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4.4 Expansion Fans and Compressions: Formal Theory.  
 
 The ideas presented in the previous section can be formalized using the method of 
characteristics for steady, 2D, shallow flow.  This methodology has been used widely in 
the field of aerodynamics to describe supersonic flow (Courant and Friedrichs 1948). 
A simple reinterpretation of variables in the governing equations leads to solutions of the 
shallow water equations, with or without rotation. The irrotational case is particularly 
simple and leads to descriptions of the marine layer expansion fans and compressions that 
are elegant and that capture most of the important physical mechanisms.  The 
methodology can be extended to account for rotation but the governing equations for this 
case (Appendix C) are less transparent.  
 
(a) Summary of the Method of Characteristics 
 
 The essential ideas underlying expansion and compression waves generated by 
flow along a coast can be illustrated through consideration of an irrotational, shallow 
flow.  The governing characteristic equations are developed in Appendix B and we give 
only a brief recount of the central ideas here.   We begin by attempting to cast the steady 
shallow water equations in a standard quasilinear form (see B1) with two dependent 
variables.  The full shallow water equations, which are normally written in terms of the 
three variables u, v, and d, may be expressed in terms of just u and v through use of the 
Bernoulli equation: 
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All variables are now nondimensional, with length, depth, and velocity scales L, D, and 
(gD)1/2. Although the Bernoulli function do is normally depends on the streamfunction, it 
is here rendered constant by the assumption of an irrotational velocity field: 
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  If the gradient of (4.4.1) is taken and the continuity equation: 
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is used to eliminate !d  from the result, one obtains 
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Together, (4.4.2) and (4.4.3) constitute the required form of two equations in the two 
unknowns u and v, d being considered a function of these variables through (4.4.1). 
 
 To achieve the characteristic form, (4.4.2) and (4.4.3) must be linearly combined 
to form an expression in which all derivatives are expressed in a single direction.  This 
procedure can be carried out successfully provided that the local Froude number 
F=(u2+v2)1/2/d exceeds unity within the region of interest.  Under this condition there are 
two characteristic directions, and the slopes of the corresponding characteristic curves C+ 
and C- are given by 
 

    dy

dx

!
"#

$
%&
±

= tan(' ± A) ,   (4.4.4) 

 
where θ is the inclination of the velocity vector u with respect to the x-axis and 
A is the Froude angle defined by   
 
    d

1/2
= ± u sinA    (4.4.5) 

 
(see 4.3.2).  As sketched in Figure 4.4.1a, the characteristic curves C+ and C- at a point P 
are aligned at angles ±A with respect to the local velocity vector or streamline. The 
wedge formed between C+ and C- defines the region of downstream influence for P. 
 
 Let α and β serve as parameters that vary along the two characteristic curves. 
Then (4.4.4) impiles 
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As shown in Appendix B, the characteristic equations governing the evolution of the flow 
along these curves are given by 
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 If the flow field consists of linearized disturbances to a known background state, 
then θ and A are known in advance and (4.4.6) can be solved independently to determine 
the characteristic curves.  Equation (4.4.7a,b) can then be integrated along these curves, 
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beginning from a boundary at which u and v are known, in order to obtain a solution.  In 
more general circumstances, the four equations must be solved simultaneously. 
 
 
(b) The hodograph for 2d, irrotational flow. 
 
 A helpful alternative to the physical plane representation of characteristics is the 
(u,v) plane, or hodograph .  As suggested in Figure 4.4.1b, the characteristic curves C+ 
and C- have images Γ+ and Γ- determined by (4.4.7).  Comparing (4.4.6) to (4.4.7), it is 
apparent that the tangent to C+ is normal to the tangent Γ-, and vice versa, when the two 
directions are represented in the same space.  The relationship between A and the angle A′ 
in the (u,v) plane between characteristics and streamlines is thus 
 
     A′=90o-A.   (4.4.8) 
 
It follows from (4.4.5) that 
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 Hodograph characteristics are inclined at the angle ω with respect to the u-axis, 
where 
 
    ! = " + #A  for Γ+,   (4.4.10a) 
and  
 
    ! = " # $A  for Γ-.   (4.4.10b) 
 
