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5.2  Basic Theory for a Nonrotating Channel. 
 
 
 
 There are several articles that deserve special mention in the annals of two-layer 
hydraulics, the earliest being Stommel and Farmer’s (1952, 1953) model of estuary 
dynamics.  Many of the distinctive properties of these flows, including the possibility of 
two control sections, were identified by Wood (1968, 1970) in his laboratory simulations 
of lock exchange between basins and selective withdrawal from stratified reservoirs. The 
steady theory was unified and extended in a series of articles by L. Armi and D. Farmer, 
including Armi (1986), Armi and Farmer (1986, 1987, 1988) and Farmer and Armi 
(1986), who were interested in the Strait of Gibraltar and other oceanographic examples 
of exchange flow. This work forms the foundation for our summary and their fingerprints 
are on much of what follows.  A slightly different view is provided by Long’s (1954) 
towing experiments and subsequent investigations of initial-value problems by various 
authors (Baines, 1995 and references contained therein).  This literature gives 
considerable insight into how two-layer flows are set up.  
 
 The governing equations are the x*-independent, f=0 versions of (5.1.4,5.1.6, and 
5.1.7).  These equations can be put into characteristic form [Baines (1995) pp. 98-99] 
using the methods laid out in Appendix B.  The characteristic speeds are given by 
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For an evolving flow containing disturbances of arbitrary amplitude, we may regard c+* 
or c-* as the local and instantaneous speed of a signal propagating forward or backward 
with respect to the advective speed defined by the first expression on the right-hand side.  
Although no linearization has been made, we can also regard c+* and c-* as the speeds of 
small-amplitude, long waves propagating on a steady and uniform background flow with 
depth and velocity di* and vi*. Note that these speeds are real only so long as  
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Thus, if the magnitude of the shear velocity v

1
* !v

2
*  is large enough, c

±
*  become 

imaginary, corresponding to long-wave Kelvin-Helmholtz instability of the background 
flow.  The parameter Rb is a discrete (or ‘bulk’) form of the Richardson number 
Ri = [g!

"1
#! / #z*] / (#v* /#z*)

2  for continuously stratified shear flow.  
 
 The possibility of instability is an important departure from the behavior of the 
single-layer case considered in the first chapter.  It is natural to ask whether traditional 
properties such as hydraulic control and upstream influence remain meaningful when part 
or all of the flow is unstable.  The answer to this question is largely unknown at the time 
of this writing.  For many of the two-layer flows encountered in nature or in the 
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laboratory, the primary instabilities occur in supercritical regions away from control 
sections.  The associated disturbances propagate away from the control section(s) and 
conditions there remain steady. 
  

There is another aspect of the stability issue that bears consideration.  An analysis 
(e.g. Turner 1973, Sec. 4.1) of the inviscid, two-layer system with respect to an arbitrarily 
short (nonhydrostatic) disturbances shows that the flow is always unstable provided that 
v
1
* ! v

2
* .   In a two-layer system with infinite layer depths, for example, all sinusoidal 

interfacial waves with lengths less than ! v
1
*"v

2
* / #g  are unstable.  The resulting 

mixing can destroy the sharp interface and create an intermediate transitional layer. 
Wilkinson and Wood (1985) present a laboratory demonstration using a hydraulically 
driven, two-layer system.    If the shear is weak, unstable waves have small scales and the 
intermediate layer remains thin.  Its thickness dI* can be estimated using the hypothesis 
that the layer will grow until the mean flow becomes stable.  A necessary condition for 
instability of a thin, laminar, intermediate layer is that the bulk Richardson number 
!g dI * /(v1 *"v2*)

2  based on dI* falls beneath 1/4.  Empirical evidence (e.g. Thorpe 1973 
and Koop and Browand 1979) suggests a transitional value closer to 0.3, and thus the 
expected layer thickness is  

 
   dI* ! 0.3(v1 *"v2*)

2
/ #g .  

 
As long as dI* remains much less than d1*and d2* the presence of the intermediate layer 
may to a first approximation be disregarded and the two-layer protocol adopted.  
 
