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3.9  Ageostrophic Instability 
 
 Our discussion to this point has largely avoided the question of stability. In fact, 
nearly all of the internal flows under discussion are unstable in some respect. The 
presence of the horizontal velocity discontinuity between the moving layer and the 
overlying fluid gives rise to interfacial instabilities.  In a single-layer (reduced gravity) 
system, the length scale of unstable disturbances is finite and the disturbance pressure is 
therefore non-hydrostatic. As the magnitude of the velocity discontinuity decrease, the 
wave lengths of unstable waves also decreases.  The instabilities are avoided in 
traditional shallow-water models with single layers because of the limitation to long 
wavelengths and the consequent hydrostatic approximation.  It is natural to ask, however, 
whether the presence of the instabilities, and the mixing that they can cause, will wreck 
the idealization of the moving fluid as a single layer with uniform density.  In cases 
where this length scale is small compared to the fluid depth, the instability may result in 
overturning and mixing that is limited to the vicinity of the interface.  The sharp interface 
is replaced by a transition layer that may remain thin compared to the layer depth.  The 
single-layer, reduced-gravity idealization may then still be appropriate long-wave 
behavior.  More on this point will follow in Chapter 5. 
  
 It is also reasonable to expect rotating-channel flows to be subject to instabilities 
that effect the horizontal structure.  These include the well-documented barotropic 
instabilities that can arise in the presence of horizontal variations in velocity, and 
baroclinic instabilities that arise in rotating flows with horizontal variations in potential 
energy. Oceanic and atmospheric jets, boundary currents, and broad scale circulations are 
all subject to these instabilities. The theory for this subject has been developed most 
thoroughly within the quasigeostrophic approximation (e.g. Pedlosky, 1987).  
Hydraulically driven, rotating flows typically have strong horizontal shear and large 
variations in potential energy (interface elevation), and would therefore appear to be 
particularly vulnerable to such instabilities.  Certain outflow plumes from the 
Mediterranean and the Denmark Strait are known to contain horizontal eddies that span 
with stream width and that could be attributed to these instabilities.  These flows are non-
quasigeostrophic and a stability analysis requires that one abandon this approximation by 
allowing the horizontal velocity to be ageostrophic and the layer thickness to vary by 
large amounts across the flow, possibly vanishing at the edges. 
 
 At the time of this writing, the intersection between rotating hydraulics and 
ageostrophic instability is unclear.  For example, the extent to which the steady flows of 
the Whitehead et al. (1974) and Gill (1977) models are unstable is not known.  Nor is it 
understood how the presence of instabilities might alter these flows.  For example, it is 
possible that the instabilities might act only in the supercritical portions of the flow and 
therefore have no upstream effects.  Our inclusion of ageostrophic instability analysis is 
therefore made in hope that other investigators will use the basic tools to answer some of 
these questions. Though it is not strictly necessary, the reader will benefit from some 
rudimentary knowledge of instability theory (e.g. Chapter 7 of Pedlosky 1986). The 
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following development is based largely on the work of Griffiths, Killworth and Stern 
(1982), Ripa (1983), and Hayashi and Young (1987), with some generalization in the 
bottom topography used by these authors. 
 
a)  Remarks on the stability problem and review of standard conditions for instability. 
 
 We will be concerned with linear stability; that is the stability of a basic state to 
infinitesimal disturbances.  Instability means that it is possible to find an infinitesimal 
disturbance that will grow in time and lead to a permanent, finite departure from the basic 
state.  We will also confine our discussion to flows that are inviscid and unforced, and 
therefore preserve their total energy and momentum.  The growth of an unstable 
disturbance to the basic state must then occur without the benefit of any external forcing 
or dissipation.  There certainly are classes of instabilities that act in non-conservative 
flows and that owe their existence to the presence of friction, but these will not be 
considered here. 
 
  In the traditional analysis of the barotropic stability of large-scale ocean currents 
and atmospheric winds, the basic state is parallel and zonal: nondimensionally u=U(y).  If 
the basic state has constant depth and takes place on an f-plane, stability is informed by 
Rayleigh’s (1880) inflection point theorem.  In particular, d2U/dy2 must change sign at 
some value of y for instability to be possible. Kuo (1949) showed that the β-plane 
extension of this result is that the potential vorticity gradient β-d2U/dy2 change sign. 
Charney and Stern (1962) extended this result further to include quasigeostrophic flows 
with continuous stratification.  Instability requires that the horizontal gradient of potential 
vorticity (including the boundary contribution) must change sign at some point within the 
cross section.  For a single layer with reduced gravity dynamics, this means that 
! " d 2U / dy2 + f

