorticity 1 +! "#  is neglected in linear 
shallow water theory, 1 +! "#  at any (x,y) remains equal to its initial value.  The steady 
flow that emerges as t! " , sometimes referred to as the wave adjusted state, maintains  
1 +! "#=1-a upstream of y=0 and 1 +! "#=1+a downstream.  As a fluid column 
crosses y=0 its linear potential vorticity jumps from the first to the second of these values.  
Of course, the original shallow water equations require that the full potential vorticity 
q = (1 +! )/(1+ ") be conserved following the flow. Thus, the lower q of the upstream 
region would be carried downstream, leading to a modification of the wave-adjusted 
steady state. The fluid at any t would therefore be divided into two bodies Au and Ad 
having q=1-a and q=1+a (Figure 3.2.1a).  The boundary C separating these two bodies is 
a potential vorticity front, a material contour across which q is discontinuous.  C initially 
lies along y=0 but later becomes convoluted.  The potential vorticity distribution at any 
time is determined by the location of C. 
 
  The time required for the wave adjusted state to be established is roughly the time 
needed for a Kelvin wave to propagate a few deformation radii.  In dimensionless terms 
both the Kelvin wave speed and the deformation radius are unity and therefore this time 
scale is O(1).  However, the resulting fluid velocities are O(a), so that the time required 
to advect C one deformation radii is O(a-1). For a<<1, C evolves very slowly and, in 
comparison, the wave adjusted state develops instantaneously.   This scale separation was 
exploited by Hermann, Rhines and Johnson (1989) who realized that for a→0 the wave 
adjusted steady state can be considered an initial condition for the calculation of C. 
 
 In order to compute the evolution of C, let 
 
  ! = a[!"(x,y) + ˜ ! (x,y,# )]      (3.2.1) 
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where τ=a-1t.  The first term on the right hand side represents the wave adjusted state 
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          (3.2.2) 
 
which can be obtained by taking of limit t→∞ in Gill’s linear solution (3.1.25).  This 
steady state consists of boundary layers on the left and right walls for y→-∞ and +∞, and 
a crossing region about y=0.  The velocity field is geostrophically balanced: 
 

   u! = "
#$!

#y
 and v! =

"#!

"x
   (3.2.3a,b) 

 
 The second term is a correction to the wave adjusted state that varies slowly in 
time and is determined by the requirement of potential vorticity conservation following 
fluid motion.  The full velocity field is the sum of wave-adjusted and transient parts. 
 
  u = u

!
+ ˜ u (x,y," )   and v = v

!
+ ˜ v (x, y," )   (3.2.4a,b) 

 
Substitution of (3.2.1) and (3.2.4) into the shallow water momentum equations (2.1.5 and 
2.1.6 with δ=1 and F=0) then shows that, to lowest order, the correction fields are also 
geostrophically balanced: 
 

   ˜ u = !
" ˜ # 

"y
 and ˜ v =

! ˜ " 

!x
   (3.2.5a,b) 

 
 The side wall boundary conditions u(±w/2,y,t)=0 imply that ˜ u (±w / 2, y,! ) = 0  
since u∞(±w/2,y,τ)=0 has already been imposed.  Equation (3.2.5a) then 

requires !
˜ " 

!y
(±w / 2, y,# ) = 0 .  It is also necessary that the full solution approache the wave 

adjusted solution ( ˜ ! →0) as y !" and therefore 
 
    ˜ ! (±w/2,y,τ)=0     (3.2.6) 
 
Although the transient solution rearranges the velocity field, it does not alter the surface 
displacement along the sidewalls. The total transport [2tanh(w/2)] is therefore unaffected 
by the motion of the potential vorticity front. 
 
 In order to calculate the transient solution, one must go beyond the geostrophic 
approximation and consider higher order balances.  First note that the potential vorticity 
itself can be written in term of the present variables as 
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 1 +!

1 +"
=

1 + a!# + a ˜ ! 

