
5.3 Flow over an obstacle. 
 
 
 We now consider the Froude number plane representation of solutions for flow 
over topography in a channel of constant width.  Continuing to follow Armi (1986), it is 
helpful to rewrite the energy equation (5.2.13) in the normalized form 
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One interpretation of the quantity on the right-hand side follows by imagining that the 
straight channel is connected to an infinitely wide, quiescent basin as described above. 
Use of (5.2.10) and (5.2.11) then leads to 
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The parameter d

1!
is the dimensionless upper layer thickness in the hypothetical wide 

basin.  It may also be regarded as a measure of the potential energy in the basin, smaller 
d
1!

being associated with higher interface values and therefore higher potential energy. 
 
 In some applications the transport ratio Qr may be regarded as fixed.  For 
example, some ocean straits are constrained to carry a net volume flux that is close to 
zero, so that Qr has a value close to -1. Let us then assume that Qr is constant.  Then there 
is a family of solutions to (5.3.1), each member having a particular upstream state as 
indicated by the value of d

1!
.  These solutions can be represented as a family of curves 

plotted in the Froude number plane (e.g. Figure 5.3.1a).  The case shown has Q
r
= 1 and 

the d
1!

=constant solutions are represented by the thicker curves.  In the absence of 
hydraulic jumps or of other sources of dissipation, a solution must follow one of these 
curves. Some of these curves intersect the critical flow diagonal, raising the possibility 
that corresponding solutions can be critically controlled. Froude number diagrams for 
other values of Qr have similar qualitative aspects (Armi, 1986) and we can therefore 
discuss most of the general features of the solutions using the one figure. Note that Qr and 
Q1* enter (5.3.1) to 2/3 powers and therefore a solution curve valid for a combination (Qr, 
Q1*) is also valid for (-Qr, Q1*), (Qr, -Q1*), or (-Qr, - Q1*).  The direction of flow in a 
given layer for a particular solution is therefore arbitrary. Each curve yields four possible 
solutions corresponding to different directions of flow in the two layers.  However, not all 
possibilities may be realizable: the stability of the flow and its ability to form hydraulic 
jumps does depend on the direction of layer transport.  An obvious example is a 
unidirectional flow that is stable according to (5.2.2) but becomes unstable due to the 
increased interfacial shear that is created when the direction of flow in one of the layers is 
reversed.  More subtle examples arise when a change in direction of a layer flux gives 
rise to the shock-forming instability (Figure 1.4.4). 
 



 Now suppose that the value of d
1!

 is given along with the topographic function 
h*(y*).  In order to construct a solution one needs to know how to move along the 
appropriate curve of constant d1∞  as h* varies. This link between the solution and the 
topography is provided by (5.2.14), which can be cast in terms of the Froude numbers as 
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The thin contours drawn in Figure 5.3.1a are ones of constant q2.  Since Q2*, g′, and w* 
remain fixed for a particular steady solution, changes in q2 with y* are entirely due to 
changes in h*.  Increases in h* lead to increases in q2 and inspection of Fig. 5.3.1a shows 
that higher h* are generally found by moving away from the origin. 
 
 
a.  Flow from a deep basin. 
 
 One important class of solutions describes flow originating from an infinitely 
deep upstream basin that has the same width as the channel. Note that at least one of the 
layer depths must be infinite (and the corresponding velocity zero) in the basin and 
therefore the solution curve must begin along the horizontal  (F2

2=0) or vertical (F1
2=0) 

axis (Figure 5.3.1a).  Inspection of the figure shows that the only possibilities originate 
from the horizontal axis.  These solutions have F2=0 in the basin, meaning that the lower 
layer is infinitely deep and (therefore) stagnant.  The reverse situation, a stagnant 
upstream upper layer with a moving lower layer, is not possible.  This asymmetry 
between the behavior of the upper and lower layers is due to the fact that the topography 
contacts only the lower layer.  Although the formal solutions allow the direction of flow 
within each layer to be arbitrary, let us assume that the lower layer flow is out of the deep 
basin.  The upper layer flow may then be in either direction, unless otherwise noted. And, 
we will continue to refer to the latter as the upstream basin, even though the upper layer 
may flow into it.  
 