2
U / (gD)  must change sign. (Lipps, 1963).  

 
 The above necessary conditions can be strengthened by a result due to Fjøtorft 
(1950).  His sufficient condition for stability of a barotropic flow is satisfied if a constant 
α can be found such that (U !" ) # ! d 2U / dy2( ) $ 0 for all y*.1 As an example, consider 
a 2D shear flow with β=0 and suppose that d2U/dy2 changes sign at y*=y*o. Rayleigh’s 
inflection point theorem is therefore satisfied and the flow may be unstable.  However, 
stability may still be demonstrated by choosing α=U(yo), so that the Fjøtorft sufficient 
condition for stability becomes (U(y)-U(yo))(d2U/dy2)≥ 0 for all y in the domain of 
interest. If it happens that the profile is such that U(y)-U(yo) and d2U/dy2 have the same 
sign, then the flow is stable. Fjøtorft’s theorem is closely related to a sufficient condition 
for stability, developed below, that applies to shallow-water flows. 
 

                                                 
1 If the basic potential vorticity q = ! " d 2U / dy2  is considered to be a function of the 
streamfunction, q = q(! ) , then Fjøtorft’s condition for stability is satisfied if a frame of 
reference, moving with constant speed c, can be found such that dq / dy ! 0 .  
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 In keeping with our convention for a rotating channel, we consider a steady basic 
state v=V(x) and d=D(x), whose stability is to be examined. The basic flow is parallel, 
and therefore in geostrophic balance, and the channel cross section is arbitrary but 
uniform in y (Figure 3.9.1a). The channel may contain vertical sidewalls x=±w/2, or the 
depth may vanish at one or both edges: x=-a(y,t) and x=b(y,t).  
 
 
b.  Energy and Momentum in an unstable wave. 
 
 Instability is traditionally defined and measured in terms of the growth in time of 
some positive definite quantity, usually a wave energy norm2. The wave draws on energy 
available in the mean (y-average) state due to horizontal shear or to gradients in the 
elevation of the upper interface. As the wave energy grows, the energy associated with 
the mean diminishes.  For the shallow water models used in hydraulics, in which 
Poincaré and Kelvin waves, and their relatives, are permitted, the energy associated with 
the wave is no longer positive definite.  The notion that the wave draws energy from the 
mean flow must be reexamined.  The sufficient conditions for quasigeostrophic stability 
are no longer sufficient; in fact, the instabilities that are most interesting from an energy 
perspective can occur when the potential vorticity gradient is zero. 
 
 The dimensionless shallow-water energy equation is obtained from ud× (2.1.5)+ 
vd× (2.1.6)+ d×(2.1.7):  
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= "# $ (udB) .  (3.9.1) 

 
The scaling introduced in Section 2.1, with δ=1, is in effect and the Bernoulli function B 
therefore takes its full two-dimensional form 1

2
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2
+ v

2
) + d + h .  Suppose that the 

disturbed flow is periodic in y, or that the disturbance is isolated in y. Let A represent the 
horizontal region occupied by the fluid, the wetted area, over one wavelength. Integration 
of (3.9.1) over A and use of the side edge condition ud=0, valid for vertical walls or for a 
free edge with vanishing depth, then yields   
 
     dE/dt=0     
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%% d&    (3.9.2) 

 
and dσ is the elemental area. 
 

                                                 
2 Other norms are used, including enstrophy. 
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 The total momentum of the flow over one period is also conserved, as can be 
shown from the following form of the momentum flux equation (see Exercise 1):  
  

  
!
!t
[d(v + x)]+" # (v + x)vd[ ] +

!
!y

d
2

2

$
%&

'
()
= *d

!h
!y

.    (3.9.3) 

 
With dh/dy=0,  integration over A yields 
 
      dM/dt=0, 
 where 
   M = d(v + x)

A
!! d" .     (3.9.4) 

 
 We now separate the flow into a basic part (V, D, A) and a small perturbation.  
The amplitude of the perturbation is measured by the dimensionless parameter ε<<1.  The 
flow field is formally represented as 
 
   v=V+εv′+ε2v′′+…, 
    u=εu′+ε2u′′+… 
   d=D+εd′+ε2d′′+…      (3.9.5) 
   A=A+εA′+ε2A′′+… 
    q =Q + ! "q + !

2
""q + ....           

 
 
The area perturbation εA′+… is due to lateral displacements of the free edges of the 
current and is zero when the fluid is bounded on both sides by vertical walls.  If the edges 
are free, however, changes in the edge positions alter the horizontal area over which the 
flow exists (Figure 3.9.1b).   
 
