
4.2  Coastal upwelling fronts and jets. 
 
 When the wind blows along a Northern Hemisphere coastline such that the coast 
lies left of the downwind direction, offshore Ekman transport is created at the surface.  
Water moves offshore and is replaced by deeper fluid that upwells and creates colder 
surface temperatures at the coast. This circulation is of biological importance because it 
lifts large amounts of nutrient-rich seawater to the light zone and, through photosynthesis,  
provides a basis for many of the worlds fisheries. A view of the resulting state as it would 
appear in a two-layer idealization is shown in Figure 4.2.1. The continental shelf is 
represented by a sloping region over which the total depth increases from zero to Do

 at 
the shelf break.  At the shelf break is a vertical fall (nondimensionally x=w) that 
represents the continental slope.  Offshore of this point the depth is infinite and the lower 
layer is inactive.  The interface profile (I) shows the state that might occur before the 
upwelling event.  As a result of the upwelling, lower layer fluid is brought up onto the 
shelf causing the interface to ground on the bottom (II) or to outcrop at the surface (III or 
IV).  The sloping interface implies a cross-shelf pressure gradient and the latter tends to 
be balanced by a geostrophic, along-shore flow.  In the northern hemisphere the upper 
layer flow runs with the coast on its left.  Jet-like flows are observed along the northwest 
American coastline and along other coasts that experience upwelling.  
 
 Once an along-shore current is established, it will experience topographic 
interactions due to capes, canyons, and other irregularities in the coastline.  As shown in 
Figure 4.2.2, a southward flowing jet along the Oregon and Californian coastline passes 
several promontories, including Capes Blanco and Mendocino.  The cool (darker) areas 
in the lees of these features represent deeper fluid that has welled up to the surface.  In 
the context of Figure 1, these pools could be created when the interface evolves from 
profiles I or II, for which the interface grounds on the shelf, to (III) or (IV), where it 
outcrops at the surface.  A number of investigators have attempted to explain these and 
other aspects of along-shore evolution using a hydraulic theory for the coastal jet.  The 
descriptions below are based primarily on the work of Gill and Schumann (1979), who 
applied such a model to the Agulhas Current, and on Dale and Barth (2001), who applied 
a closely related model to Cape Blanco.  A simplified version of the model was used by 
Stommel (1960, Chapter 8) to simulate the Gulf Stream along the eastern United States 
coastline. 
 
 The story just told tacitly ignores frictional effects, even though Ekman layer 
dynamics are essential to the upwelling.  Nevertheless, it will be assumed that once the 
along-shore flow is set up, friction will not contribute significantly to evolution over 
limited regions of strong topographic variation. At the same time, we invoke the usual 
assumption of gradual along-shore variations in the coastal geometry, meaning that w*(y) 
varies on a scale large compared to w* itself.  The sea surface will be treated as a rigid lid 
and the shelf break depth Do will be considered fixed.  Capes are then represented as a 
narrowing of the shelf (a decrease in w*), which is consistent with the bathymetry of the 
Oregon coast.  
 



 The dynamics of the upper layer involve interactions with the lower layer, a 
process that has not been explored thus far.  Although a detailed development of this 
subject takes place in Section 5.1, the uninitiated reader should be able to follow this 
section without assistance.  The top and bottom layers will be numbered ‘1’ and ‘2’ 
respectively and, in accordance with the semigeostrophic approximation, the alongshore 
velocity components v1* and v2* will be considered geostrophic.  The upper layer is 
assumed to be capped by a rigid lid and the pressure there is denoted by pT*. The 
geostrophic relations for the two layers are then given by  
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where d1* is the upper layer thickness and g′ is the reduced gravity. The pressure gradient 
term on the right-hand side of the second equation follows from the hydrostatic relation.  
Subtraction of the second equation from the first results in the thermal wind relation 
 

    f (v
1
*!v

2
*) = "g

#d
1
*

#x *
.   (4.2.2) 

