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4.1  Curvature Effects  
 
  
 It was noted in Section 2.3 that a semigeostrophic channel flow that has become 
separated from the northern-hemisphere left sidewall becomes immune to changes in the 
position of the right sidewall.  As the position of the right wall changes the current moves 
with it, undergoing no other change in cross-sectional form.  Only variations in bottom 
elevation influence the flow in a meaningful way.  This aspect has been demonstrated 
under the usual conditions of gradually varying geometry, implying that the radius of 
curvature ρ* of the wall or coastline is large compared to the characteristic width of the 
current.  As we discuss below, the effects of coastal curvature begin to become nontrivial 
once this restriction is relaxed.  In order to make analytical progress, and thereby gain a 
better physical understanding, the ratio of the Rossby radius of deformation, though 
finite, must be kept small.  Topographic effects continue to dominate in this limit if the 
flow contacts the bottom, but topography is irrelevant if the coastal flow takes place in a 
surface layer, insulated from the bottom by an inactive deeper layer.   Sidewall curvature 
then provides the only forcing mechanism.  
 
 Consider a coast-following coordinate system in which s* and n* denote the 
along-shore and offshore directions, as shown in Figure 4.1.1.  To motivate the equations 
of motion in the (n*,s*) system, first consider these equations in the more familiar 
cylindrical (r,θ ) system (e.g. Batchelor, 1967, Appendix 2): 
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Here ur* and uθ* denote the radial and azimuthal velocity and θ  increases (and uθ* is 
positive) in the counterclockwise direction.  Topographic forcing (terms with h*) are 
relevant when the current runs along the bottom and will be retained for completeness.  
However these will be ignored in our discussion of surface currents.  
 
 Now consider a particular location (s*-value) along the coastline.  The radius of 
curvature ρ*(s*) is considered positive if the coast curves to the right in the direction of 
increasing s.  Position the cylindrical coordinates so that the constant-r* circles are 
locally tangent to the coastline at the location in question, as shown in Figure 4.1.1.  The 
origin (r*=0) is positioned a distance ρ*(s*) from the coast and therefore r*=ρ*+n* and 
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!s* = "# *!$ .  Associating ur* and -uθ* with the off-shore and along-shore velocity 
components u* and v* then leads to 
 
   
!v *

!t *
+

" *

" *+n *
v *

!v *

!s *
+ u *

!v *

!n *
+
u * v *

" *+n *
# fu* = #g

" *

" *+n *

!(d *+h*)

!s *
  (4.1.1) 

 
 

 !u *

!t *
+ u *

!u *

!n *
+

" *

" *+n *
v *

!u *

!s *
#

v *
2

" *+n *
+ fv* = #g

!(d *+h*)

!n *
  (4.1.2) 

 

  ! *+n *
! *

"d *
"t *

+
"
"s *

(v *d*) +
"

"n *
! *+n *
! *

u *d *
#

$
%

&

'
( = 0   (4.1.3) 

 
When the coastline curves to the left in the positive s*-direction, so that ρ*<0, the origin 
of the local cylindrical system lies offshore at n*=ρ*.   The corresponding singularity 
appearing in (4.1.1-4.1.3) is avoided if the upper layer outcrops at a value of n*<ρ*, or if 
the fluid at n*=ρ* is stagnant.    
 
 Conservation of potential vorticity in the new coordinates can be expressed as 
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 Steady flow can be described in terms of a stream function ψ* such that 
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as suggested by (4.1.3).  Conservation of the Bernoulli energy and the potential vorticity 
along streamlines then take the forms:  
  

    u *
2
+v *

2

2
+ g(d *+h*) = B * (!*)    (4.1.6) 

 
and 
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where D∞ denotes the potential depth.  
  