 Linear instability analysis determines the lowest order perturbation quantities like 
v′, d’, etc., which generally have a wave-like structure in y. We will refer to these lowest 
order quantities collectively as the wave field.  The wave field can be considered as 
having no mean with respect to y.  Such a mean can be shown to be time-independent and 
can therefore be disposed by redefining the basic flow. The entire perturbation field: 
εv′+ε2v′′+…, +εd′+ε2d′′+…, etc. will be referred to as the disturbance.  The higher order 
contributions to the disturbance field, starting with ε2v′′, etc., may have time-varying 
means with respect to y. Thus, if v represents the average of v over a spatial period in y, 
then 
 
       v =V + !

2
v
! 1"

+! . 
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  To the extent that higher order terms can be neglected, the total energy and 
momentum can now be decomposed into distinct parts associated with the wave and the 
mean.  The latter can further be expressed as a sum of the basic state energy and the 
energy due to the mean of the disturbance. Substitution of the partitioned fields into the 
definitions of E and M, and neglect of O(ε3) terms leads to 
 
    E = E

b
+ E

w
+ E

m
 

 
where  
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To avoid some unnecessary complexity we have temporarily assumed that the flow is 
bounded by rigid channel walls, and thus the disturbed area εA′+… is zero.  If the effect 
of free edges is included, a second expression involving an integral over εA′ is added to 
the final integral Em (See Hayashi and Young, 1987 for more details.) 
 
 The term Eb above is just the energy associated with the basic flow. The quantity 
Ew, sometimes called the wave energy, is the energy associated with the quadratic terms 
in the perturbation fields.  The wave energy can be calculated from the solution to the 
linearized problem for u′, v′, etc.  In two-dimensional or quasigeostrophic flow, the 
contribution to Ew from term involving V !v !d  is absent due to the fact that the depth 
perturbation is either zero or negligibly small.  In this case Ew consists of a sum of non-
negative terms and is used as a measure of the size or growth of the perturbation.  In the 
present shallow-water setting, the term  V !v !d , and possibly the entire wave energy, can 
be negative.  Finally, the term Em is the contribution to the energy from the mean of the 
disturbance.  The first order perturbations have no mean and thus Em is composed of 
contributions from the means of the O(ε2) fields v′′ and d′′.  The individual constituents 
cannot be calculated from the linearized problem, though as we will later see, the 
complete sum Em can be. 
 
 For momentum,  
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again neglecting terms of O(ε3) and assuming vertical side walls. 
 
 Another quantity of significance for stability analysis is the disturbance energy, 
defined as  
 
    Ed=Em+Ew . 
 
It is the sum of the wave energy and the energy associated with changes in the mean 
fields.  It is also the difference E-Eb between the energy of the actual flow and that of the 
basic flow.  Since the total energy E is conserved, Ed is also be conserved.  The 
disturbance energy of a growing wave that has sprung from an infinitesimal instability is 
zero. One way to think about this is to consider a disturbance observed to have finite but 
small amplitude of O(ε).  The individual terms that constitute Ed are O(ε2) and an 
uninformed observer might guess that Ed is also O(ε2).  In fact, the disturbance can be 
traced back in time to when its amplitude is smaller.  By retreating further in time, the 
disturbance amplitude, and therefore Ed, can be made arbitrarily small.  The conserved 
disturbance energy is therefore essentially zero. The same remarks apply to the 
disturbance momentum, defined by Md=Mm+Mw. 
 
 
  If, on the other hand, the observed disturbance has non-zero energy (or 
momentum) then it is clear that the disturbance, or some portion thereof, cannot have 
evolved as the result of an infinitesimal instability.  A flow for which all possible 
disturbances alter the energy is therefore stable to infinitesimal perturbations.  
 
 A simple demonstration of the principle of zero disturbance energy for an 
unstable system can be made with a pendulum (Figure 3.9.2). First consider its stable 
equilibrium, with the arm and weight hanging straight down.  A moderate perturbation 
sets the weight in periodic motion.  Let a denote the maximum vertical displacement, 
relative to its equilibrium position, that the weight achieves during its swaying motion 
(frame A of the figure).  The energy associated with the swaying motion is then 
proportional to a2.  This is also the disturbance energy: the difference between the total 
energy of the pendulum and its basic state energy.  Note that all possible disturbances add 
energy to the system relative to the basic state. 
 