 
  The semigeostrophic potential vorticity of the upper layer will be considered 
constant: 
 

    
f +

!v
1
*

!x *

d
1
*

=
f

D
1"

,    (4.2.3) 

 
even though there is little in the way of observation or deduction to justify the constancy 
of D1∞.  The assumption is made purely for convenience. As for the lower layer potential 
vorticity: 
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it will be sufficient to assume that D2∞ >> D1∞, as suggested by Figure 1, even though D2∞ 
need not be constant. 
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along-shore velocity, rigid lid pressure, horizontal length, and time.  Then (4.2.1)-(4.2.4) 
become 
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 Note that the approximation in (4.2.8) is valid only over the shelf, where lower 
layer fluid has risen up and where D

1!
is a legitimate scale for the lower layer depth.  

Offshore of the shelf break v2=0, and (4.2.6) and (4.2.7) then yield 
 

    
!
2
d
1

!x
2
" d

1
= "1.    (4.2.9) 

 
With the requirement that d1 remain bounded as x→∞, the solution takes the form 
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where the coefficient d̂  is to be determined by matching (4.2.10) to the inshore solution. 
 
 Over the shelf the solutions depend on the configuration (I), (II), (III), or (IV) of 
Figure 4.2.1.  Where the upper layer occupies the whole water column, the velocity is 
computed from (4.2.7) with d1 equal to the specified shelf depth. Where both layers are 
present, the solution is obtained by differentiating (4.2.6) with respect to x and using 
(4.2.7) and (4.2.8) to eliminate the derivatives of v1 and v2.  The resulting equation for the 
upper layer depth is  
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 Marching through the mathematics for all four configurations is rather tedious and 
we therefore limit a detailed discussion to case (II): the most difficult and most 



interesting of the four.  Although the primary focus is on steady flow, the retention of 
time-dependence is not burdensome.  Certain aspects of the nonlinear frontal or Kelvin 
waves that arise are explored in the exercises at the end of the section.  Hereafter we will 
assume that the shelf break depth do (= Do

/ D
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 For Case (II), let b(y,t) denote the x-position at which the interface grounds.  Then 
the cross sectional structure of the flow in the various regions is given as follows.  For the 
inshore region (0≤x≤b):  
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The latter follows from the nondimensional geostrophic relation v
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upper layer. 
 
 For the shelf region occupied by both layers (b≤x≤w): 
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Finally, the offshore region (x≥w) has 
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and 
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 The coefficients in the above expressions have been chosen such that pT and v1 
are continuous across the boundaries x=b and x=w of the three regions.  These 
requirements ensure that d1 will also be continuous. 
 
 The y-momentum equation for the upper layer can be used to calculate the 
behavior of the along-shore current in y and t.  A convenient form to use is 
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The second term, which is just d1u1 times the upper layer potential vorticity, goes to zero 
at the coastline (x=0).  Substitution of the expressions for v1 and pT (see 4.2.13-4.2.16) 
into this equation and evaluation of the result at x=0 leads to 
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where B

o
 is the upper layer Bernoulli function at the coast: 
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with vo and po given by (4.2.15) and (4.2.16).  
  
 Since all the time dependence is contained in the variable b(y,t), while all the y-
dependence is contained in b and w, (4.2.23) can be written in the form 
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The signal that propagates at speed c(b,w) is essentially an internal Kelvin wave that has 
been modified by the presence of the current and the sloping bottom. Since the model 
admits just one wave, the concepts of subcritical or supercritical flow need to be 
rethought.  The usual practice is to call the flow supercritical when the wave propagates 
in the same direction as the upper layer transport.  The nominal direction of upper layer 
transport will be positive (with the northern hemisphere coastline on the left) and 
therefore supercritical and subcritical flow will be characterized by c>0 and c<0.  In the 
latter case the wave propagates with the coast on its right; that is, in the usual sense for 
northern hemisphere Kelvin waves.  There will also be some cases with negative upper 
layer transport, making the classification of the flow less straightforward. 
 
