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3.3  Rossby Adjustment in a Channel: Fully Nonlinear Case. 
 
 
 
 We now come to the most difficult case of the channel Rossby adjustment: that in 
which the initial depth difference is moderate or large.  Let 
 

   d(x, y, 0) =
1       (y < 0)

do       (y > 0)

! 
" 
# 

,    (3.3.1) 

 
 
with u(x,y,0)=v(x,y,0) as before, so that 1-do corresponds to the step height 2a of the 
previous sections.  For O(1) values of 1-do there is no longer a clear spatial separation 
between the Kelvin waves and the potential vorticity front.  In the limiting case do=0, the 
channel is initially dry downstream of the barrier and the leading edge of the advancing 
intrusion is the potential vorticity front.  The introduction of a finite step size brings other 
new processes into play, including the separation of the fluid from the left wall and the 
formation of shocks.  The results described below are largely due to Helfrich et al. 
(1999). 
 
 
(a) Case do=0. 
 
 The case of zero depth on the downstream side of the barrier is somewhat easier 
to treat and will be considered first. Some of the general features of the flow can be 
anticipated.  After the barrier is removed, we expect that the fluid will spill forward into 
y>0 forming an intrusion (Figure 3.3.1).  The linear solution suggests that the velocities 
along the right wall will be largest and therefore the leading edge or nose of the intrusion 
should follow that wall.  We denote the position and speed of the nose by ynose and cnose.  
Behind the nose the width of the intrusion will gradually increase until contact with the 
left wall is made at y=ysep. The speed csep of the separation point is shown to be positive in 
Figure 3.3.1, and this will be confirmed later. 
 
 It is possible to approximate the solution for this case using semigeostrophic 
theory for uniform potential vorticity, the tools of which were developed in sections 2.2 
and 2.3. Central to the semigeostrophic approximation is the assumption of gradual 
variations in the y-direction, a condition that is clearly violated near y=0 in the early 
stages of evolution. Nevertheless, there is some hope that, as time progresses, the changes 
in y will become gradual enough that semigeostrophic theory will capture the 
predominant features of the solution.  We will therefore describe this theory and compare 
it to numerical solutions based on the full shallow water equations.  
 
 The semigeostrophic solution can be obtained using the method of characteristics 
in much the same way that the nonrotating dam-break problem was solved (see Section 
1.3). Where the flow remains attached, the independent variables v and d are replaced by 
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d and ˆ d , one-half the sum and difference of the wall depths (see 2.2.5,6). The initial 
conditions are therefore 
 

  d (y, 0) =
1       (y < 0)

0      (y > 0)

! 
" 
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 and ˆ d (y,0)=0   (3.3.2) 

 
 Although the characteristic speeds c± and Riemann invariants R± are more 
complicated than in the nonrotating case, the central ideas involved in the construction of 
the characteristic curves remain the same. In particular, one must address the fact that 
there is an infinity of solutions that satisfy the discontinuous initial condition.  
Replacement of the discontinuity with a short interval of continuous depth change (as in 
Figure 1.3.2) resolves this problem.  As was the case in the nonrotating version, the 
assumption of uniform R- within this interval leads to the unsatisfactory conclusion that 
the leading edge of the intrusion will move towards negative y.  We therefore take R+ as 
being uniform as before.  It follows from (2.2.23-24) that 
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  (3.3.3) 

 
where T = tanh(w/ 2) . The first two lines follow from the definition of R+ for non-
separated flow.  Also the value q of the potential vorticity has been set to its initial value 
of unity.  The final step results from the evaluation of R+ using the initial conditions 
(3.3.2). The result is a relationship between d and ˆ d that holds for y<ysep. 
 