 Next consider the unstable equilibrium state, with the weight and arm suspended 
straight up (Figure 3.9.1+1B).  A slight nudge sets the pendulum in motion and we 
consider a snap shot of that motion when the weight has undergone the same vertical 
displacement a as before.  The total energy of the system at this point is the same as the 
basic state energy, or at least can be made to approach the basic energy by making the 
initial ‘nudge’ infinitesimally small. The disturbance energy is therefore essentially zero.  
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 Another quantity of importance is the lateral displacement x-xo= δ(y,t;yo) of a 
fluid column away from it’s original position xo in the background state.   Thus   
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c)  Ripa’s Theorem 
 
 
 A sufficient condition for stability (Ripa, 1983) can be formulated by making 
bounds based on the conservation laws for disturbance energy Ew+Em and momentum 
Mw+Mm.  The ‘wave’ constituents Ew and Mw are composed largely of bound-friendly 
quadratic terms like v′2.  The terms that contribute to Em and Mm are less so and require a 
bit more analysis. To this end we consider the linearized shallow water equations for the 
disturbance fields: 
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obtained through substitution of (3.9.5) into the unforced versions of (2.1.5-8)  and 
neglect of O(ε2) terms.  Here   
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is the perturbation potential vorticity.  
 
 It can be shown (see Exercise 2) that the above set leads to  
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where  
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 are the densities of the wave energy and wave momentum and an overbar denotes an 
average in y over a spatial period.  
 
 Using the expression (3.9.6) for the linearized particle excursions,  
it follows from (3.9.7d) that 
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 The general solution to (3.9.12) can be written 
 

   
 
!q = "#

$Q

$x
+ F(x, y " V(x)t) .   (3.9.13) 

 
The first term on the right-hand side is the potential vorticity perturbation due to the 
transverse displacement of a fluid column in the basic state. It therefore results from a 
conservative rearrangement of the basic potential vorticity Q . The second term reflects 
perturbations in q due to changes in the potential vorticity of fluid columns from their 
base values.  These changes require some sort of external forcing. As shown by (3.9.13) 
the q′ anomalies that result are passively advected by the basic velocity. If its initial 
spatial distribution is arranged advantageously, an isolated anomaly may temporarily 
amplify as a result of differential advection.  According to linear theory, the disturbance 
will eventually decay, but its temporary growth might in practice lead to nonlinear effects 
that cause irreversible changes in the flow.  The reader is referred to Farrell and Ioannou 
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(1996) and references contained therein for further insight.  The process described does 
not, however, qualify as instability according to our strict requirement that the 
disturbance is unforced.  
 
 If the forced contribution F to (3.9.13) is ignored, it follows that 
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The perturbation potential vorticity flux is therefore due to a motion, on average, of the 
fluid columns down the gradient of background potential vorticity.  If the equations for 
wave momentum and energy density are integrated across the channel, and the above 
expression for !u !q  is used, one finds 
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Comparison with the earlier energy decompositions suggests that the conserved integrals 
are the disturbance energy Ed and disturbance momentum Md.  Consequently, the 
integrals of the terms involving δ2  are the mean energy and momentum, at least within a 
constant.   If the potential vorticity gradient is zero, then the mean energy is identically 
zero and the disturbance energy Ed equals the wave energy Ew. A similar result holds for 
the disturbance and wave momentum.  Instability is still possible as the growth in 
positive terms such as Du2/2 is compensated by the potentially negative term  V !v !d in the 
wave energy. There is no exchange of energy between the growing wave and the mean 
flow. The mean flow may change, but the energy associated with that change is zero.  
 
 A sufficient condition for stability (Ripa, 1983) can be formulated as follows. 
Although ew is not sign definite, it can be shown (Exercise 3) to be non-negative provided 
that V  2/D≤1, for all y.  That is, a flow for which the local Froude number, dimensionally 

 
V *
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2 , is everywhere ≤1, has non-negative ew. More generally, it can be shown that 
if a constant α can be found such that 
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then ew-αmw≥0.  With this result in hand, we subtract the product of α and (3.9.14b) from 
(3.9.14a). A time integration of the result yields 
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Thus if a value of α can be found for which (3.9.15a) is satisfied, and if it is also the case 
that  
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for each y, then the two grouped terms in the integrand are non-negative.  For an 
infinitesimal perturbation to the basic flow, the positive constant on the right-hand side is 
arbitrarily small.  The integral of ew-αmw, must then be bounded by an arbitrarily small 
positive constant, say !̂ 2 :  
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in view of the provision (3.9.15a). The transverse velocity u′ must therefore be arbitrarily 
small, which rules out shear instability; that is, instability associated with the transverse 
motion of the fluid.  An instability involving the growth of only v′ and d′ is still possible, 
but this would require d′=D1/2v′. This possibility can be eliminated by an argument 
explored in Exercise 4.   
 