 Now suppose that the value of d1∞ is known to be 1.7, so that the solution must lie 
along the thick curve with that value. Keep in mind that d1∞ is not the actual upper layer 
depth in the deep basin, but rather the upper layer depth in a hypothetical reservoir that 
has infinite width and is therefore quiescent.  (This reservoir might be imagined to lie 
upstream of the deep basin.)  The flow state in the deep basin lies where the d1∞=1.7 
curve intersects the F1

2 axis and is clearly subcritical.  An observer moving from the 
basin into the channel will see an increase in h and must therefore move upwards along 
the ‘1.7’ curve to higher contour values of q2. If the sill is reached before the critical 
diagonal is encountered then the solution at points downstream is found by retracing the 
‘1.7’ curve back to the F1

2 axis. In this way a completely subcritical solution is obtained.  



The value of F1
2 is minimal at the sill, meaning that the upper layer depth reaches a 

maximum (see 5.2.12a). Figure 5.3.1b shows this situation schematically, with the ‘1.7’ 
solution curve traced over a circuit aba and the corresponding subcritical solution  (inset) 
experiencing an interfacial dip over the obstacle. 
 
 If the sill height is increased to the point where the sill is encountered at the 
crossing with the critical diagonal, then a transition to supercritical flow is possible.  Note 
that the thick and thin contours make grazing contact with each other along the diagonal, 
a property that has two important implications.  First, the value of the topographic 
parameter q2 at that point is the maximum that occurs along the thick curve.  That is, the 
topographic elevation is the highest that can be achieved along that solution curve.  The 
second implication is that the solution may be followed beyond the sill either by 
continuing upward along the ‘1.7’ curve into the supercritical region or by retracing 
downward into the subcritical region.  This same dilemma arises in the treatment of 
single-layer flows and it can be shown by similar arguments (see Exercise 3 of the 
previous section) that the correct option is to continue into supercritical space.  The 
circuit is something like abcd in Figure 5.3.1b and the interface profile resembles the free 
surface profile for a hydraulically controlled, single-layer flow (second inset).  It is 
natural to ask what would happen if the sill height is increased even further and we will 
return to this point shortly. 
  
 
b.  Internal hydraulic jumps.  
 
 Given the similarity with the single-layer case, one might expect a hydraulic jump 
to arise in the supercritical part of the flow. The problem of shock joining in two layers is 
more difficult than for the single-layer case due to several factors.  First, a transfer of 
horizontal momentum between the two layers can occur as the result of pressure forces 
on the steeply sloping interface within a jump.  These forces exist in the region where 
nonhydrostatic effects are expected to be greatest, making a calculation of the pressure 
force problematic.  The difficulty is avoided in single layers due to the fact that the 
pressure is essentially zero at the free surface.  Second, entrainment of one layer into the 
other or creation of masses of intermediate density can occur as the result of mixing.  
These transformations complicate the mass, and perhaps the momentum balances.  In 
some cases interfacial instability and mixing occur broadly and cause the transition from 
supercritical to subcritical flow to occur without any roller or other abrupt feature. An 
example of this limiting case is shown in the top frame of Figure 1.6.5. 
 
  One situation that allows simplification occurs when the two fluids are 
immiscible, so that Q1* and Q2* are conserved across the jump. This does not occur in 
nature, but can be simulated as an alternative realization in a laboratory setting.  If the 
jump occurs over a small interval in y*, so that h* is the same on either side, then the 
conjugate states must lie along the same constant-q2 curve. As an example, suppose that a 
hydraulic jump occurs at point d in Figure 5.3.1b. The jump must return the supercritical 
flow to a subcritical state and must do so along the thin curve passing through d.  It must 
therefore connect with another constant energy curve, perhaps at point e.  Determination 



of the correct energy curve is quite difficult, however.   The jump should cause an overall 
loss of total energy and it is not obvious what this means for !B , the difference between 
the upper and lower layer Bernoulli functions1. There have been a number of attempts to 
come to grips with these problems and the reader is referred to Jiang and Smith 
(2001a,b), Holland et al. (2002), and references contained therein for more information. 
 
c. Maximal and submaximal exchange. 
 