 We will examine a current with width we* and with net positive transport in the 
positive s*-direction.  The bottom elevation is constant with n* but may vary with s*.   
We will view the flow as a surface current in which the bounding lower interface may 
outcrop off shore or may join to a motionless offshore region (Figures 4.1.2a,b).  
Treatment of a flow with the wall to the left (Figure 4.1.2c) will come later.  Let ρo* 
denote the characteristic radius of curvature of the coast, L the scale of s*-variation of the 
topography, and W the characteristic value of we*.  Then the above equations can be 
rendered dimensionless through use of the scales (W, L) for (n*,s*) and (V ,U)  for 
(v*,u*),   with the latter related by U=VW/L.  In accordance with usual scaling relations 
(Section 2.1), W=(gD)1/2/f and V=(gD)1/2. The nondimensional forms of (4.1.1-4.1.3) are 
then 
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 There are two adjustable parameters; the aspect ratios W/L  and W/ρo*. If the 
geometry is gradually varying in the sense that W/L<<1, and W/ρo* is also <<1, then 
(4.1.7) will, to leading order, reduce to the geostrophic balance v = !"(d + h) / "n and all 
coefficients involving curvature will drop out of the remaining equations.  Hence 
curvature effects disappear from the leading order equations in the limit of small W/L  
and W/ρo*, even though ρo* and L might be comparable.  This result would appear to be 
formal justification of the earlier remarks concerning the insensitivity of the flow to wall 
curvature.   
 
 There is one exception to the remark just made.  If the flow moves near the 
critical speed (c-=0) it becomes sensitive to gradual changes in curvature. As a 
demonstration, consider the lowest order approximation to (4.1.6-8) when W/L=0, 
0<W/ρo*<<1 and when the fluid has uniform potential vorticity.  To lowest order the 
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resulting equations are the same as those governing the separated channel flow discussed 
in Section 2.3.  One of the two characteristic forms of these equations is 
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where c- is the characteristic speed and R- is the Riemann invariant [e.g. 2.3.18, 19].  The 
right-hand side contains the numerically small curvature terms. If c-=O(1), then dR- /ds 
must be O(W/ρo*) implying that the current experiences only slight changes in response 
to the curvature.  On the other hand, a flow that is nearly critical in the sense that  
c! = O(W / "

o
*)will allow dR-/ds to be O(1) and therefore be sensitive to weak 

curvature.   
 
 One way to include curvature effects in a mathematically simplified setting is to 
assume !

o
* " L , with W/L<<1.  Neglecting terms of O(W/L )2  or higher  in (4.1.7) leads 

to an equation in which advection is neglected but centrifugal acceleration is retained. In 
addition, the local radius of curvature ρ(s)+n is approximated by its value at the coast 
ρ(s).  A common form of the offshore momentum equation that incorporates these 
approximations is 
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When applied to (4.1.7), the same assumptions lead to 
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also valid to O(W2/L2).  These dimensional forms are unfortunate in that they encourage 
the belief that centrifugal acceleration v *2 /! *  can be as large as the Coriolis 
acceleration  fv*. Equation (4.1.7) clearly shows that W/ρo would have to be O(1) in such 
cases.  The operative along-shore length scale L would then be ρo and thus W/L=O(1),  
suggesting that the advective terms  in (4.1.7) are no longer negligible.  One is then 
obligated to solve the full shallow-water equations.  We will proceed with (4.1.12,13) 
with the caveat that their validity depends on the curvature terms remaining small 
compared to the remaining terms.  
 
 Most investigations of curvature have assumed that the potential vorticity is 
uniform (D∞=const.) and that the flow can be traced back into a region where the wall 
curvature κ=1/ρ  is zero.  In this upstream region the cross-sectional velocity and depth 
profiles are given by the semigeostrophic solutions (e.g. 2.2.3 and 2.2.4). If the upstream 
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region in question is a reservoir bounded by two sidewalls, the flow is contained in 
geostrophic boundary currents.  If the upstream geometry is coastal, a single boundary 
current is present. 
 