 The two provisions in (3.9.15) therefore comprise a sufficient condition for 
stability: Ripa’s Theorem.  The first provision relates to gravity wave propagation while 
the second, which is identical to Fjøtorft’s condition for stability, relates to potential 
vorticity wave propagation.  
 
d.  Rotating Channel Flow with Uniform Potential Vorticity 
 
 For the Whitehead et al. (1974) and Gill (1977) models, and other models of 
rotating channel flow with constant potential vorticity, the second requirement (3.9.15b) 
of Ripa’s sufficient condition for stability is satisfied. The first requirement (3.9.15a) is 
essentially that a frame of reference dy/dt=α can be found such that all Froude numbers 
become less than one.  A graphical interpretation of this condition can be obtained by 
plotting the profiles of  ±D

1/2  and V.  The requirement is satisfied if one can shift the V 
profile up or down so that it fits between the curves for  ±D

1/2 (Figure 3.9.3a).  There is a 
range of states with uniform potential vorticity, in channels with rectangular cross 
sections, that satisfy this condition.  However, this range has not been mapped out and it 
is not clear whether connections with the hydraulic and stability properties of the flow 
exist. 
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  If the depth goes to zero at one or both edges of the channel (Figure 3.9.3b) then 
the condition is nearly impossible to satisfy. The value of α must be chosen as the 
velocity at the edge where the depth vanishes. Then if the depth vanishes at both edges, 
and the edge velocities differ, the condition cannot be satisfied.  Thus, the majority of 
flows in the Borenas and Lundberg (1986) theory for a parabolic cross-section, and 
models with other rounded cross-sections, generally do not satisfy the theorem and may 
be unstable. 
 
 
e.   Modal disturbances. 
 
 Let 
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 Substitution into (3.9.7a-c) then leads to  
 

   
 

[il(V ! c)û]! v̂ = !
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 The boundary conditions are 
 
    Dû = 0   (edges of flow).    (3.9.19) 
 
There are apparently no formal results informing solutions to the eigenvalue problem 
(3.9.18 and 3.9.19).  However, numerical solutions in the long-wave limit generally 
reveal the presence of two Kelvin-like edge waves and an indeterminate number of 
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potential vorticity waves. The latter are eliminated when the potential vorticity is 
uniform. The solutions presented in Figures 2.11.13 and 2.11.14 for the Faroe-Bank 
Channel are one example, although these were computed using a slightly different 
formulation.  The phase speeds of the potential vorticity waves in this case are bounded 
above and below by the Kelvin waves speeds.  Some of the potential vorticity waves are 
unstable. At finite wave lengths, a group of inertia-gravity (or Poincaré) waves is present 
as well.  An example of the latter will be discussed below.  
 
  The analysis is particularly simplified in the case of zero potential vorticity 
(Q=0).  Equation (3.9.17b) reduces to 
 
    

 
V ! c( ) v̂ = !d̂  .   (3.9.20) 

 
Also, the perturbation potential vorticity  !q = D-1

(dv̂ / dx " ilû "Qd̂)  
must vanish:  

    
dv̂

dx
= ilû     (3.9.21) 

 
If these last two relations are used eliminate v̂  and d̂  from (3.9.17c), one finds 
 

   
 

d

dx
D
dv̂

dx

!
"#

$
%&
' l2 D - V - c( )

2() *+ v̂ = 0   (3.9.22) 

 
 In view of (3.9.21) the boundary condition  Dû =0 implies that  Ddv̂ / dx = 0 at the 
edges.  Integration of (3.9.22) across the flow then yields 
 

   
 
l
2

D - V - c( )
2!

"
#
$ v̂% dx = 0 ,   (3.9.23) 

 
where the integrations is understood to be across the width of the basic flow, whether or 
not vertical sidewalls are present.   
 
 Now let c=cr+ici, so that ci>0 implies instability.  The values of cr and ci can be 
bounded according to a ‘semicircle’ theorem, first derived by Howard (1961) in 
connection with stratified shear flow and extended by Hayashi and Young (1987) to an 
equatorial, shallow-water flow.  Multiply (3.9.22)  by the complex conjugate v̂ *  of  v̂ , 
integrate the result across the channel, and apply the boundary conditions to obtain 
 
   

 
D - V - c( )

2!
"

#
$ v̂

2

+ l
%2

D dv̂ / dx
2{ }& dx = 0 . 