 Some of the important differences between single- and two-layer hydraulics may 
be anticipated from an examination of the formula for the long-wave phase speed.  If the 
background flow is at rest,  (5.2.1) reduces to 
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When the lower layer is relatively thin (d

2
* << d

1
*),  c

±
*  reduces to the value ± ! g d

2
*  

for a single layer under reduced gravity.  A corresponding result for the upper layer is 
obtained by taking d

2
* << d

1
* .  If the total depth d

2
* +d

1
*  is held constant while the 

interface is varied from the top to bottom boundary, c
±
*  vary from zero to their 

maximum values at mid-depth (d
1
* = d

2
*), then back to zero.  This is quite different 

from the case of a resting single layer, in which c
±
*  increases monotonically as the 

lower layer depth increases.  
   
 From (5.2.1) it can be shown that 
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and thus at least one of the characteristic speeds is zero if the sum of the layer Froude 
numbers, 
 

   F
1
=

v
1
*

( !g d1
*)

1/2
  and  F

2
=

v
2

*

( !g d2
*)

1/2
,   (5.2.5) 

 
is unity.  This result makes it convenient to define a composite Froude number G such 
that 
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Critical flow corresponds to G2=1, implying that one or both of c

±
* is zero.  If G2<1 then 

(5.2.4) indicates that the product of c+* and c-* is <0, implying that the two internal 
gravity waves propagate in opposite directions.  This type of flow is considered 
subcritical since information can move in both directions.  Similarly, G2>1 implies that 
both waves propagate in the same direction and the flow is supercritical.  These 
definitions avoid reference to ‘upstream’ or ‘downstream’, a tacit acknowledgement that 
two layers may flow in opposite directions.  Thus, supercritical flow may have both 
waves moving in the +y* direction or vice versa. It is not meaningful to talk about the 
criticality of an individual layer unless the other layer is inactive.  For example, it is not 
meaningful to state that layer 1 is ‘critical’ when F1=1, unless F2<<1.  (However, it can 
be stated with certainty that the two layer flow is supercritical if either F1 or F2 is >1.) 
 
 Imagine a flow that is evolving in the y*-direction due to changes in the channel 
geometry and suppose that this flow undergoes a transition from stable to unstable at a 
particular y*.  Since  Rb=1 at that section (5.2.1) requires that c+*=c-* there. Thus the flow 
must first be critical or supercritical before it can become unstable with respect to long 
waves.  This is a special case of the connection, discussed at the end of Section 3.9, 
between long-wave instability and critical/supercritical flow. 
 
  The volume transport within a layer is  
 
     Qi* = vi *di *w *    (5.2.7) 
 
and both Q1* and Q2* are constants for steady flow.  If Q1* and Q2* have opposite signs 
we have an exchange flow.  Pure exchange flow occurs when the net or barotropic 
transport 
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is zero.  Another quantity that will prove useful is the transport ratio: 
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 The time-dependent continuity equation for a particular layer, which may be 
obtained by integrating (5.1.7) across the channel, is 
 

     w
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!t *
+
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!y *
= 0 . 

 
 An important constraint on the barotropic transport can be formulated by adding together 
the time-dependent continuity equations for each layer.  Noting that d1*+d2* depends 
only on y: 
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The total transport Q* is therefore a function of t* only.  It follows that Q is constant in 
time if this is so at any section.   
 
 Steady solutions are normally calculated using the internal Bernoulli equation 
(5.1.17).  In thinking about the various solutions, it often helps to imagine that the 
channel is connected to an infinitely wide basin where the layer depths d

1!
*  and d

2!
*  

are non-zero and where the flow is therefore quiescent.   If h*=0 in this basin then 
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If a hydraulic jump occurs within the channel, the value of ΔB* will generally change 
across the jump. 
 
 At this stage, the mathematical problem for the steady two-layer flow involves 
four variables (the depth and velocity in each layer) governed by two continuity 
equations (5.2.7), the internal Bernoulli equation  (5.1.17), and the geometric constraint 
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resulting from the rigid-lid assumption.  It is possible to reduce the algebra to a single 
equation for one of the layer thicknesses and sketch solution curves analogous to that 
shown in Figure 1.4.  Another approach is to reduce the algebra to two equations in two 
variables and sketch solution curves in the two-dimensional space of these variables.  The 
choice of method is largely one of personal preference.  Our preference is for the second 
approach, as developed by Armi (1986) using the layer Froude numbers as the dependent 
variables.  Following his formulation, the layer depths and velocities may be written in 
terms of F1 and F2 using 
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Making these substitutions and using (5.2.11) allows (5.1.17) to be written in the form 
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Furthermore, (5.2.11) itself can be rewritten as 
 

 G2
(F
1
,F

2
;h*,w*) = Qr

2 /3
F
1

!2 /3
+ F

2

!2 /3
! (zT *!h*) "g

1/3
w *

2/3
Q
2
*
!2 /3

= 0 .     (5.2.14). 
 