 In accordance with the ideas developed in Section 1.3, the uniformity of R+ over 
the whole body of fluid implies that the ‘-’ characteristic curves must have constant 
slope.  The characteristic speeds are given by (2.2.22) 
 
  c

!
= T

!1
d ! d 

1/ 2
1! T

2
(1 ! d )[ ]

1/ 2

 (y<ysep)   (3.3.4) 
 
Calculation of the values of c- over the short interval replacing the step gives a value that 
increases from left to right (see Exercise 1), and thus the ‘-’ characteristic curves fan out 
from the origin, as in Figure (1.3.2). Conservation of R

!
(d , ˆ d )  along each of the fanning 

curves in conjunction with the independent relationship (3.3.4) implies that d and ˆ d are 
individually conserved along each curve (just as v and d were conserved along the ‘-’ 
characteristics of the nonrotating problem). 
 
 In the separated portion of the flow, d and ˆ d are no longer independent.  A 
convenient choice of variables is d and the separated width we of the current.  As shown 
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in Section 2.3 the definition (3.3.4) of c- remains valid provided we replace ˆ d by d and w 
by we. Thus 
 
  c

!
= T

e
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(1 ! d )[ ]

1 / 2

  (ysep<y<ynose) (3.3.5) 
 
where T

e
= tanh(w

e
/ 2) . An analytical expression for R

+
(d ,w

e
) is not known and values 

must therefore be tabulated.   The procedure for doing so [Stern et al. (1982), Kubokawa 
and Hanawa (1984), or Helfrich et al. (1999)] is algebraically involved and will not be 
detailed here. Nonetheless, the procedure for obtaining the solution in the separated 
region is essentially the same as in the attached region. We set R+ equal to its initial value 
(the final expression in 3.3.3) and thereby obtain an implied relationship between d and 
we that must hold throughout the separated region.  The values of d and we along each ‘-’ 
characteristic are then determined from this relationship in conjunction with (3.3.5).  
 
 Solutions to the unapproximated initial-value problem require a numerical 
algorithm for the full shallow water equations.  The finite-difference code in the present 
case is summarized by Helfrich et al. 1999.  It allows the fluid to vanish1, resulting in the 
formation of a free edge, either in the interior or through side-wall separation.  The code 
also allows for the formation and maintanance of jumps and bores consisting of large 
changes in the depth and velocity over a few grid points.   We have already shown that 
ideal hydraulic jumps in one-dimensional flows conserve volume flux and flow force. 
These ideas extend to two-dimensional jumps in rotating systems in a way that will be 
made clear in Section 3.5.  The numerical code in question is written in a way that 
inforces conservation of the correct properties and, in particular, adds no mass or 
momentum to the flow.  A key step is to base the code on the flux form (2.1.17) of the 
shallow water equations, which is essentially a conservation law for the quantities that 
need to be conserved across the jump.  
 
 The semigeostrophic solution (upper panel of Figure 3.3.2) can be compared with 
numerical solutions to the full 2-D shallow water equations (lower panel) for the case 
w=2.0 (a channel width equal to two deformation radii based on the initial upstream 
depth).  Both solutions agree qualitatively with each other and with the anticipated 
scenario.  For example the separated intrusion becomes increasingly narrow with time, in 
agreement with the fanning characteristic curves.   The semigeostrophic theory does not 
capture the oscillations that are apparent in the lower panel of the figure and are 
associated with Poincare′ waves.  These waves are filtered by the semigeostrophic 
approximation.  In the full numerical solution for w=4 (Figure 3.3.3), the rarefying nature 
of the intrusion is apparent and the oscillations are more pronounced. 
 
 The value of cnose can be determined from the semigeostrophic solution by noting 
that the nose moves along a ‘-’ characteristic.  Taking the simultaneous limit  d ! 0 and 

                                                
1 The fluid depth is formally judged to vanish when d reaches a value of the order 10-5. A 
thin sheet of fluid with this thickness is then maintained over those portions of the 
channel considered ‘dry’. 
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we→0 in (3.3.5) leads to c
nose

! 2d / w
e
.  The values of d and we are also constrained by 

the requirement that R
+
(d ,w

e
)  is equal to its initial value, as specified by (3.3.3).  