 
The real and imaginary parts of this relation are 
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D - V - c
r( )
2

+ c
i

2!
"

#
$ v̂

2

+ l
%2

D dv̂ / dx
2{ }& dx = 0       (3.9.24) 

 
    
   

 
l
2
c
i

V - c
r( ) v̂

2

! dx = 0          (3.9.25) 
 
 Now let 

 
V

min
! V ! V

max
 and suppose that ci>0.  Then a series of inequalities 

(Exercise 5) leads to 
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r
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{ }& v̂
2
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2
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%2

D dv̂ / dx
2
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                                                                                                                   (3.9.26) 
 
The second and third integrals are non-negative and instability therefore requires 
 
  

 
c
r
+ 1

2
V

max
+ V

max( )!" #$
2

+ c
i

2 % 1

2
V

max
- V

max( )!" #$
2

.                (3.9.27) 
 
The complex phase speed of an unstable wave must therefore fall within the semi-circle 
shown in Figure 3.9.4.   
 
 Of particular interest in hydraulics is the stability long waves.  Let l<<1 and write 
 
   v̂ = v

o
+ lv

1
+ l

2
v
2
+ ! ! !           (3.9.28) 

 
For simplicity, we will normalize v̂ such that its maximum value is unity. 
 
 We will now restrict attention to a current that vanishes at the two edges.  Then 
the lowest order approximations to (3.9.22) and (3.9.23) are 
 

    
 

d

dx
D
dv

(0)

dx

!
"#

$
%&
= 0        

and  
 
    

 
D ! (V ! c

o
)
2"# $%& v

0
= 0 . 

 
 Integration of the first relation and enforcement of the boundary conditions leads 
to 
 
    v

(0)
= const. = 1 . 

 
and the second relation then yields  
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c
0

2
! 2c

0
V + V

2
! D = 0 . 

 
The brackets denote a cross-channel average. The phase speeds of the two waves are 
given by 
 

   
 
c
o
= V ± V

2

! V
2
+ D"

#
$
%

1/2

.   (3.9.29) 

 
Long wave instability occurs for 

 
V

2

! V
2
+ D < 0 .  

 
 For real co, (3.9.29) suggests the Froude number 
 

   

 

F
o
=

V

V
2

! V
2
+ D"

#
$
%

1/2
    (3.9.30). 

 
The flow is hydraulically critical when Fo=1. These results hold for general bottom 
topography. 
     
 
e.  The GKS instability.  
 
 A example of a instability that acts in the presence of uniform potential vorticity, 
and therefore does not draw energy from the mean, was analyzed by Griffiths, Killworth 
and Stern (1982).  As shown in Figure 3.9.5a, the basic flow rides over a constant bottom 
slope dx/dx=S and has zero potential vorticity. [Paldor (1983) treated the special case 
S=0.]  The basic flow profile is computed from the geostrophic relation and from the 
zero-potential vorticity constraint  !V / !x = "1. If basic current is positioned so that x=0 
lies midway between the two edges, and if the scale depth D is chosen as the centerline 
depth, then the basic velocity and layer thickness are given by 
 
      V = S ! x , 
 

     
 

D = 1!
x
2

2
, 

 
The edges of the current therefore lie at x=±√2.  
  
 The speeds of the two long waves of the flow can be calculated from (3.9.29) 
using 

 
V = S , 

 
V

2
= S

2
+ 2 / 3 , and 

 
D = 2 / 3 .  Both waves have the same speed: 

 
      c

0
= S . 

 
or co*=Sg′/f .   
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 If one attempts to calculate the next term in the wave number expansion (3.9.28) 
the eigenfunction is again found to be a constant. Our normalization requires this constant 
to be zero.  It can then be shown that the integral determining the first correction c1 to the 
wave speed is degenerate, and thus one must go to the next order of approximation.  At 
O(l2) (3.9.22) and (3.9.23) give 
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dx
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$
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= ' D ' (V ' c
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and 
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2
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o{ }
2

2

& dx = 0 . 

 
Substituting the solution to the first relation into the second leads, after a bit of algebra, to 
 

   c
1
= ±

2i

15
. 

 
Waves with long, but finite, lengths are therefore unstable. 
 
 For the growing wave (c

1
= +2i / 15 ), it can also be shown that positions of the 

right and left edges edge of the current (at t=0, say) are given by  
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where ε is again a measure of the wave amplitude.  Thus the original long wave (l=0) has 
a meandering structure: it experiences displacements that are equal and in phase on either 
side of the flow.  The lowest order correction introduces excursions that are equal but out 
of phase. This structure can be seen to some extent in the early stages of the instability as 
captured in a laboratory experiment (Figure 3.9.6). 
  