 We now rejoin the discussion of the hydraulically controlled solution abcd (or a 
jump-containing variant like abcde) and ask what happens if the maximum value of q2 
is increased.  This increase could occur as a result of raising the sill or of increasing the 
value of Q2*, both with the d1∞* fixed.  Since the new q2 is higher than the maximum 
value possible along the d1∞=1.7 curve, a time-dependent adjustment of the values of d1∞ 
and/or Qr must occur.  The adjustment involves the generation of a disturbance that 
propagates upstream and alters the conditions in the deep basin.  If the adjustment leaves 
Qr unchanged2, the new sill flow is found by following the critical diagonal from point c 
in Figure 5.3.1b down and to the right until the thin curve with the new value of q2 is 
encountered. The solution now lies along the (thick) solution curve that intersects this 
point, and it can be seen that the corresponding d1∞ is lower than before.  In cases where 
Qr is altered, one would have to predict the new value and then consult the Froude 
number plane diagram appropriate for that value.  Determination of the Qr generally 
requires analysis of the upstream disturbance. For purposes of illustration, we will 
proceed on the assumption that Qr remains fixed. 
 
 The new solution curve intersects the lower axis at larger values of F1

2 than 
before and thus the composite Froude number G2 of the upstream flow is greater.   The 
upper layer in the basin now has a higher velocity and smaller thickness.  As the sill 
height is increased, one moves to solutions with lower values of d1∞ and with larger 
values of F1 in the basin.  Eventually the value d1∞ =1.5 is reached and it can be seen that 
the corresponding energy curve has an intersection with the F1

2-axis at F1
2=1. The flow 

in the basin is now critical.  Since the basin is infinitely deep, the lower layer remains at 
rest and the upper layer moves at speed (g′d1*)1/2. The value of G2 is unity both in the 
basin (point g in Figure 5.3.1b) and at the sill (point h). The intervening flow is 
subcritical and the flow downstream of the sill is supercritical, perhaps with a hydraulic 
jump.  The situation is represented by the solution ghi sketched in the inset.  
 
 To this point we have not distinguished between cases of unidirectional flow 
(Qr=1) and exchange flow (Qr=-1).  The solutions discussed can take either form. 
However, when the flow in the upstream basin becomes critical, important differences 
arise in how the two situations should be interpreted.  We will concentrate on the case of 
                                                
1  The simplest approach [suggested by Armi (1986)] is to assume that the energy loss in the jump is 
negligible, so that the conjugate states lie on the same energy curve.  
2  Cases where Qr remains fixed can occur in systems with a closed upstream basin with a specified source 
of volume, often zero.  The adjustment to a change in sill height then involves the original upstream 
disturbance, plus a set of reflected and re-reflected disturbances that pass information about the closed 
nature of the basin back into the strait. 



exchange and revisit unidirectional flow in Part f of this section. The upper layer now 
moves from the strait into the ‘upstream’ basin, right-to-left in the figures, and flows at 
the critical speed in the basin.  A uniform critical flow of this type is typically vulnerable 
to frictional and dispersive effects and would be difficult to establish in the laboratory. 
However, a more robust version of the solution can be set up with a slight modification in 
the geometry of the deep basin.  Suppose that the basin is made somewhat wider than the 
straight section of channel over which the topographic changes occur. Thus the upper 
layer enters the channel from the ‘downstream’ basin, passes the sill, and enters a 
subcritical stretch of flow over which the bottom drops away and lower layer deepens. 
The upper layer accelerates to the critical speed and then exits into the ‘upstream’ basin, 
which is now wider.  Since this layer has become effectively disengaged with the 
(motionless) lower, it behaves like a single layer and follows the behavior outlined in 
Chapter 1.  In particular, the upper layer becomes supercritical after it exits into the wider 
basin.  The supercritical flow generally terminates in a hydraulic jump. The critical 
section (point g) in the figure is now known as an exit control.  Propagation of 
information from the basin into the channel is blocked by this control and by the region 
of supercritical flow. 
 
 The solution with both a sill control and an exit control has been obtained by 

allowing the value of d1∞= d
1!
*

( "g Q1 * /w*)
2/3

 to decrease until the upper layer in the basin 

becomes critical.  It can be shown (Exercise 6) that the corresponding d1∞* is 
approximately half the fluid depth over the sill.  Since d1∞* is a measure of the internal 
energy of the flow, the decrease in d1∞ can be accomplished by holding the energy 
constant and increasing Q

1
* .   The threshold state d1∞=1.5 may therefore be regarded as 

having the maximum possible upper layer transport for the given available internal 
energy.   As Figure 5.3.1a shows, this value cannot be exceeded by any solution that 
connects smoothly to a deep upstream basin.  There are solutions with larger Q

1
*   (i.e., 

the ones with d1∞>1.5) but none intersect the lower axis. 
 