However, R
+
(d ,w

e
) is only known in tabulated form, and the limit of 2d / w

e
 as d and we 

both approach zero must be ascertained numerically.  The resulting cnose  depends on the 
value of T (Figure 3.3.4). The nose speed increases from its nonrotating value of 2 
(dimensionally 2 gD , where D is the initial depth behind the barrier) for w=0 to the 
asymptotic value 3.8 for infinite w (or T=1). The circles indicate the nose speed as given 
by the full numerical solution.  Although the ‘exact’ result mirrors the behavior of the 
semigeostrophic result, the actual values are substantially less than those predicted by 
semigeostrophic theory.   
 
 The value of csep can be predicted by setting c-= csep and d = ˆ d  in (3.3.4), giving a 
relation between csep and the value of d at the separation point.  A second relation for this 
d can be obtained by setting d = ˆ d  in (3.3.3). The relationship between csep and T(w) is 
then obtained through elimination of d between these two relations, a procedure that must 
be carried out numerically.  The prediction  (lower solid curve in Figure 3.3.4) agrees 
well with the csep predicted by the full solution (squares).  In the narrow channel limit 
T→0 the nonrotating limit of equal  csep and cnose is obtained, implying that the free edge is 
directed perpendicular to the channel walls.  In the other extreme (T→1), csep vanishes 
implying that the separation point remains pinned to the position of the initial barrier.   
 
 As in the nonrotating version of the dam break problem, the steady state achieved 
for t→∞ is hydraulically critical. The corresponding values of d and ˆ d may be found by 
setting c-=0 in 3.3.4.  A second relationship between these d and ˆ d is provided by (3.3.3). 
The volume transport  2d ˆ d  of the resulting flow, shown by the solid curve in Figure 
3.3.5, agrees quite well with the numerically-determined values (diamonds).  Also shown 
is the nonrotating transport  (2/3)3w (the dashed line) and the transport observed in the 
numerical simulations (diamonds).  Both approach the nonrotating prediction of (2/3)3w 
(dashed line) obtained in Section 1.3.  For large w the predicted and observed transports 
approach the asymptotic value 0.5 (dimensionally 0.5gD2/f). 
 
 When the full dam break problem is carried out in the presence of a deep, 
overlying or underlying fluid, the behavior of the nose region is quite different.  As 
discussed on Section 4.5, the leading edge becomes blunt and propagates at a much 
slower speed than that predicted above.  
  
 
(b) The case do>0. 
 
 When the initial depth ahead of the barrier is nonzero, the flow will differ in many 
respects from what has just been discussed, or so one might anticipate.  Separation of the 
fluid from the left wall will presumably not occur.  The potential vorticity front formed 
between the initially shallow and deep fluid will be distinct from the leading edge of the 
Kelvin wave. Most importantly, the Kelvin wave may break and form a shock. As will be 
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shown later in the chapter, potential vorticity is generally not conserved across such a 
shock and the foregoing theory, which was based on the assumption of globally uniform 
q, becomes more difficult to justify.  All of these factors contribute to an understanding 
of the partial dam break problem that is relatively poor.   We will simply present some 
numerical solutions that show the major features of the flow.   
 
 Based on simulations, there appear to be two main forms that the Kelvin wave 
shock may take.  The first is favored by small values of do or large w.  An example for the 
case do=0.1 and w=4 (Figure 3.3.6) shows a fully developed shock near y=15 at t=12. The 
leading edge consists of an abrupt change in depth, the amplitude of which decays away 
from the right wall. Virtually none of the disturbance is felt at the left wall.  In addition, 
the leading edge curves backwards, forming an oblique angle with the right wall.  The 
potential vorticity front, which is shown as a heavy, solid line, lies just to the rear of the 
shock along right wall.  As one moves away from the right wall the position of the front 
lags further behind the shock.  At the left wall, the front remains pinned near y=0. 
 
