
4.5 Rotating Gravity Currents 
  
 
 
 When relatively fresh river or estuary water discharges into the open ocean, it 
tends to turn to the (Northern Hemisphere) right and form a coastal surface flow or 
‘gravity current’ (e.g. Munchow and Garvine 1993 and Rennie, et al. 1999).  The outflow 
can be modulated, and sometimes blocked, by upwelling-favorable winds blowing across 
the mouth of the estuary.  This is the case when northeastward winds blow across the 
mouth of Chesapeake Bay.  When the winds relax or change direction, the brackish 
surface layer that normally resides in the bay is released.  It exits and flows 
southwestward in a gravity current or plume along the Virginia and N. Carolina coasts 
(Figure 4.5.1).  The leading edge of the current forms a blunt nose that can sometimes be 
seen at the free surface from the shoreline (Figure 4.5.2).  A similar phenomenon 
occurs in the now familiar California coastal atmospheric marine layer (Beardsley et al. 
1987 and Dorman 1987). At the beginning of the event shown in Figure I2b, the winds 
are from the north and the marine layer is gathered offshore of the Southern California 
Bight. At the time the image was taken, the marine layer has surged northward in 
response to a wind reversal. The leading edge can be seen near Point Arena, where it has 
stalled, formed an eddy, and resumed its northward travel.  
 The nonrotating gravity current has been studied extensively (Simson, 1997) and 
many of the ideas developed in this body of work form the basis for models with rotation. 
other sources of ideas for rotating gravity currents are early laboratory experiments, 
including Stern et al. 1982, Griffiths and Hopfinger 1983, Kubokawa and Hanawa 1984b, 
and more recently, Helfrich and Mullarney 2006.  In these experiments, a homogeneous 
layer floating on an ambient fluid of slightly greater density and held in a reservoir is 
released and allowed to flow into a rotating channel or annulus.  The situation is similar 
in some respects to the full dam break problem considered in Section 3.3, but turned 
upside down.  The contact with the free surface avoids some of the frictional 
complications that would occur if the intrusion rubbed against the bottom.  The fluid 
seeks out the right-hand wall of the channel and forms a boundary current, but unlike the 
thin-nose found in the single-layer version of the problem (Figure 3.3.3), the two-layer 
gravity current forms a blunt nose.   This feature is evident in Figure 4.5.2 and in a 
sequence of realizations of a laboratory current (Figure 4.5.3).  The upper image in each 
pair is a plan view, while the lower image is a side view created by a mirror reflection.  
Lateral and vertical detrainment of the (dyed, fresh) fluid in the current into the (clear, 
saline) ambient fluid can be observed, particularly in the early stages.   In the four 
laboratory experiments cited, the nose is observed to propagate at the speed 
 
     cb*=β(g′db*)1/2,    (4.5.1) 
 
where db* is the upper layer depth at the wall, just upstream of the head (Figure 4.5.4) 
and β ranges over 1.0-1.3. The width wb* of the current behind the head is more difficult 
to define due to the presence of eddies and billows around the outer edge.  Nevertheless 
all investigations show that, regardless of definition,  
 



    wp* = !w g 'db * / f , 
 
with 0.5<βw<0.8. The values of cb*, db*and wb* tend to decrease gradually with time. In 
some experiments the leading edge stagnates, creating an expanding gyre behind the 
leading edge. The traditional view (Figure 4.5.4) is that the gravity current consists of a 
blunt nose followed by a relatively thick ‘head’ region, a thinner ‘neck’, and a long and 
gradually thickening rear portion that joins to the reservoir.  In some cases the neck and 
head can be distinguished only in the early stages of the experiment.  If drifting particles 
are placed in the flow it is observed that the head is fed from the rear by a relatively 
laminar current near the wall.  Upon reaching the blunt nose, some of this fluid is 
diverted offshore where it reverses direction and moves upstream relative to the nose, 
possibly becoming detrained.  The basic elements of this circulation are shown in a 
numerical simulation of the current at an early stage (Figure 4.5.5).  The positive flow 
that feeds the head lies between the (dashed) v*=cb* contour and the wall.  The velocity 
vectors are plotted in a frame of reference translating at speed cb*, so the positive flow 
feeding the head appears weak.  Retrograde motion is observed along the offshore portion 
of the intrusion. 
 Various attempts have been made to predict cb* in terms of the properties of the 
flow just upstream of the head.  Although the turbulent character of the current makes it 
difficult to find properties that are conserved between the nose and upstream, this 
problem can be circumvented by restricting attention to the leading edge of the nose and 
along the wall, where the unsteadiness and turbulence is observed to be minimal.  
Consider a side view of an idealized version of the current in a frame of reference 
translating at speed cb* (Figure 4.5.6).  The tip s of the nose is a stagnation point and the 
denser fluid approaches from the far right a at speed cb*.  The Bernoulli function 
evaluated at the free surface (where the pressure is considered zero) is 
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accounts for the moving reference frame and g represents full gravity.) Assuming that B* 
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has been set to zero.  It is further assumed that the wall flow remains steady between the 
nose and an upstream location b where the depth and velocity are approximately uniform. 
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By minimizing cb* over positive vb* it can easily be shown that cb* ! (2 "g d
#$
*)
1/2 .  The 