 Numerical solutions of the eigenvalue problem show that the central ingredients 
of the long wave instability are preserved well into the range of finite l. As shown in 
Figure 3.9.7, the unstable wave continues to have cr=S and the growth rate lci increases 
with increasing l, reaching a maximum value of about .15 around l=0.8.  The most 
unstable wave therefore has a wavelength of about 8 deformation radii and will double in 
amplitude over several rotation periods.  Both features are characteristic of the laboratory 
experiment (Figure 3.9.6), where the initial current width is about 3.5 deformation radii, 
the wave length is roughly twice that, and the instability reaches a large amplitude in 8 
rotation periods.  Although the instability disappears when l exceeds a value lc≅1.1, 
Hayashi and Young (1987) have shown that isolated bands of instability (the small lobes 
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in Figure 3.9.7b) with smaller growth rates reappear at larger l.  These weaker 
instabilities are shown as small lobes along the l axis. 
 
 The growth mechanism for the GKS instability is clarified by consideration of the 
phase speed curves shown Figure 3.9.7a.  For l slightly greater than the cutoff value lc, 
there are two neutral waves with phase speeds slightly greater and less than S.  Analysis 
of the horizontal structure of these two shows that they are closely related to Kelvin 
waves: the faster is trapped to the right edge and the slower to the left edge of the flow. 
Where l=lc the values of cr merge and the two wave resonate.  Other bands of instability 
are similarly interpreted-they arise when the phase speeds of two neutral waves merge. 
One of the waves is generally of the Kelvin type and the other a modified inertia-gravity 
type (corresponding to the remaining curves in Figure 3.9.7a). 
 
 Direct calculation of the disturbance energy Ed (also the wave energy for this 
case) for the waves shows that one member of a merging pair has negative and the other 
positive energy. In fact, it can be shown that the energy is opposite in sign to 
c
r

!1
dc

r
/ dl and thus the two members of any pair must have opposite signed Ed.  For the 

unstable disturbance produced by the interaction between the two members, the 
disturbance energy is zero by definition. The potential vorticity gradient is zero for this 
flow and thus the mean energy Em associated with the disturbance is also zero.  The 
unstable pair does not draw on energy from the mean; instead, growth in the positive Ed 
of one member is offset by growth in the negative energy of the other.   A similar result 
holds for the disturbance momentum. 
 
 GKS have shown that the long wave instability acts when the potential vorticity 
of the background flow is arbitrary.  They compute the growth rates for several cases of 
uniform (non-zero) potential vorticity f/D∞.  The background flow for this last case 
(Figure 3.9.5b) is similar to that of the Gill (1977) model.  In dimensionless terms, there 
is a central region with uniform depth D∞, now moving at speed g′S/f, and flanked by 
boundary layers of dimensional thickness (gD∞)1/2/f.  When the width W of the whole 
current is wide compared to the latter, the modified Kelvin waves are trapped to the edges 
of the flow and the coupling is weak, as is the instability. When the width and 
deformation radius are comparable, the coupling is strong and, the system behaves more 
or less as the in the zero potential vorticity limit.  Readers familiar with the classical Eady 
(1949) model of baroclinic instability will see similarities with the present problem.  Both 
models involve edge waves that are separated by an interior region.  (In the Eady problem 
the ‘edges’ are rigid, horizontal, upper and lower boundaries.)  Were it not for a 
background flow, the waves would propagate in opposite directions and would not 
couple.  The tendency of the waves is to propagate in opposite directions, but the sheared 
background flow can, over a certain range, bring the two speeds into equality.  The waves 
then couple and experience resonant growth. The effect weaken as the upper and lower 
boundaries are separated. 
 
f.  Connections with hydraulic theory. 
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 The history of hydraulics, particularly with respect to flow criticality, is replete 
with tantalizing but vague connections to instability theory.  However, it has proven 
difficult to make definitive statements about such connections.  As an example, consider 
the Fjøtorft sufficient condition for stability (also the second requirement (3.9.15b) of 
Ripa’s condition for stability).  It states that a necessary condition for instability of a 
single layer, quasigeostrophic flow is that (V !" )(#Q / #x) < 0 .  Thus the potential 
vorticity must increase in the direction to the left of the velocity seen in the moving 
frame.  High potential vorticity on the left suggests that potential vorticity waves attempt 
to propagate counter the background flow, at least in simplified models.  The rest frame 
(α=0) version of this condition also the requirement in the Pratt and Armi (1988) model 
for flow criticality with respect to potential vorticity waves (see Section 2.9).  The first 
requirement (3.9.15a) of Ripa’s theorem also appears to intersect with hydraulic theory in 
requiring the flow to be subcritical in a moving reference frame.  Just how strong these 
connections are is not known. 
 