 An advantage of the hodograph for two-dimensional, irrotational flow is that the 
general forms of the characteristic curves can be determined and represented graphically, 
without regard to the particular geometry or boundary conditions. To determine these 
forms, it is helpful to introduce the new variables u(n) and u(t) representing the projection 
of u normal and tangent to the hodograph characteristic in question.  We use the 
convention that positive u(n) lies to the left of positive u(t). The following analysis applies 
to either Γ+ orΓ-, with ω  defined by the corresponding (4.4.10a) or (4.4.10b).  The 
tangential component of the velocity is given by  
 
   u
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1/2 ,    (4.4.11) 
 
where the final equality follows from (4.4.9).  The normal component is given by  
 
   u
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Rearrangement of these relations leads to  
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If we now treat ω as a parameter along the Γ+ orΓ- curve in question, then 

differentiation of the last two relations leads to 
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The combination cos(ω)×(4.4.13b)-sin(ω)×(4.4.13a) leads to 
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after use of (4.4.7) with (4.4.10) to eliminate the terms on the left-hand side. 
 
 A second equation for u(n) and u(t) can be found from (4.4.11), which allows 
Bernoulli’s relation (4.4.1) to be expressed as  
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 The solutions to (4.4.14) and (4.4.16) can be written as  
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where ωo is an arbitrary constant.  The condition that u(n)=0 whenu(t ) = (2d
o
/ 3)

1/2 , which 
follows from (4.4.15), has been imposed. Since Γ+ may range from lying parallel to the 
velocity vector (u(n)=0, u(t)>0) to lying perpendicular and to the left of the velocity  
(u(t)=0,u(n)<0), ω-ωo can vary over [0,√3π/2].  Similarly, ω-ωo varies over [0,-√3π/2] for Γ-

. 
 
 In view of (4.4.12) the solutions for u and v are given by 
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When ω=ωo the above pair givev / u = tan!

o
, confirming that the hodograph 

characteristics are aligned with the velocity vector (A′=0).  According to (4.5.2) and 
(4.4.8) this condition requires the Froude number to be unity and ωo is therefore the 
orientation of a particular characteristic under conditions of criticality.  If ω is increased 
from its critical value ωo, the hodograph characteristic veers to the left of the velocity 
vector. The resulting curve should therefore be identified with Γ+.  Γ- is generated by 
decreasing ω below ωo.   
 
 Since the local Froude number must exceed unity (u2+v2>d) it follows from 

(4.4.1) that the hodograph characteristics must lie outside the ‘critical’ 

circleu2 + v2 = 2d
o
/ 3 , the equivalent of the ‘sonic’ circle in aerodynamics.  An outer 

bound on the range of u and v is the ‘separation circle’ u2 + v2 = 2d
o
 obtained by setting 

d=0 in (4.4.1).  Analogous to the ‘cavitation circle’ in aerodynamics, this bound indicates 

the flow speed that would occur when the layer depth vanishes, exhausting the available 

potential energy.   
 

The curves defined by (4.4.17a,b) are epicycloids lying between the critical and 
separation circles (Figure 4.4.2).  These curves can be constructed graphically by 

considering a point p fixed to the perimeter of the small circle that fits between the 

bounding circles.  If the small circle is rolled around the circumference of the critical 
(inner) circle, the point p traces out an epicycloid.  Figure 4.4.2a shows the curves 

generated when p initially lies along the critical circle.  Rolling the small circle 
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counterclockwise causes p to move to q ; rolling the circle counterclockwise causes p to 

move to r. The associated epicycloids Γ- and Γ+ are both tangent to (u,v) when the latter 

touch the critical circle and the direction of the two curves at this point is ωo (Figure 

4.4.2b). As one moves from p along along Γ+, the tangent angle ω  increases as does the 

orientation θ of the velocity vector.  Since the physical plane characteristic curve C- is 

perpendicular to Γ+, its angle of inclination θ-A also increases.  The family composed of 

all possible Γ- and Γ+ can be generated by varying the position of the starting point p, or 

equivalently the angle ωo, around the critical circle. 

 
c. Reimann invariants and simple waves. 
 