 For flows with only a sill control (d1∞>1.5) the upper layer remains relatively 
inactive and the behavior of the lower layer is similar to that of a single layer. For 
example, it can be shown that the layer Froude numbers at the sill fall in the ranges 
0.8<F2

2<1 and F1
2<0.2.  Thus the lower layer Froude number is close to the critical value 

(=1) for a single layer whereas the upper layer Froude number is well into the subcritical 
range of a single layer.   The wave arrested at the sill is dynamically similar to a wave 
propagating in an environment in which the upper layer is inactive.   In contrast, the 
solution for d1∞=1.5 involves the engagement of both layers.  The exit control takes place 
where the lower layer is inactive and the sill control takes place where the upper layer is 
relatively inactive. 
 
 For exchange flows it is common to refer to the solution with both a sill control 
and an approach control as being maximal.  It has the largest Q

1
* , and therefore the 

largest exchange transport Q
1
*!Q

2
* , of all the solutions that can be smoothly 



connected to a deep basin.  The maximization assumes that Qr remains fixed. Maximal 
flow is distinguished by the property that information is allowed to enter the strait from 
neither the upstream nor the downstream basin.  Exchange solutions with just sill controls 
(d1∞>1.5) are called submaximal.  Such flows block downstream information from 
entering the upstream basin, but not vice versa. 
 
 
d. Basins with finite depth. 
 
 For an upstream basin of finite depth there exists a similar family of sill-
controlled solutions, each having a single control at the sill, and a limiting solution with 
two controls. The previously considered solution curves with constant d1∞ are still in play, 
but the possible upstream states now lie at finite F2 and not along the abscissa of the 
Froude number plane. Suppose that d1∞=1.7, so that the solution lies along the previously 
considered thick curve in Figure 5.3.1b.  Then a solution with a sill control corresponds 
to something like bcd. What makes cases like this more difficult is the exercise of fixing 
the parameter d1∞ and identifying the upstream state b on the Froude number plane.  
Even if the transport ratio Qr, the channel width w*, the basin depth zT* and the sill depth 
Ds =zT*-hm* are known, and g′ and d1∞* are measured, an algebraic process is still 
required to locate the solution on the Froude number plane.  This problem is explored 
further in the exercises. 
 
 Notwithstanding this technical issue, one may proceed by decreasing the value of 
d1∞ as before and browsing through the continuum of solutions with sill controls.  A 
limiting solution with two controls will eventually be obtained, this time with d1∞<1.5. 
The limiting process can be implemented by fixing the topography and the value of d1∞* 
and increasing the layer fluxes.  An example of the limiting case is shown by the curve 
segment klmn in Figure 5.3.1b. The upstream flow in the uniform, finite-depth section of 
channel (k in the figure) is critical.  Once the bottom begins to shoal, the flow becomes 
subcritical (l).  It then passes through a sill control (m) and becomes supercritical (n). A 
profile of the solution is sketched in the inset. For exchange flow, the flux is again 
maximal over all solutions with the same topography and same Qr. 
 
 The limiting solution curve that determines the maximal solution for a given finite 
upstream depth is not easy to locate. However the curve and its d1∞ value can be 
calculated and shown to depend on the ratio of the sill depth Ds to the upstream depth zT*.    
By applying the definition of q2 at the upper left intersection of the energy curve with the 
critical diagonal (i.e. at the sill control) it follows that  
 
   Q

2
* = q
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3/2 .   (5.3.3) 
 
The function q2(Ds/zT*) is simply q2 at the upper left intersection point and the calculation 
of its dependence on Ds/zT* is described in Exercise 5.  For the case of an infinitely deep 
upstream basin (D

s
/ z

T
*! 0) , q2 is given by 0.208, whereas q2=0.25 for the point 



labeled o. Thus the range of variation is quite narrow.  As D
s
/ z

T
*  increases so does the 

associated q2 and thus the maximal flux for fixed Ds and g′ increases as the upstream 
depth decreases.  
 