 The second type of shock is reminiscent of the unstable Kelvin wave discussed in 
Section 3.2.  It is favored by small or moderate 1-do or w.  In an example based on do=.25 
and w=1 (Figure 3.3.7) the potential vorticity front now lags well behind the shock at all 
x.  In addition, the entire front now moves forward and is no longer pinned to the left wall 
at y=0. The shock, which can be seen at t=20 near y=20 is now felt across the entire 
channel width.  The Poincaré waves just behind the front and along the left-wall may 
have been generated resonantly by the Kelvin wave, as described in Sec 3.2b. This 
generation mechanism is further suggested by the lack of similar oscillations near the 
backward-propagating, left-wall Kelvin wave (which is rarefying and which roughly 
occupies the interval -20<y<-5 at t=20). Both of the shocks described above will be 
revisited later in this chapter.  
 
 The transport Q of the final steady state, measured at y=0, shows that larger w and 
smaller d0 lead to larger values of Q (Figure 3.3.8a).  For comparison, the transport 
predicted for the non-rotating version of the dam break (Stoker, 1957) in a channel of unit 
width is indicated by a solid line.  In addition the ‘geostrophic control’ bound (1-do

2)/2 
based on the initial depth is shown as a dashed line. The calculated transport exceeds this 
bound only once, and then only slightly.  However, it should be reemphasized that the 
loss of the crossing flow for all but large w obscures the interpretation of this result.  
 
 The increase in Q with w for any fixed do is similar to that of the semigeostrophic 
transport for do=0 (solid line in Figure 3.3.5).  When the measured Q values are 
normalized by the latter using common values of w, the data points for each do nearly 
collapse (Figure 3.3.8b).  The solid curve in the same figure is the Stoker (1957) 
prediction for zero rotation, scaled as above.  
 
Exercises 
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1.   Prove that the intersection of the solid line with the Q axis is Figure 3.3.8 lies at 

Q =
2

3

!
"#

$
%&
3

= .295... .  (Hint: You will need to use a result from Section 1.3.) 

 
  
 
Figure Captions 
 
3.3.1   Schematic plan view of the intrusion following a dam break in a rotating channel. 
 
3.3.2  Contours of the depth d field at t=10 for a channel with w=2.0.  (a) The 
semigeostrophic solution. (b) The numerical solution to the full shallow water equations. 
(Helfrich et al. 1999, Figure 6) 
 
3.3.3.  Full numerical solution for d(x,y,t) at the indicated times for w=4.0.  The contour 
interval is 0.1.  (Helfrich et al. 1999 Figure 7) 
 
3.3.4   The intrusion nose speed cnose and the separation point speed csep as functions of the 
width parameter T.  The solid curve corresponds to theory and the symbols correspond to 
the numerical model results.   (Based on Helfrich et al. 1999 Figure 3) 
 
3.3.5   Final transport Q vs. w for the full dam break (do=0). The solid curve is from the 
semigeostrophic theory; it is also used as a scale factor in Figure 3.3.8b, where it is 
referred to as Qo. The dashed line is based on the nonrotating theory and the diamonds 
correspond to the numerical solution.  (Helfrich et al. 1999, Figure 9) 
 
3.3.6  Full numerical solution for d(x,y,t) to the partial dam break problem with w=4.0 
and do=0.1.  The contour interval is 0.05.  (Helfrich et al. 1999, Figure 15) 
 
3.3.7  Same as Figure 3.3.6, except that w=1 and do=0.5.  (Helfrich et al. 1999, Figure 14) 
 
3.3.8  The final transport Q as a function of do and w.  In (a) the solid line indicates the 
nonrotating theory for a channel of unit width, while the dashed line is the geostrophic 
transport (1-do

2)/2 based on the initial difference in depths.  In (b) the transport is 
normalized by the transport Qo from the semigeostrophic theory for do=0.  In both (a) and 
(b) w=0 (), 0.2 (), 0.5 (◊), 1.0 (∇), 2.0 (✩), 4.0 (Δ). 
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