 In a seminal investigation, Röed (1980) considered flow originating from a wide 
reservoir.  Through an unspecified process the reservoir outflow is imagined to separate 
from the left reservoir wall and become concentrated in a right-wall boundary current of 
the type shown in Figure 4.1.2a.  Given the local value of ρ* at a particular downstream 
location, one seeks a solution that preserves the potential vorticity, volume transport, and 
energy of the reservoir flow.  Let gDr represent the value of the Bernoulli function B* 
along the right wall (facing downstream), where the streamfunction ψ * is taken as zero.    
Then the relation dB*/dψ*  implies B * (!*) = gDr + f! * /D" .  The value of ψ* along 
the left wall in the reservoir is Q*,1  the total volume transport, and ψ*  must also take on 
this value along the free edge n*= we* of the separated current. The solution at a 
downstream section where the ρ* is nonzero may be obtained by first guessing the value 
we* and then solving the pair of first order ODE’s (4.1.12) and (4.1.13), or their 
dimensional versions, numerically2. The integration is started at the free edge n*= we* of 
the flow using the conditions d*(we*)=0 and  
 
   v * (we*) = 2B * (Q*)( )

1/2
= 2(gDr + fQ * /D
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which follows from (4.1.6) with v*2>>u*2.  The integration is then carried to the wall 
(n*=0), where the condition ψ*=0 is checked.  Ifψ*  is non-zero at the wall, the value of 
we* is adjusted and the procedure is repeated until ψ*=0 is obtained at the wall.  More 
than one acceptable value of we* is generally possible.  
 
 By implementing this iterative method for various values of ρ*, one can generate 
a sequence of cross-sections, all with the same Q*, D∞, Dr (and therefore B*(ψ*)).  Figure 
4.1.3 contains a dimensionless graph showing solution curves obtained in this way.  Each 
solid curve gives the stream width, represented by tanh we * f / 2(gD! )

1/2"# $% , as a function 

of the wall curvature, represented by tanh 2(gD! )
1/2
/ " * f#$ %& .  The dimensionless value 

of the wall energy D̂r = Dr (2g / fQ)
1/2 is conserved along each solution curve and 

D
!
(2g / fQ*)

1/2 =4 for all curves. Each curve has an upper and lower branch and direct 
calculation of the speed of the frontal wave that propagates on the free edge indicates that 
the upper branch is subcritical and the lower branch supercritical.3  The lower dashed line 
corresponds to critical flow, as indicated by the merger of subcritical and supercritical 
solution branches.  Just above it lies a second dashed line that marks solutions with zero 
velocity at the wall.  Above this curve the solutions have reverse flow near the wall.  This 

                                                 
1 In the present coordinate system, ψ increases from right to left as seen by an observer facing downstream. 
2 Röed actually solved these equations with full variable curvature (ρ replaced by  ρ+n). 
3 Since the curvature is assumed small, the characteristic speeds are approximately given by 
semigeostrophic  theory (see equation 2.3.18). 
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condition, which cannot occur when the flow is supercritical, is closely related to the 
stagnation condition discussed in connection with upstream gyres (Section 2.7).  
Although the plot extends over the whole range !" < 2(gD" )

1/2
/ # * f < "  the equations 

used to derive the solutions are formally valid only for 2(gD! )
1/2
/ " * f << 1 .   

 
 The solution curves of Figure 4.1.3 have several notable features.  First, the 
subcritical branches show that the stream width decreases and approaches a critical state 
as the curvature decreases.  A subcritical current originating upstream along a straight 
wall (ρ→∞) will therefore narrow and become less subcritical if the wall bends to the left 
(facing downstream).  The same current becomes wider and more subcritical if the wall 
bends to the right.  If the wall bends to the left and its (negative) curvature becomes 
sufficiently strong, the flow will undergo a subcritical-to-supercritical transition.  The 
transition takes place at the point of of maximum negative curvature.  Downstream, the  
flow will become supercritical and will continue to narrow as wall becomes less curved.  
If this supercritical flow then moves into a stretch of positive coastline curvature it can 
either narrow or widen depending on the particular value of D̂

r
.  Thus, there is no simple 

rule governing the widening or narrowing of a supercritical current as the coastline 
curvature varies. The reader will also note that the dependence of the width on curvature 
is rather weak for many of the solution curves, at least when  f / 2!(gD" )

1/2
<< 1. This 

behavior is consistent with the earlier finding that curvature effects are weak in the long 
wave limit.  An exception to this rule occurs when D̂

r
= 2.0 . The corresponding current 

is exactly critical along the upstream section of straight coastline and will experience a 
rapid widening or narrowing upon encountering slight finite ρ.  This is just an example of 
the sensitivity of a critical flow to its geometric constraints, anticipated by (4.1.11). 
 