1 + a"# + a ˜ " 
= 1 + a[!# $"# +

˜ ! $ ˜ " ] + O(a
2
)   

 
The perturbation potential vorticity can therefore be partitioned into a wave adjusted part 
q! = "! #$!  and a transient part ˜ q =

˜ ! " ˜ # .  By definition 
 
    q

!
= sgn(y) .    (3.2.7) 

 
Furthermore, the geostrophic relation for the transient velocities leads to ˜ ! = "

2 ˜ #  and 
therefore 
 
    ˜ q = !

2 ˜ " # ˜ " .    (3.2.8) 
 
 Substitution of the partitioned velocity and potential vorticity into the full shallow 
water potential vorticity equation and neglect ofO(a3 )  terms results in 
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Thus q

!
+ ˜ q  (= sgn(y) + ˜ q )  is advected by the velocity field composed of the sum of the 

wave adjusted and transient velocities.  A fluid column originating from y<0 will initially 
have q

!
= "1 and ˜ q = 0 .  Moreover, ˜ q will remain zero as long as the column remains in 

y<0.  Upon crossing y=0, q∞ jumps to the value +1 and ˜ q  jumps to the value (-2) required 
to conserve q∞+ ˜ q .  Similarly, fluid that originates in y>0 and crosses into y<0 has ˜ q =+2.  
The situation is summarized in Figure 3.2.1b, which shows that ˜ q is non-zero only within 
lobes of fluid that have crossed y=0. 
 
 The transient solution can be computed using a method known as contour 
dynamics that was developed by Zabusky, et al. (1979) for two dimensional flows and 
extended for quasigeostrophic flows (the type under consideration) by Pratt and Stern 
(1986).  Hermann et al (1989) applied the method to the problem at hand in a way that 
differs only slightly from what is now described. 
 
 If the location of the contour C is known at a particular time τo, then the 
distribution of ˜ q  is known and ˜ ! (x,y, τo) can be found by solving 
 
    !

2 ˜ " # ˜ " = ˜ q (x,y,$ o) .    (3.2.10) 
 
subject to the boundary conditions  (3.2.6).  Note that ˜ q (x, y,! o )will be non-zero only 
within the shaded region R  (Figure 3.2.1b).   
 
 The solution can be expressed in terms of the Green’s function 
G(x, y;!, µ) defined by 
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  !

2
G "G = #($)# (µ)    and     G=0 at (x=±w/2).  (3.2.11). 

 
Thus 
 
  ˜ ! (x, y," o ) = ˜ q (x,y,"o )G(x, y;#, µ)

R

$$ dµd# .   (3.2.12) 

 
 The (geostrophic) velocity fields ( ˜ u , ˜ v ) can be found by differentiating this ˜ !  and 
adding the results to the known (u∞,v∞). As discussed below, ( ˜ u , ˜ v ) can be expressed in 
terms of a contour integral around the edge !R  of region R. Since the contour C is 
advected by this total velocity, the position of C at τo+∆τ can be estimated.  Then (3.2.12) 
can be applied to the new ˜ q to determine the corresponding surface elevations and 
velocities. These steps are then repeated leading to an iterative procedure that can be 
implemented numerically.  The nondimensional solution depends only on the channel 
width w (=w*f/(gD)1/2). 
 
 A convenient and computationally efficient form of the Green’s function is 
 
   G(x, y;!, µ) =

1

2"
(K

1,n + K2,n )
n= #$

$

% ,   (3.2.13) 

where 
   K

1,n = !Ko (x ! " ! 2nw)2 + (y ! µ)2[ ]
1/ 2

{ } , 
 
   K

2,n = Ko (x +! + w + 2nw)
2
+ (y " µ)

2[ ]
1/ 2

{ } , 
 
and Ko denotes the modified Bessel function of zero order.  
 