 Another connection between flow instability and hydraulic criticality is suggested 
by the physical mechanism of the GKS instability. Consider a steady flow that is 
evolving gradually in the y-directions and that becomes unstable to long waves 
downstream of some location yo.  If the instability results from the resonant coupling of 
two neutral long waves, then the corresponding wave speeds c1 and c2 must equal each 
other at yo.  The flow there must then be supercritical with respect to these waves, at least 
in the sense that information carried by the waves moves in one direction.  It is also 
possible, through less likely, that the flow is critical, with c1=c2=0.  In any case, the flow 
cannot be subcritical with respect to the two waves.  The importance of this property is 
the suggestion that long-wave instability may be confined to regions of supercritical flow 
in a wide range of applications.  An example that will be reviewed in detail is two-layer 
flow in a non-rotating channel (see Section 5.2).  
 
Exercises 
 
1. Derivation of the equation for conservation of total momentum. Begin the flux form 
(see Section 3.5) of the y-momentum equation with dh/dy=0: 
 

   
!

!t
(vd) +

!

!y
v
2
d + 1

2
d
2( ) +

!

!x
(uvd) + ud = 0 , 

 
obtained by multiplying (2.16) by d and using (2.1.7).  Then write 

ud =
!

!x
(xud) " x

!

!x
(ud) , use (2.1.7) again, and integrate the result of A to (3.9.4). 

  
 
2. Derive the equation (3.9.8) for the wave energy density.  One method follows this 
plan:  
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(a) Begin by taking uD×(3.9.7a)+vD×(3.9.7b)+dD×(3.9.7c), which should give the 
intermediate equation 
 

 
 

!e
w

!t
+ V

!

!x
(Duv) = "

!

!x
VDuv +Dud( )  

(b) Then write out the definition of the potential vorticity flux vq , rearrange some 
derivatives, and use the x-momentum equation to simplify.  Substitution of the result for 
the second term on the left-hand side of the equation in (a) leads to the desired result. 
  
 
3. Show that the wave energy ew is non-negative provided that V  2/D≤1 for all y. 
 
4.  Completion of the proof of of Ripa’s theorem.  Show that the relationship  D1/2

v = d . 
would prevent satisfaction of the both boundary conditions, whether free edges or vertical 
wall as present. 
 
5.  On the derivation of the semicircle theorem.  With 

 
V

min
! V ! V

max
 observe that 

  

 
0 ! V - V

min( ) V - V
max( )" v̂

2

dx = V
2

" v̂
2

dx # V
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+ V
max( ) V" v̂

2

dx + V
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V
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V" v̂
2

dx  
Next show using equations ( 2.9.24 ) and ( 2.9.25 ) that  
 
  

 
D ! V

2
+ c

r

2
+ c

i

2"# $%& v̂
2

dx + l
!2

D dv̂.dx
2

& dx = 0 . 
 
Using this last relation and (2.9.25) to substitute for the first two, right-hand integrals in 
the first equation, obtain (2.9.26). 
 
 
 Figure Captions 
 
Figure 3.9.1  Cross section of the basic flow. 
 
Figure 3.9.2  Periodic and amplifying disturbances of a simple pendulum. 
 
Figure 3.9.3  (a) Graphical representation of one of the two requirements (see 3.9.15a) of 
Ripa’s Theorem.  Stability requires that the velocity profile can be shifted up or down to 
fit entirely in the shaded area. 
 
Figure 3.9.4  The semicircular region of the complex phase speed plane in which a 
growing wave must lie.  (After Howard, 1961) 
 
Figure 3.9.5  (a) The basic flow of the Griffiths, et al. (1982) stability model: a zero 
potential vorticity current over a sloping bottom. (b) Schematic view of a flow of 
uniform, non-zero, potential vorticity flow along a constant slope. 
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Figure 3.9.6  Streak photos showing the instability of a flow set up by introduction of an 
annular region of buoyant fluid at the upper boundary of a much deeper fluid.  
The initial width of the flow is approximately 3.4 deformation radii (based on the initial 
thickness of the buoyant layer). Photos a-d were taken at 2,4,6, and 8 revolutions 
following release of the fluid. (Figure 8 from Griffiths, et al. 1982). 
 
Figure 3.9.7. The phase speed (a) and growth rate (b) of instabilities of a zero potential 
vorticity current on a sloping bottom (from Hayashi and Young, 1987). The GLK 
instability corresponds to the band roughly spanning 0<l<1.1. Instabilities isolated bands 
of instability at higher l are due to unstable resonance between Kelvin-like and inertia-
gravity waves. The √2 is due to a discrepancy between the present scaling and that of 
Hayashi and Young.  
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