 Although (5.3.3) bears similarity to the single-layer weir formula (1.4.12), it is 
more constrained.  It is no longer necessary to have knowledge of an upstream interface 
elevation or the like; the only state variable that needs to be measured is the reduced 
gravity g′.  The insensitivity of the flux to upstream conditions is consistent with the 
existence of critical or supercritical upstream flow, which blocks mechanical information 
generated in the upstream basin from reaching the sill. The relevance of g′ is consistent 
with the fact that density is advected by the flow and information about the density 
difference Δρ can pass right through the control section.  The value of g′ has been 
regarded fixed throughout this discussion, but one would wish to eventually relax this 
constraint by allowing Δρ to vary, say, in response to changes in forcing and/or mixing in 
the upstream basin.  This topic will be pursued in Sections 5.5 and 5.6. 
 
 If the sill elevation hm* is decreased to zero, so that D

s
/ z

T
*=1, the upstream and 

sill controls merge.  The coalescence point lies at o (5.3.1b) where the critical diagonal 
makes grazing contact with the curve d1∞=1.25. It can be shown (see Exercise 2) that both 
c+ and c- are zero in this solution, which will emerge as an important type of flow through 
a contraction.  It is left as an exercise to show that corresponding lower layer transport is 
given by  
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where Ds is now just the depth in the uniform channel. Larger values of Q

2
correspond 

to (supercritical) solution curves lying entirely above the critical diagonal.  These 
solutions do not connect directly to any geophysically relevant reservoir state, nor is it 
possible to connect the solutions to subcritical flow by hydraulic jumps along curves of 
constant q2.  Therefore (5.3.4) gives an upper bound on Q

2
 for relevant flow (i.e. flows 

that become subcritical somewhere upstream).  
 
 
e. Other constraints. 
  
 In most cases of geophysical or engineering interest, geometrical variables like 
w*, hm* , and zT* are known in advance and d1∞* can be estimated from hydrographic 
data. In addition, a relation between Q1* and Q2* can often be stipulated, such as when 
the strait connects with a closed basin with known evaporation E and precipitation P.  
(The flow rates are then constrained by Q

1
*!Q

2
* = (E ! P)dA

As
"" , where As is the 

surface area of the basin.) These constraints are still insufficient to determine the 
parameters d1∞, q2, and Qr required to fix the solution and the individual values of Q1* 



and Q2*.  To do so, one must assume that the solution is critical at the sill, and perhaps in 
the approach, and use these conditions to close the problem.  
 
 As an example, consider the case where the upstream basin is infinitely deep and 
it is suspected that an approach (or exit) control and a sill control occur (d1∞=1.5).  For 
exchange flow, this would mean that the exchange transport is maximal.  Further assume 
that the downstream basin is closed and has (E ! P)dA

A
s

"" = 0 , so that Q
r
= !1 . We have 

already shown that Q
2
* = !Q

1
* = .208 "g

1/2
w *Ds

3/2 under these conditions. If Q
r
! 1 , 

then a more general version of the last relation can be used (see Exercise  3).  If only a 
sill control exists, the flux is less constrained and it becomes necessary to measure the 
upstream interface level in order to close the problem. 
 
    
f. Experiments on two-layer sill flows. 
 
 
 Laboratory and numerical experiments have proven valuable in determining 
whether the flows discussed above are realizable and in demonstrating how they can be 
established.  By no means has all of the theoretically possible steady behavior been 
investigated. We discuss two revealing experiments, the first dealing with unidirectional 
flows and the second with exchange flows.  A review of the work on unidirectional flows 
will help illustrate some of the differences with the exchange flows discussed above. The 
experiments were originally performed by Long (1954, 1970) who towed an obstacle 
through a two-fluid system initially in a state of rest. Extensions have been carried out by 
Houghton and Isaacson (1970), Baines (1984, 1987), and others.  One setting for 
numerical computation of the flow has two layers initially moving from left to right with 
equal velocity and in a uniform channel (h*=0).  Consider the case where this initial flow 
is subcritical and where the lower layer is much thinner than the upper layer. At t*=0 an 
obstacle of height hm* is placed in the path of the flow. Since the upper layer is relatively 
deep, the adjustment for moderate hm*/zT* is similar to that for a single-layer flow.  If 
hm*/zT* <<1, the flow remains subcritical and there is no upstream influence.  As hm*/zT* 
is increased, a critical value will be reached above which upstream influence occurs.  The 
critical value is that required to establish critical flow over the sill for the upstream 
conditions given by the initial flow.  The steady solution that develops over the obstacle 
will resemble solution bcd  (Figure 5.3.1b) qualitatively.  A slight increase in hm*/zT* 
past the critical value will result in the excitation of a bore that permanently alters the 
upstream flow by deepening the lower layer and decreasing the lower layer transport.  
Further incremental increases in hm*/zT* will have a similar effect.  As long as the upper 
layer remains relatively inactive during this process, the linear wave speed    (c-*≅v2*-
(g′d2*)1/2<0) of the upstream flow increases in magnitude.  As the obstacle height 
increases, it is possible for the lower layer to become completely blocked as a result of 
this process and further increases in hm*/zT* will cause the obstacle to protrude into the 