  In advance of the actual computation, a certain amount of physical intuition can 
be gained by careful consideration of (3.2.13).  First consider the term K1,0: 
 
   K

1,0
= !Ko (x ! ")2 + (y ! µ)2[ ]

1/ 2

{ }  
 
describing a cyclonic Helmholtz point vortex centered at (x,y)=(ξ,µ). At large distances 
from the center, the free surface displacement and associated counter-clockwise swirl 
velocity decay exponentially.  The decay scale is the Rossby radius of deformation, here 
unity.  In an infinite domain, this term would comprise the entire Green’s function. An 
isolated eddy composed of a patch of uniform potential anomaly ˜ q = ˜ q o  would have an η  
field obtained by integrating ˜ q o times this Green’s function over the area of the patch. 
 
 If a single boundary in the form of a wall at y=w/2 is present, the boundary 
condition can be satisfied by adding an image vortex to a hypothetical body of fluid lying 
inside the wall (Figure 3.2.2a).  The image vortex is equal in strength but opposite in sign 
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and is located an equal distance inside the wall.  The x-velocity at the wall created by the 
image is equal and opposite to that due to the original vortex.  The condition of zero 
normal flow is thereby satisfied.  Note that the image for K1,0 is K2,-1 and that the velocity 
field created by the latter causes the original vortex to move parallel to the wall.  An 
anticyclonic vortex will move towards negative y whereas a cyclonic vortex will move 
towards positive y.  The motion is identical to that of a dipole (a pair of equal and 
opposite vorticies).   
 
 The boundary condition problem for the normal velocity become more difficult in 
the presence of two walls (Figure 3.2.2b).  Beginning with the images K1,0 and K2,-1 one 
could add a third K2,0 beyond the wall at x=-w/2.  Alone, K1,0 and K2,0 would satisfy the 
boundary condition at x=-w/2.  The original image vortex  K2,-1 gives rise to a small non-
zero u at x=-w/2 but this vortex lies further from  x=-w/2 than either K1,0 or K2,0. Since the 
velocity field of K2,-1 decays away exponentially  there is hope that the error in the 
boundary condition at x=-w/2 might not be too large.  The same remarks can be made for 
the pair K1,0 and K2,-1 which alone would satisfy the boundary condition at x=w/2 if not 
dfor the presence of K2,0.  
 
 In order to construct a Green’s function that exactly satisfies the condition u=0 on 
both walls, it is necessary to add further images at successively larger distances from the 
walls.  For example, the contaminating effect of K2,-1 on the boundary condition  at 
x = !w / 2can be countered by adding its image K1,-1 (Figure 3.2.2c). The contaminating 
effect of the K2,0 on the boundary condition at x=w/2 can be countered by adding its 
image K1,1.  In general, K1,n corrects K2,n-1 for (n≥0) whereas K1,n corrects K2,n for (n<0).  
The series in (3.2.13) is constructed following this principle.  As the reader might gather 
from an inspection of Figure 3.2.2c the effect of adding all the extra images is to 
somewhat retard the dipole effect mentioned earlier.  Thus the primary vortex K1,0 does 
not move towards larger values of y as rapidly.  In fact, a single vortex placed at the 
centerline x=0 of the channel would not translate at all. 
 
 The geostrophic velocities for the transient solution can be obtained from (3.2.12) 
as 
 
 !

(x ,y )
˜ " (x, y,# o ) = (˜ v ,$ ˜ u ) = ![ ˜ q (x, y,# o )G(x , y;%, µ)

R

&& ]d%dµ    (3.2.14) 

where !(x ,y ) =
"

"x
+
"

"y
.  The region R of anomalous potential vorticity is composed of 

several sub-regions or lobes, each of which contains fluid of uniform ˜ q .  Consider a sub-
region Ro for which ˜ q = ˜ q o  (Figure 3.2.3a).  The contribution to the integral in (3.2.14) 
from this sub-region is 
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The third step is made possible by the (x ! "#, y ! "µ )symmetry in K1,n and by the 
(x !" ,y !#µ)  symmetry in K2,n.  The final step follows from the application of 
Green’s theorem. The contour integral is performed counterclockwise around the edge 
!R

o
of Ro. 