 Now consider the region R of physical space over which the flow is to be 
calculated.  As an example, we take R as the area lying downstream of the open 
boundary B and to the west of the irregular coastline (Figure 4.4.3a).  The flow crossing 
B  is assumed to be uniform and southward: d=do and u=0 and v=vo.  The C+ or C- curves 
at B are all inclined at the angle A or -A, A = sin

!1
(d

o

1/2
/ v

o
) , relative to the velocity 

vector.  A C+ curve forms an angle 3π/2+A with respect to the x-axis while its image  Γ+ 
forms an angle (3π/2-A)+π/2=-A in the hodograph. The hodograph image Γ+ of a 
particular C+ curve crossing B  can be found by drawing the velocity vector uo=(0,vo) in 
the hodograph (Figure 4.4.3b).  The desired Γ+ curve is the one touched by the tip of this 
vector and is sketched in bold.  The uniformity of the flow crossing B implies that this 
particular Γ+ corresponds to all the C+ curves entering R across B . A relationship 
between u and v, say R+(u,v)=constant, can be constructed by tracing the values along this 
curve.  This relationship must hold over all of R covered by the C+ curves originating 
from the upstream boundary.  (In many cases the coverage of R  by these curves is only 
partial, as when the downstream flow contains shocks.)  
 
 

The function R+ is a version of the Riemann invariant discussed in earlier sections 
in connection with time-dependent flows.  Those discussions also alluded to the simple 
wave, a flow region for which one of the Riemann invariants is constant.  In the present 
setting a simple wave corresponds to a region of flow for which all C+ (or C-) 
characteristics correspond to a single Γ+ (or Γ-).  Since the particular relation between  u 
and v along the unique characteristic holds for the entire simple wave, the individual 
values of u and v (and therefore d) must be constant along all characteristics of the 
opposite sign. The slopes of each such characteristic must therefore be constant.  In the 
above example, where all possible u and v values lie along the bold Γ+ curve (Figure 
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4.4.3b) the C- curves must have constant slope.  The latter must also lie normal to the 
bold Γ+ curve when the two are plotted in the same space. 

 
 We now consider the effect of the coastline variation suggested in Figure 4.4.3a.  
The boundary condition of no normal flow and free slip implies that the inclinationθ of 
the velocity vector at the coast is that of the coast itself.  Since the possible range in 
velocity components u and v is restricted to the bold Γ+ curve in Figure 4.4.3b, the 
complete velocity vector u can be found at each point on the coastline from the local 
angle θ.  If one follows the coastline southward (Figure 4.4.3a) from the upstream 
boundary (point o) to point m, the value of θ  increases from 3π/2 to a slightly larger 
value.   As θ  increases, the velocity vector at the coast can be found by tracing along the 
bold  Γ+ curve in Figure 4.4.3b from o to m.  It is clear that the flow speed increases as 
the point m is reached and that the tilt of the C- curves, which are perpendicular to  Γ+, 
has also increased.  The corresponding region of diverging C- curves, or expansion fan, is 
shown in the upper frame.  Further downstream, the coastline bends back southward and 
the above process is reversed.  The result is a set of converging C- curves that form a 
shock.  The matching conditions appropriate to a shock formed at a simple corner were 
discussed in the previous section.   The Riemann invariant relation between u and v is lost 
where the C+ curves cross the dissipative shock.  In fact, the dissipation may lead to the 
generation of vorticity that would invalidate the assumption of a constant Bernoulli 
function in the downstream region. 
 
 The method of characteristics may be used to compute rotating flows, or 
nonrotating flows with vorticity, but elegant graphical solutions are (apparently) no 
longer possible.  Three characteristic directions and curves must be considered, two of 
which are defined by (4.4.4) and the third of which are the streamlines. The characteristic 
equations that must be integrated along these curves to compute the flow are developed in 
Appendix C and the reader is referred to Garvine (1987) for an application.   
     
 
Figure Captions 
 
Figure 4.4.1.  (a) The wedge of influence for a disturbance generated at the origin in the 
(x,y)-plane lies between the C+ and C- characteristics, which are inclined at the Froude 
angle A with respect to the velocity vector.  In the hodograph (b) the wedge of influence 
lies between the images of the characteristics Γ+ and Γ-, which are inclined at angle A′ 
with respect to the velocity and lie at right angles to C- and C+ respectively.  
 
Figure 4.4.2. (a) The critical and separation circles and the epicycloids generated by 
rolling the small circle on the critical circle.  (b) The hodograph characteristics Γ+ and Γ- 
for a particular ωo. 
 
Figure 4.4.3  (a) Schematic view of the characteristics produced by flow along an 
irregular coastline.  (b):  The corresponding hodograph.   
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