lower bound is actually achieved in the nonrotating version of the dam break, where v 
and d become independent of x.  If no detrainment into the lower layer occurs and the 
plume remains in a steady state, vb must equal cb and (3) reduces to the lower bound 
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(Benjamin, 1968); that is, β=21/2.   Thus, rotation generally increases the speed of the 
bore if the latter is scaled by ( !g db*)

1/2 , a prediction that is in general agreement with 
laboratory observations. However, as already mentioned, the experimental values of β 
tend to fall below 21/2.  This failure has been attributed to various causes, including the 
presence of friction (Martin and Lane-Serff, 2005; Helfrich and Mullarney, 2006; ) and 
the participation of the lower layer (Benjamin 1968 and Klemp et al. 1994 and 1997, 
Hacker and Linden 2005, Martin et al. 2005.) 
 
 If the entire gravity current head is regarded as steady, a second constraint exists 
in the form of conservation of the volume flux.  In the moving reference frame the 
volume flux at any section of the current must be zero.  Applying this restriction at the 
section y*=yb* that coincides with point b in Figure 4.5.6b leads to 
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   Qb* = cb * Ab * ,     (4.5.5) 
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uniform at yb and therefore geostrophically balanced.  Thus  
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 The relation (4.5.6) ads the new variable Ab* to the mix and further information is 
required in order to close the problem for cb*.  One approach is to assume that the current 
has uniform potential vorticity, which occurs if the source reservoir has constant depth 
and friction and entrainment are absent. The uniform potential vorticity depth profile 
(2.3.1) allows one to write Ab* in terms of vb*and db*, thus closing the system (4.5.4) and 
(4.5.6). Kubokawa and Hanawa 1984b and later Helfrich and Mullarney used equivalent 
approaches and found cb*to be of the form (4.5.1), but with β  only marginally greater 
than 21/2.  The corresponding βw=0.78. 



 Yet another theory for the nose speed is due to Nof (1987) with later refinements 
by Hacker and Linden (2002), who added a third constraint of momentum conservation 
and applied it to a model in which the gravity current has no flow relative to the front (i.e. 
v*(x*,y*)=cb*)  The resulting β=21/2 is identical to the result for no rotation and βw=2-1/2.   
 Attention to this point has been focused on the local properties of the gravity 
current near its leading edge.  It still remains to relate 
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conditions.  Assuming that the flow to the rear of the head varies gradually with y*, it is 
reasonable to apply semigeostrophic theory and use the method of characteristics to link 
the head to the reservoir.  One way of proceeding is to calculate the solution to a dam 
break problem as in Section 3.3.  Although one could in principle perform this calculation 
for a full two-layer system, the solution is complicated by the presence of a lower layer 
potential vorticity front that initially lies at the position of the barrier (where the lower 
layer thickness is discontinuous).  When the barrier is removed this front is overridden by 
the upper layer gravity current and must be accounted for.  The problem is avoided if the 
lower layer is considered infinitely deep, for then the solution proceeds as described in 
Section 3.3.  As before, the problem is considerably simplified if one of the Riemann 
invariants R+ or R-  is constant for the initial condition as a whole.   Stern et al. (1982) 
opted for constant R- since this produces a steepening flow that results in the formation of 
a blunt nose.  The requirement that the nose be blunt leads to the identification of a 
unique value of R- (see Exercise 1) and allows closure of the problem.  The resulting 
current evolves into a uniform flow with width corresponding to βw=0.42.  At the leading 
edge of the current is a shock that is interpreted as the nose.  Energy conservation in the 
form of (4.5.3) is assumed to hold across the shock and this is sufficient to determine the 
nose speed coefficient β=1.57.  The solution is elegant in that the detrainment rate (32%) 
can be predicted. Kubokawa and Hanawa (1984b) altered this approach by relaxing the 
requirement that R- be consistent with a smooth, blunt nose.  The missing constraint is 
instead provided by a requirement of conservation of volume transport (4.5.6) across the 
nose. The resulting solution therefore has no detrainment.   
 Both of the solutions are subject to the objection raised in Sections 1.3 and 3.3, 
namely that negative v occurs at the position of the barrier at the instant of its removal.  
The alternative is to consider R+ uniform, as is done in the traditional dam break.  If this 
approach were to be carried to its logical conclusion, the result would be a rarefying 
intrusion with a thin leading edge (as in Figure 3.3.3). The blunt nose that is actually 
observed in the two-layer system might, however, be explainable as a local feature, 
created by processes that tend to hinder the leading edge. Clarification and guidance can 
be gained from a peculiar version of the dam break problem with zero rotation.  Suppose 
that instead of being removed altogether, the initial barrier is moved horizontally at a 
fixed speed <2( !g do*)