 Röed also describes solutions that completely separate from the wall.  The 
solutions arise for positive values of ρ that are O(1) and therefore outside the formal 
range of validity of the theory.  The general problem of separation from a coast is 
difficult and of great oceanographic importance.   The Gulf Stream, the Kuroshio, and the 
Mediterranean inflow are just three of many examples of boundary flows that experience 
separation.  In the first two cases the separation is from a ‘left-hand’ boundary and almost 
certainly involves the variation in f with latitude.  The Gibraltar inflow separates from a 
‘right-hand’ boundary (the Moroccan coast) at a sharp corner that marks the beginning of 
the Alboran Sea.  The latter contains the anticyclonic Alboran Gyre.  To compare features 
like this with the (Röed, 1980) model, it should first be noted that the model permits two 
types of separation.  In the first, the active layer remains in contact with the wall but a 
stagnation point forms there.  This type of separation is demonstrated in a laboratory 
experiment (Figure 4.1.5) based on the Strait of Gibraltar and Alboran Sea geometry.  In 
terms of the Röed theory, the value of ρ* required for separation is indicated by the upper 
dashed line in the left half of Figure 4.1.3, where the flow is slightly subcritical.   The 
Moroccan coast line has positive curvature where separation occurs, whereas the model 
separation in question requires negative curvature. 
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 The second type of separation involves the detachment of the entire upper layer 
from the coast and the surfacing of the underlying fluid. It may seem surprising that the 
flow can outcrop on both sides and still maintain a positive flux, but this is made possible 
by centrifugal acceleration.  If the product of (4.1.12) and d* is integrated across the 
width of the stream, the transport can be shown to obey 
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and thus a positive Q may be maintained by a positive ρ* even when the wall depth d*(0) 
vanishes.  As mentioned earlier, some of Roed’s solutions undergo this type of separation 
for sufficiently large and positive curvature, though the locations in parameter space are 
not given.  Klinger (1994) revisited this issue using essentially the same model and found 
that the radius of curvature required is roughly equal to the inertial radius vu * / f  based 
on the average velocity of the upstream flow (measured where the wall curvature is zero).  
It is tacitly assumed that upstream velocity profile is unidirectional, and therefore far 
from being separated from the left wall.  If the upstream flow is nearly separated (and 
therefore bidirectional) the flow may easily separate for large values of ρ*>> vu * / f .  
Klinger also explores a configuration in which the lower layer does not have an offshore 
outcrop (Figure 4.1.2b).  Here the moving portion of the current is separated from a 
stagnant offshore region by a free streamline. The potential vorticity of the flow is again 
constant but the separation condition is found to be insensitive to its value.  Despite the 
finite offshore depth, the wall depth may again go to zero causing the flow to separate.  
The separation condition over much of the parameter space of the solution is 
!* < 0.9vu *weu * /(g 'dI*)

1/2 , where weu* is the upstream current width and dI* is the 
interior depth.  If the upstream width weu* scales with the deformation radius 
(g 'dI*)

1/2
/ f then the criterion is nearly the same as for the first case.  Again, this 

condition may violate the assumption of small wall curvature that underpins the model.  
 
 A similar technique can be used to explore the case with the wall to the left of 
positive Q* (Figure 4.1.2c). Ou and de Ruijter (1986) use a model that is similar to 
Klinger’s, but with the wall to the left.  The potential vorticity of the moving fluid is 
constant and the flow is joined to a stagnant offshore region that has lower potential 
vorticity.  The hydraulically relevant wave is now a Kelvin wave that attempts to 
propagate upstream. Its speed is approximated by -(g/D∞)1/2 times the wall depth (cf. 
Equation 2.2.26) provided the potential vorticity front lies more than a distance (gD∞)1/2/f 
offshore.  Under this condition the flow remains subcritical as long as the wall depth is 
finite.  If d* vanishes at the wall, leading to separation of the current, the flow is close to 
the critical speed.4 The criticality of the separated current downstream depends upon the 
environment in which it propagates;  upstream propagation of long waves may or may 
not be permitted.  Curving of the wall to the left of the direction of flow encourages 
broadening of the boundary current and separation of the flow, whereas negative 
curvature has the opposite effect. Ou and de Ruijter also take into account variations in 
                                                 
4 This property is valid as long as the radius of curvature remains large compared to the current width. 
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the value of f along the wall and the resulting model is sufficiently complicated that no 
simple criterion for separation is written down.  However, unlike the case of 
unidirectional flow with the wall on the right, the flow may separate at moderate 
curvatures.   
 