upper layer.  In this case, additional upstream changes are prevented.3  Up to this point 
the evolution is similar to that found in the single-layer version of Long’s experiment 
(Section 1.6).  
 
 If the lower layer remains unblocked, increases in hm*/zT* eventually lead to 
effects that are special to two-layer systems.  To understand these changes, one should 
recall that growth of the obstacle does not alter the total volume transport Q1*+Q2*.  
Thus, the decrease in Q2* is compensated by an increase in Q1*.  In addition, the 
upstream thickening of the lower layer results in a thinning of the upper layer.  Both 
effects tend to bring the initially inactive upper layer into play upstream of the obstacle  
and a consequence is that the growth in -c-* is reversed. When the maximum value is 
reached, the bore achieves its maximum possible amplitude.   As hm*/zT* increases c-* 
reaches a maximum negative value then moves towards positive values.  The bore 
achieves its maximum amplitude where -c-* is maximum; the upstream disturbance 
beyond this threshold consists of a bore followed by a rarefaction.  At some hm*/zT* this 
trend causes c-* to be reduced to zero: the upstream flow becomes critical.  The flow over 
the obstacle now resembles the solution klmn of Figure 5.3.1b, qualitatively, with an 
upstream control and a sill control. The upstream critical section is called an approach 
control.  
 
 Although the shape of the interface and the distribution of layer Froude numbers 
in configuration klmn are the same as for the previously considered maximal exchange 
solution, there are some important differences.  For one thing, the fact that the total 
volume transport remains fixed at its initial value makes it less meaningful to talk about 
maximal flux.  (Maximal exchange on the other hand can be defined even when Q1*+Q2* 
is constrained to be zero.)  Another difference can be seen by imagining, as we did 
earlier, that the channel broadens at some upstream location.  The flow therein becomes 
supercritical, as before, but now the direction of wave speed propagation is towards the 
sill.  If one follows this supercritical flow as it leaves the broad basin and enters the 
narrower portion of channel, the supercritical flow becomes critical and then subcritical.  
This arrangement focuses wave energy towards the approach control section and 
therefore gives rise to a shock forming instability. 
 
 Once the solution klmn is established, a slight increase hm*/zT* leads to interesting 
changes in the flow that may not be completely describable by hydrostatic theory.  In 
order to understand these changes, it is helpful to remember that the upstream 
propagation speed has already been reduced to zero by the rarefaction triggered by 
previous adjustment. A new rarefaction caused by a further increase in hm*/zT* would 
therefore be unable to propagate upstream.  Numerical simulations with hydrostatic 
models have shown, in fact, that such an increase causes the flow over the obstacle to 
revert to a supercritical, symmetrical state, while the approach control is maintained.  The 
flow near the obstacle now resembles solution kjk, with an approach control but no sill 
control.  Beyond this point, increases in hm*/zT* lead to no further upstream influence. 
Laboratory experiments give a somewhat different picture for the flow downstream of the 
                                                
3 Additional increases in the obstacle height will only impede the upper layer flow if frictional or non-
hydrostatic effects come into play. 



sill.  Here a nonhydrostatic, and possibly dissipative, feature known as a supercritical 
leap may form (Lawrence, 1993 and Zhu and Lawrence, 1998).  The ‘leap’ is a smooth 
transition from one supercritical state with a deep lower layer to another supercritical 
state with a shallower lower layer.  This transition occurs on the downstream face of the 
obstacle and can be followed by a hydraulic jump.   
 