 
 In the problem at hand, where ˜ q o  equals +2 or -2, depending on the sub-region, 
application of (3.2.15) over each sub-region and summation of the results leads to 
 

  
 

( !v,! !u) =
1

"
[ [K

1,n
(dµ,d#) + K

2,n
(!dµ,d#)]

n=!$

$

%
&R
"' ]    (3.2.16) 

 
where the integration circuit !R  is shown in Figure 3.2.3b and the direction of integration 
is such as to keep higher ˜ q values on the right.  In normal practice the evolution of !R  is 
calculated by seeding a group of material points along it and using (3.2.16) to follow the 
motion of each point.  If (xn(t),yn(t)) represents the coordinates of point n, then  
 
  dxn / dt = u(xn , yn )   and   dyn / dt = v(xn , yn ) , 
 
with u and v given by (3.2.16).  These relations are integrated numerically over a small 
time increment for all the material points on !R  and the new positions are used to update 
!R .  In this way, the evolution of the potential vorticity front can be calculated without 
the need to explicitly consider any quantities measured away from the front.  
 
 Examples of the solutions reveal significant departures from the linear case, even 
when the channel is very wide (Figures 3.2.4). On the right-hand side of the channel, the 
front is carried rapidly downstream by the boundary layer flow and its leading edge has 
moved beyond the frame boundary by τ=10. More significantly, there is a tendency for 
the front to move towards positive y along the left wall. In the channel interior the front 
roughly maintains its original position.  [The apparent movement of the interior front 
towards negative y is actually due to the fact that the plot is made in a frame of reference 
moving with the mean velocity U=2w-1tanh(w/2).] 
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 The intrusion of low potential vorticity fluid along the left wall is due primarily to 
the image effect described above.  The lobe of intruding fluid that is bounded by the 
potential vorticity front on the right, the wall x=-w/2 on the left, and y=0 has potential 
vorticity anomaly ˜ q =-2 as suggested in Figure 3.2.4. The vorticity of this blob is 
anticyclonic and must have a cyclonic image lobe on the other side of the left wall in 
order that the boundary condition u=0 be satisfied. The tendency of the image lobe is to 
advect the anticyclonic fluid towards positive y.   
 
 Associated with the left-wall intrusion is an overshooting across y=0 of the 
boundary current (Figure 3.2.5).  Further downstream the boundary current veers away 
from wall and reverses course.  The current returns to y=0 where it crosses the channel.  
As time progresses the intrusion widens and the crossing route increasingly departs from 
y=0. Hermann et al (1989) speculate that eventually the crossing route will be swept 
downstream and that the final steady state at any fixed y will eventually be one with only 
a left-wall boundary layer.  Confirmation is made for the case the case w=10, where the 
downstream movement of the potential vorticity front is clear (Figure 3.2.6a).  As the 
front moves away from the original position of the barrier, the cross-sectional profile of 
surface elevation there evolves to the point where only a left-wall boundary flow remains 
(Figure 3.2.6b). 
 
 The loss at y=0 of the cross flow presents difficulties for the principle of 
geostrophic control.  If we choose points A and B (Figure 3.2.3) as our interior reference 
locations, then the total transport 2tanh(w/2) is initially bounded by the value 
!
A
" !

B
= 2 , as required.  After the potential vorticity front travels beyond B, however, 

ηA and ηB become equal and the bound fails.  Thus, geostrophic control applies after the 
wave-adjusted flow is established but before the potential vorticity dynamics have 
affected the final adjustment.   
 
 The foregoing results suggest that geostrophic control might apply in systems 
where the time dependence is imposed by the tides or some other oscillatory forcing.   
The forcing period T must be longer than the wave adjustment time in order to allow the 
cross-channel flow to become established. The dimensional wave adjustment time is 
roughly, the deformation radius (gD)1/2 / f divided by the Kelvin wave speed (gD)1/2 .    
In addition T must be much shorter than the advective time of the potential vorticity front, 
else the crossing flow will be carried away.  The advective time is at least (D/a*) times 
the wave adjustment time, where a* is now the (dimensional) tidal amplitude.  Thus the 
principle of geostrophic control appears then to require  
 