1/2  away from the reservoir. Then as shown by Stoker 1957 (also 
see Exercise 5 of Section 1.3) the flow near the moving barrier consists of a slab-like 
region with constant depth and velocity.    This region extends upstream from the barrier 
and joins with a second, rarefying region. The structure of the second region is the same 
as in the classical dam break.  Abbott (1961) and Garvine (1981) used this piecewise 
continuous solution, interpreting the slab region is a model of the head and taking 
(2 !g db*)

1/2  as the barrier speed.  Helfrich and Mullarney (2004) have taken a similar 



view of the rotating gravity current in a channel (Figure 4.5.6b).  The head consists of a 
translating slab with width wb* and velocity cb*.  The slab-like head, which has width wb* 
and velocity cb*, is joined to a rarefying feeder current that extends from the rear of the 
head back into the reservoir.  The feeder current is just a truncated version of the 
rarefying intrusion shown in Figure 3.13a.  It becomes attached to the left sidewall at an 
upstream point ysep*.  At the point of transition ya*(t*) between the head and feeder 
current, the volume transport and width are required to be continuous.   Continuity of 
transport implies that the head suffers no detrainment.    Under the constraint of uniform 
R+ each width value we within the separated portion of the rarefying intrusion travels at a 
characteristic speed 
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 In order to complete the solution, a separate model for the nose speed cb* must be 
used.  The model takes the form (1) with the value of β given empirically or by one of the 
above theories. It turns out that dya*/dt* <cb* regardless of this choice and the transition 
point therefore recedes relative to the nose.  The value of wb itself is determined by the 
requirement of continuity of volume transport. As shown by Helfrich and Mullarney 
(2006), the general procedure can be carried out for non-separated gravity currents in a 
channel, as generally occurs for dimensionless channel width w=w * /(g 'd

1!
*)
1/2  less than 

about 0.5 in the experiments.  The resulting model allows properties like cb*, csep*, wb* 
and hb* to be related to w*.  
 A comparison is made (Figure 4.5.7)  between the predicted values, all based on a 
nominal empirical value β=1.2, and data from the Stern et al. (1982) and Helfrich and 
Mullarney (2006) experiments.   In browsing through this figure the reader will find 
significant discrepancies between the two sets of experimental data, despite the similarity 
between the two experiments.  Some of these differences may be due to varying 
definitions of variables or the way they are measured. For example, the experimental 
values of cb* are generally observed to suffer a slow decrease with time, probably due to 
frictional effects, and discrepancies in measured values of cb* may be due to the time at 
which the measurements were taken. Also the theory in this case is not completely pure 
since it is based on an empirical β .  Nevertheless, the comparison indicates some success 
in the prediction of values or trends for certain quantities such as cb*, csep*, wb*; the 
prediction for hb* is less successful.  