 We are now in a position to discuss case II steady solutions and their hydraulic 
properties.  However, it will be helpful to first describe the properties of cases (I), (III), 
and (IV), which will be stated without proof.  The reader who has mastered Sections 2.2 
and 2.3 will not be surprised by most of what comes next. For case (I), the interface 
grounds along the vertical wall and the wave dynamics are similar to those of a Kelvin 
wave that propagates along the left wall of a wide channel (Figure 2.2.3).  Most 
importantly, the wave speed is negative regardless of the direction of the upper layer flux 
(cf. Equation 2.2.26).  Case (I) flows are therefore always subcritical.  In Case (IV) the 
interface outcrops at a position offshore of the shelf break and the wave dynamics are 
identical to those that occur when the Figure 2.2.3 flow separates from the left wall of the 
channel.  The characteristic wave speed is zero and the flow is exactly critical.  The flow 
no longer feels the coastal topography and is essentially unforced.  Case (III) is more 
difficult to describe in terms of previous results, but it can be shown that the wave speed 
is always positive and thus the flow is always supercritical (see Exercise 3). Transitions 
between subcritical and supercritical flow can only occur when the interface grounds on 
the shelf (Case II). 
 
 Under conditions of steady flow, Bo is a constant prescribed by upstream 
conditions.  Solutions in this case could, in principle, be computed from (4.2.24).  A 
useful alternative to this relation can be derived by first noting that  
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The upper layer volume transport may therefore be written as  
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where B∞ is the value of the upper layer Bernoulli function at x→∞ and is equal to unity. 
Equation (4.2.24) can therefore be expressed as  
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  A set of steady solution curves for various values of Q1, showing the interface 
outcrop position as a function of the shelf width appears in Figure 4.2.3. In order to 
present all cases with a single figure, the composite variable 
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has been introduced.  The quantity d1

+ represents the upper layer depth just offshore of 
the shelf break. Recall that b or b′ denotes the position of the inshore edge of the interface 
over the shelf (Figure 4.2.1).  The shelf edge depth do=2 in all cases, and this means that 
the upper layer thickness far offshore (=1) is less.   
 
 Critical states in Figure 4.2.3 lie along the dashed curve that passes through the 
minima of the family of Q=constant curves.  Subcritical flows lie to the left and 
correspond to instances of cases (I) or (II); supercritical flows lie to the right and 
correspond to (III) or (IV).  The slope of the all the curves for case (III) equals unity 
(w=α+const.) and thus a solution with a surface outcrop over the shelf maintains a fixed 
distance w-α from the shelf edge. Case (IV) occurs along the line α=w (or Q=0.5); when 
the interface outcrops at the surface and this position is at or offshore of the shelf break, 
the flow is no longer forced by topographic variations.   
 
 A flow that is subcritical upstream may undergo a transition to supercritical flow 
due to a narrowing of the shelf.  This evolution can be traced by following one of the 
constant Q curves from the left hand portion of the figure, though the minimum in w, and 
onto the right-hand branch.  As this occurs, the inshore termination of the interface 
continuously rises along the shelf, possibly striking the surface and exposing the cold 
lower layer.  There are also some features that complicate this traditional picture; one is 
that some of the curves have negative Q.  The latter terminate at the origin and can 
therefore be joined with a supercritical solution branch only if the shelf width w goes to 
zero. Another complication is that for other values of do the solutions cannot always be 
continued smoothly through the subcritical regime.  Dale and Barth (2001) should be 
consulted for further details. 
 