 
 Using the two-variable generalization of Gill’s approach, the critical condition 
may be calculated using (1.5.9), which leads to  
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The reader may wish to verify that application to (5.2.13) and (5.2.14) yields the result 
G2=1, the condition for stationary disturbances derived from the wave speed formula. 
 
 The regularity condition that must hold at a critical section can be obtained by 
applying (1.5.11), which leads to  
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with the functions  G1

and G2
defined by (5.2.13) and (5.2.14) and γ1=F1

2/3 and γ2=F2
2/3, or 

any other set of suitably defined functions and variables. Exercise 2 guides the reader 
through a choice that minimizes the algebraic manipulations. The resulting condition is 
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where yc* denotes the position of the critical section.   If w* is constant, critical sections 
must occur at a point where !h * /!y* = 0 .  In our previous, single-layer examples such 
points were generally restricted to sills.  Later we will show that two-layer critical flow 
can also occur on a level part of the channel away from an obstacle.  If h* is constant but 
w* varies, then critical flow can occur as before where !w * /!y* = 0 , as at a narrows, or 
where v

1
*
2

= v
2
*
2 .  The latter possibility was first identified by Wood (1968) and the 

corresponding control section is called a virtual control. If the flow is unidirectional 
(v1*v2*>0) the shear velocity (v

1
* !v

2
*) is zero at such a control.  A novel aspect of the 

virtual control is that it can occur where the channel width is changing, and we will later 
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show that w* must, in fact, be decreasing.  The position yc* of the control depends on the 
flow itself and is not locked to a particular width. 
 
 An advantage of the Froude number plane representation is that critical flow lies 
along the diagonal line F

1

2

+ F
2

2

= 1  (Figure 5.2.1). In the triangular region to the lower 
left of the diagonal the flow is subcritical.   Above, the flow is supercritical.  Some of the 
flow states in the supercritical range may be unstable with respect to long waves.  The 
condition for stability (5.2.2) can be written in terms of the layer Froude numbers using 
(5.2.12) and the resulting threshold curve  
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is plotted in Figure 2a for Qr=-1 (pure exchange flow).  The threshold curve for Qr=1 lies 
well above the critical diagonal and out of the range of the plot. An exchange flow state 
corresponding to any point lying above the (5.2.18) curve is formally unstable, though it 
remains to be seen whether such states are members of realizable solutions for reasonable 
upstream conditions. 
  
 The Froude number plane is not the only vehicle for representing solutions to 
two-layer flow.  A reader seeking alternatives may wish to consult Dalziel (1991) or 
Baines (1995). 
 
   
 
  
 
Exercises 
 
1)  Show that application of (5.2.15) to (5.2.13) and (5.2.14) leads to the critical condition 
G2=1. (Hint: notice that F1, F2, and w* only enter these relations in 2/3 power or 4/3 
powers.)  
 
2)  Derive the regularity condition (5.2.17) as follows:  
 
 (a)  Use the layer velocities v1* and v2* as independent variables and define 
functions  G1

and G2
written solely in terms of these variables (and the geometric 

variables).  This can be accomplished using equations (5.1.17), (5.2.6) and (5.2.11). 
 
 (b)  Obtain (5.2.17) by evaluation of (1.5.11) and use of the functions defined in 
(a) and the two-layer critical condition. 
 
3)  Show that when critical flow occurs  at a sill (where dh*/dy*=0,  d2h*/dy*2<0) that  a 
supercritical to subcritical (or vice versa) transition must occur.  That is, the flow cannot 
remain subcritical on either side of the sill. 
 
Figure Captions 
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Figure 5.2.1  The critical diagonal and the long-wave stability threshold in the Froude 
number plane. (From Armi, 1986) 
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