 The foremost shortcoming in the theory or rotating gravity currents is failure to 
adequately address the entrainment problem.  Only the theory of Stern et al. (1982) offers 
a prediction of entrainment.  At the time of this writing there exist no laboratory 
measurements of entrainment against which this theory can be compared.  It may also 
seem odd to the reader that surface gravity current doctrine emphasizes detrainment of 
fluid into the ambient fluid whereas the literature on descending plumes (section 2.12) 
emphasized entrainment of ambient fluid.  To some extent, the difference between 
entrainment and detrainment is based on how the current and ambient fluid are defined. 
But, as pointed out by McClimans (1994), different turbulent regimes naturally lead to 
different categorizations.  For example, a surface gravity current that has a non-turbulent 
and undiluted core region and whose turbulence exists only near the outer edge, may 
naturally be regarded as detraining.  On the other hand, a descending plume that 



experiences turbulence over its entire cross-section, with consequent dilution of density, 
may naturally be regarded as entraining.   
 
  
Exercises 
 
1.  The gravity current as a steepening bore. Following Stern et al. (1982), consider the 
curves of constant Riemann invariant for separated, zero-potential vorticity flow (Figure 
2.5).  (They considered finite but constant potential vorticity and the diagram for this case 
is similar to Figure 2.5.)  As a model of a gravity current we seek a solution that has R-
=constant and that allows a blunt ‘nose’ ( i.e. permits we to go to zero while !w

e
/ !y  

remains finite). Of all the candidate R-=constant curves in Figure 2.5 that have this 
property, show that only the curve that intersects the origin is consistent with a blunt 
nose. (Hint: one approach is to use equations (2.3.19).  
 
1.  A bound on the gravity current width. 
   

(a)  Suppose that the gravity current is considered steady in a frame of reference 
moving with the nose speed cb and that the width approaches a uniform value wb 
upstream of the nose.  By applying the Bernoulli equation between the nose (point s in 
Figure 4.5.6a) and an upstream point on the outer edge  (e in the same figure) show that 
wb*≤cb*/2f. (This result was first obtained by Stern et al. 1982.)  
 (b)  Show that the result is invalidated if an energy loss from s to p is permitted.   
 
 (c)  Show that the bound is equivalent to βw≤β/2. 
 
 
Figure Captions 
 
Figure 4.5.1  Synthetic aperture radar image showing a coastal gravity current flowing 
south out of the mouth of Chesapeake Bay.  (From Donato and Marorino, 2002.) 
 
Figure 4.5.2  Photo of nose of Chesapeake Bay  plume near Duck, NC, March  1991.  
(Photo by William Birkemeier, US Army Corps of Engineers.)  
 
Figure 4.5.3   Advancing gravity current as seen in plan and side views (upper and lower 
half of each frame) for successive times. The side view in each case is a mirror reflection.   
The photos are based on the laboratory experiments performed by Stern, et al. 1982. 
 
Figure 4.5.4  Traditional view of a gravity current in a rotating channel. 
 
Figure 4.5.5  Numerical solution showing the horizontal circulation in the head of a 
gravity current as seen by an observed moving with the speed cb. The dashed curve 
corresponds to zero along-shore velocity in the moving frame. (From Helfrich and 
Mullarney, 2006).  



  
Figure 4.5.6  Idealization of gravity current nose region. 
 
Figure 4.5.7  Comparison of solutions for a semigeostrophic gravity current with uniform 
Reimann invariant R+  with data from various laboratory and numerical simulations.  The 
speeds shown have been nondimensionalized using (g′d1∞)1/2, where d1∞ is the initial depth 
in the reservoir for the upper layer.  The widths w and wb have been scaled by  (g′d1∞)1/2/f 
and db by d1∞. The theory, which is shown by solid curves in each frame, is based on a 
nose speed of the form (1) with the nominal empirical value β=1.2. The theory and some 
of the experiments extend into the range in which the gravity current does not separate 
from the left channel wall (roughly w<0.5). Triangles and squares represent data from the 
laboratory experiments of Helfich and Mullarney (2006) and Stern et al. (1982), 
respectively.  Open and filled circles represent data from a numerical model (Helfrich and 
Mullarney, 2006) with no-slip and free-slip boundary conditions.  In (a)  cb* and csep* are 
both shown, though Stern et al. (1982) did not measure the latter.  Frames (b) and (c) 
show comparisons based on the nose width and depth. (From Helfrich and Mullarney 
(2006), Figure 15.)  
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