 Another view of the critically controlled solution appears in Figure 4.2.4, which is 
calculated using a more general model containing an approximation to the Cape Blanco 
topography.  The dashed line in Figure 4.2.4b shows the position at which the interface 
grounds over the shelf and this curve turns solid where the grounding becomes a surface 
outcrop.  Lower layer fluid is exposed along the coast south of this transition.  Whether 
this accounts for the observed behavior of the front near Cape Blanco is unsettled; other 
explanations such as local enhancement of the winds by the Cape have also been put 
forward (e.g. Samelson et al., 2002).   
 



 Further results on time-dependent features of upwelling fronts can be found in the 
literature.  Gill and Schumann (1979) discuss the nonlinear properties of the coastal 
trapped waves that arise in all three cases.  Some of these properties are drawn out in 
exercise 3 below.  Dale and Barth (2001) describe some initial-value experiments that 
demonstrate blocking of the upstream flow by the cape. 
 
 Since the model discussed above is constrained to have uniform potential vorticity 
in each of the two layers, potential vorticity waves have been expunged. Among this 
group is the continental shelf wave which, in the absence of a background flow, 
propagates in the same direction as a Kelvin wave.  Coastal flows with potential vorticity 
gradients may exhibit hydraulic behavior, though field examples have yet to be clearly 
identified. Hughes (1985a,b;1986a,b;1987) describes a variety of models, some of which 
will be touched on in Section 6.2.  Particularly relevant to the present discussion is the 
(1985b) model, which allows for potential vorticity and Kelvin wave dynamics and 
shows that hydraulic transitions with respect to both are possible. 
 
  
 
Exercises 
 
1)   Calculate the lower layer velocity over the shelf for case (II).  
 
2)   Calculate the characteristic wave speed for case II  explicitly.  Consider an initial 
condition in which b increases monotonically from one constant value to another.  
Discuss the direction of propagation of the resulting wave and the tendency to steepen or 
rarefy.   
 
3)  The dynamics of Case III. 
 
 (a)  Show that the upper-layer, cross-shelf structure for case III is given by: 
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for b′≤x≤w.  Note that b′ is the position of the surface outcrop. 
 
 (b) To find the evolution of the flow in x and t, consider the y-momentum 
equation applied at the outcrop x=b′.  A particularly convenient form of this equation is 



obtained by applying it along the outcrop, so that derivatives in y and t are taken after x is 
set to b in the expressions appearing in (a).  To achieve this form first show that  
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for any variable v.  Show that a similar expression holds for y-derivatives.   Now use 
expressions like this to replace local y- and t- derivatives in the upper layer y-momentum 
equation by derivatives of quantities first evaluated at x=b′.  With the help of the 
geostrophic relation for v1 and the potential vorticity definition, you should obtain 
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Finally, apply this equation to the expressions derived in part (a) to obtain an evolution 
equation for b′.  Identify the characteristic wave speed and show that it is non-negative. 
 
(c) Show that for steady flow, b′-w remains conserved. 
 
 
Figure Captions/Info 
 
4.2.1  Definition sketch.  
 
4.2.2  Sea surface temperature from May 18th 1995 at 21:00 UCT for a region of the US 
west coast. Isobaths are shown at 200m (approximates the shelf edge), 1000m, 2000m 
and 3000m.  (Dale and Barth, 2001, Figure 1) 
 
4.2.3  Solution curves relating the shelf width w and position of interface outcrop α (see 
Equation 4.2.28) for various values of the upper layer transort Q1.  The shelf break depth 
do=2 in all cases.  The figure is based on solutions to (4.2.27) for case II and the relations 
that govern steady flows in the remaining cases as they appear in Dale and Barth (2001). 
(From Dale and Barth, 2001)  
 
4.2.4  Fields of (a) streamfunction and (b) upper layer thickness d1 for approximated 
Cape Blanco topography.  The solution shown is critically controlled and has Q=0.701.  
A dashed bold line shows the position x=b where the interface grounds on the bed, and 
this turns to a solid bold line where the interface outcrops at the surface. (From Dale and 
Barth 2001.)   
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