    1 << Tf <<
D

a *
 .      (3.2.17) 

 
(Pratt, 1991).  As shown by the calculations of Herman et al. (1989) the upper bound in 
(3.2.17) may be overly conservative when the channel is much wider than the 
deformation radius.  
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  Middleton and Viera (1991) and Hannah (1992) have assessed the validity of the 
geostrophic control in the Bass Strait, the channel separating Tasmania from Australia. 
When a low frequency  (240 hr) wind and pressure forcing period is used for T, (3.2.17) 
is satisfied and geostrophic control holds, at least in their models.  If one or both of the 
neighboring basins is effectively finite in extent, which is apparently not a problem for 
the Bass Strait, then the above arguments become complicated.  A Kelvin wave can circle 
the basin and return to the strait.  Wright (1987) has investigated models of this behavior 
and found that geostrophic control typically does not hold.    
 
 b.   Interactions between Kelvin and Poincaré Waves.  
 
 Given sufficient time, weak nonlinearities can also alter the character of the 
transients that set up the wave-adjusted state.   A numerical solution1 obtained by 
Tomasson and Melville (1992) for a=.15 and w=2  (Figure 3.2.7a) gives an overview. 
The solution is obtained by integrating the Boussinesq equations, an approximation to the 
full Euler equations permitting weak nonlinearity and weak nonhydrostatic effects.  One 
of the most striking differences with Gill’s linear solution is the lack of symmetry 
between the forward and backward moving waves. The forward waves, especially the 
region 75<y<210, contains an abundance of smaller spatial scales, while the backward 
moving waves (-200<y<75) remain relatively smooth.  Another difference is that the 
leading edges of the wave (near y=±210) exhibit curvature.  An enlarged view of the 
forward waves (Figure 3.2.7b) shows this feature clearly.  The leading edge of the 
advancing front is perpendicular to the right wall at the wall, but becomes increasingly 
oblique as one moves away from this wall.  This aspect will be addressed further in 
Section 3.6. 
 
 A physical process that accounts for much of the new behavior is the resonant 
excitation of Poincaré waves by finite amplitude Kelvin waves.  According to the linear 
solution, the removal of the barrier at y=0 excites two Kelvin waves that move away 
along their respective walls. Poincaré waves are also generated but they are outrun by the 
Kelvin waves, which have larger group speeds.  There is a tendency for the forward-
propagating Kelvin wave to steepen and the backward-propagating Kelvin wave to 
rarefy, as described in Section 2.2. The smaller the step size a, the more slowly the 
steepening or rarefacation occurs.  For sufficiently large a, the forward Kelvin wave may 
break, leading the formation of a shock.  This process is discussed in the next few 
sections.  However, for moderate or small values of a, the steepening process may be 
arrested by dispersive effects due to nonhydrostatic accelerations.  The equilibrated, 
finite-amplitude Kelvin wave propagates a bit more rapidly than its linear counterpart. 
 
 Now consider the linear dispersion relations for Poincaré and Kelvin waves in a 
channel geometry(Figure 3.2.8 and equations 2.1.27 and 2.1.29).  The forward Kelvin 
wave has dimensional frequency !* = (gD)1/ 2 l* , as represented by the straight line. The 
effect of the nonlinear increase of speed for the forward Kelvin wave can qualitatively be 

                                                
1 To obtain this solution, the initial step in depth was slightly smoothed, so there is no distinct potential 
vorticity front. 
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demonstrated by increasing the slope of this line thereby creating intersections with the 
dispersion curves for the Poincaré modes.  A slight increase in slope leads to intersections 
only at high wave numbers.  At the intersection points the phase speed of a Poincaré 
mode matches that of the Kelvin mode, a necessary condition for nonlinear interaction 
between the two.  The Poincaré modes feed on energy contained in the Kelvin wave.  
Their presence accounts for some of the wave activity behind the leading edge of the 
forward Kelvin wave. The energy drain causes the Kelvin wave amplitude to gradually 
decay and the process of energy transfer is gradually attenuated.   Since the backward 
Kelvin wave rarefies, the slope of the corresponding dispersion curve !* = "(gD)

1/ 2
l *  

decreases, moving it away from those of the Poincaré modes.  The region to the rear of 
the backward advancing wave front is therefore relatively free of wave activity. 
 