 Laboratory and numerical models allow one to escape the restriction of weak 
curvature.  These studies traditionally seek local criteria for separation as derived from 
length scales that characterized the flow at a particular location.  These scales include the 
local radius of curvature, the Rossby Radius of deformation ( !g D)

1/2
/ f based on a local 

upper-layer thickness scale D, and the inertial radius U/f based on the local velocity scale 
U.  The ratio of the last two is a Froude number F =U / ( !g D)

1/2 .  Many of the 
experimental flows are set up by a dam break or lock exchange, and this tends to make F 
close to unity.  In such cases the separation criterion is roughly ( !g D)1/2 / f " # 1  (e.g. 
Whitehead and Miller, 1979).  But since ( !g D)

1/2
/ f is roughly equal to U/f  the criterion 

could also have been written as U/fρ≥1.  One study that allows a range of Froude 
numbers (Bormans and Garrett, 1989) suggests that the latter is more general. The 
connection between the experiments and the theory described earlier is difficult to 
establish, not only because U/fρ≥1 violates the underlying assumptions of the models but 
also because the models stress nonlocal (upstream) separation criteria, such as a 
dependence on D∞.  
 
  Other factors cloud the picture, suggesting that more than two dimensionless 
parameters are relevant.  Numerical experiments with no-slip boundary conditions 
produce separation more readily than those with free slip conditions. Also, separation is 
sometimes found to be sensitive to the other properties such as the vorticity distribution 
in the flow. If the vertical wall is replaced by a sloping bottom or continental shelf the 
separation condition is altered and the tendencies that occur in response to wall curvature 
can actually be reversed, as shown in Section 4.2. In the end, flow separation may be 
sensitive to a whole array of physical circumstances that generic models have difficulty 
assimilating. 
 
  
Exercises 
 
 1)  It was argued in connection with equation (4.1.14) that positive curvature will 
allow a current of the type shown in Figure 4.1.2a to maintain a positive flux even when 
depth along the right wall vanishes.  Prove that this is also true for a current of the type 
shown in Figure 4.1.2b. 
  
 2)  Show that (4.1.12) and (4.1.13) can be solved analytically for the case of zero 
potential vorticity.  Derive the resulting depth and velocity profiles assuming geometry of 
the form shown in Figure 4.1.2a.  For given values of energy gDr and flux Q what is the 
condition for separation of the entire upper layer from the right wall.  
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Figure 4.1.1  Curvalinear coordinate system. 
 
Figure 4.1.2  Upper layer geometry for (a): surface current with the wall to the right of 
positive flux and an outcropping interface; (b): a similar situation, but with the offshore 
edge joined to a finite depth, quiescent region by a free streamline; (c) a current running 
with the wall to the left, facing downstream. 
 
Figure 4.1.3  Solution curves for coastal current with uniform potential vorticity.  The 
lower dashed line indicates critical flow and the upper dashed line indicates stagnation 
along the right wall.  The upper branches of the (solid) solution curves correspond to 
subcritical flow. D̂r = Dr (2g / fQ)

1/2 is conserved along each solution curve and 
D

!
(2g / fQ*)

1/2 =4 for all curves.  (From Röed, 1980) 
 
Figure 4.1.4  Flow separation in a two-layer lock-exchange flow. The (clear) surface 
layer enters the gap from the left reservoir and separates from the boundary at the 
indicated stagnation point.  The separated flow continues in an anticyclonic arc, forming 
a gyre.   The denser layer is dyed black and is exposed to the surface offshore (to the 
right) of the gyre. The experiment is described more fully in Miller and Whitehead, 1979.  
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