 
Exercises 
 
1)  Find the wave adjusted  steady state η∞(x,y) using local conservation of linearized 
potential vorticity.  That is, use the same approach as in the Rossby adjustment problem 
on an infinite plane, as discussed at the  beginning of Section 3.1.  First show that the 
mathematical  problem is 
 
    !

2
"# $ "# = sgny  

 
subject to the boundary conditions   
 
  !" = ±

1
2 tanh( 1

2 w)      (x = ±
1
2 w)  

and  

  !" # ± $1 +
e± x

cosh(1

2 w)

% 

& 
' 

( 

) 
*       (y# ±")  

 
(Note: these boundary conditions are deduced from the solution for K in the Kelvin wave 
part of the solution.)  Then solve for the wave adjusted state. 
 
2)  Propagation tendency of a potential vorticity wedge.  As a crude model of the 
behavior near the leading edge of the left-wall intrusion, consider a semi-infinite wedge 
of fluid with ˜ q =-2 intruding into an ambient  fluid with ˜ q =0.  As shown in Figure 3.2.7 
the outside edge of the wedge forms an angle θ with the wall.  Show that the velocity 
v=vL at the leading edge of the wedge is given by: 
 
    v

L
= 1! cos(") .    (3.2.17) 

 

(The identity Ko (y)dy =
!

2
0

"

# may prove helpful.) 
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By consideration of the image of the wedge, deduce the nose speed for a wedge of 
potential vorticity ˜ q = 2 propagating along a right wall: 
 
    v

R
= cos(! ) "1 ,    (3.2.18) 

 
 
for θ<π/2, vL>0 while vR<0.  In the Rossby channel problem, however, a background 
velocity  v∞ exists along the right wall and this tends to advect the wedge towards positive 
y.  The net result is that the wedge moves towards positive y at something less than the 
advective speed. 
 
 By a more complicated analysis (Hermann et al 1989) it is also possible to 
demonstrate that the left wall wedge will steepen and the right wall wedge will rarify, as 
observed in the numerical solutions for large values of w.  
  
 
Figure Captions 
 
3.2.1  Definition sketches showing potential vorticity front (a) and potential vorticity 
anomalies (b).  
 
3.2.2 Point vorticies and images needed to satisfy the condition of no normal flow at the 
channel sidewalls.  
 
3.2.3 (a): Integration contour about the lobe Ro of anomalously low potential vorticity. 
(b): Integration contour for the entire region of anomalous potential vorticity. 
 
3.2.4 Evolution of the potential vorticity front for the case w=25. In order to visually 
separate the contour at different times, the results are plotted in a frame of reference x′ 
that translates towards positive x at speed .08. The original position of the barrier (x=0) at 
τ=20 is indicated by a dashed line. (From Hermann et al. 1989) 
 
3.2.5 Evolution of the surface elevation (η) field for the case shown in Fig. 3.2.4.  (From 
Hermann et al. 1989) 
 
3.2.6 (a) The evolution of the potential vorticity front for the case w=10.  The portions of 
the curves near the side walls have been carried downstream and out of the frame. (b) 
The corresponding surface elevation (η) field. (From Hermann et al. 1989) 
 
3.2.7  Surface elevation (η) field at t=200 based on a numerical solution to the dam break 
problem with a=.15 and w=2.  Frame (b) shows the region near the edge of the forward 
wave front.  (Tomasson and Melville, 1992, Figure 12.)  
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3.2.8  Dispersion relations for Poincaré and Kelvin waves. The dimensional frequency 
and along-channel wave number are denoted by ω* and l*. (After Figure 1 of Tomasson 
and Melville, 1992) 
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Figure 3.2.7 (low resolution version)
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