The initial value problem has also been investigated for cases in which the initial 
lower layer depth is not small.  The sequence of events that takes place may be different 
from what is described above and the reader is referred to Baines (1995, Chapter 3) for a 
thorough discussion. A fundamental point to keep in mind is that the formation of the 
upstream control, the central departure from single-layer hydraulics, occurs because -c-* 
has a maximum value in the upstream flow at an intermediate interface level. 
 
 Turning now to the case of exchange flow, we review an experiment (Zhu and 
Lawrence, 2000) that shows how maximal and submaximal states can be established.  As 
shown in Figures 5.3.2(a,b), the channel contains an isolated obstacle and opens abruptly 
at either end into wide reservoirs.    The right and left reservoirs are initially filled to the 
top with fluids of slightly different densities, the left reservoir containing the denser fluid.  
A barrier that sits atop a sill separates the two fluids.  The barrier is removed and the two 
fluids are allowed to displace each other.  After an initial period of transient activity, the 
flow within the channel settles into a nearly steady state.   The layer velocities in the left 
reservoir are relatively weak and the upper layer depth therefore approximates d1∞*.  
Initially, this depth is relatively small (Figure 5.3.2c), but it gradually increases as lower 
layer fluid is drained out of the reservoir.  An exit control occurs near the left end of the 
channel (point k) and the flow immediately to the right is subcritical. To the left there is a 
brief span of supercritical flow.  Ideally, this flow would be joined to the reservoir flow 
by a hydraulic jump.  In the experiment, the supercritical flow actually enters the 
reservoir as a concentrated jet that gradually disperses.  The flow near the jump is 
horizontally two dimensional due to the abrupt widening of the geometry.  At the sill the 
subcritical flow passes through a second control and becomes supercritical.  A hydraulic 
jump occurs on the right slope of the obstacle and the flow thereafter is subcritical.  From 
the left end of the channel to the hydraulic jump the interface resembles the solution klmn 
of Figure 5.3.1b. The transition from the left end of the channel into the left reservoir 
cannot be traced in this figure but is discussed below.  While in this configuration, 
Q
1
*!Q

2
*  remains fixed at its maximal value, the determination of which is described 

in Exercise 4. 
 

As the left reservoir loses lower-layer fluid, the interface there falls and the 
hydraulic jump moves closer to the entrance (point k) of the channel.  At the same time, 
conditions in the channel between the exit control and the sill control remain steady; the 
supercritical end states insulate that part of the flow from the two reservoirs.   However, 
the interface in the left reservoir eventually becomes low enough that the hydraulic jump 
reaches the position of the exit control. The exit control becomes ‘flooded’, the flow there 
becomes subcritical, and the exchange becomes submaximal and dependent on the 
upstream interface elevation.  This elevation continues to decrease and the exchange flux 
with it. 



 
Exercises 
 
 
1)  For arbitrary Qr, which constant energy curve makes grazing contact with the critical 
diagonal in Figure 5.3.1a? 
 
2) For the solution designated by the point o in Figure 5.3.1b, prove that under conditions 
of pure exchange flow, c+*=c-*=0. 
 
3)  Consider the case of flow over an obstacle with the lower layer originating from an 
infinitely deep basin.  If the flow has an exit control and a sill control, show that d1∞=1.5 
regardless of the value of Qr.  Further show that the transport in the lower layer is given 
the generalized weir formula: 
 
  Q
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where  F1c is determined from 
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4)  In the experiment of Zhu and Lawrence (2000), described in part c, a maximal 
exchange flow was observed.  The values of w*, g′, zT*, and hm* are set by the geometry 
and by the initial conditions and it is also known, due to the closed geometry of the 
channel and reservoir system, that Qr=-1.   To predict the maximal value of Q2*:  
 
(a) Show that     
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where the subscripts e and s correspond to exit and sill.  (Hint: use energy conservation 
between the exit and sill along with the critical condition at both locations.) 
 
(b)  Further show using volume flow rate continuity that  
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This gives three equations for the unknowns F1e

2, F1s
2, and Q2 in terms of the known w*, 

zT*, etc. 
   
 



5)   Calculation of the coefficient q
2
(D

s
/ z

T
*)  in equation 5.3.3.  Consider a solution for 

flow in a channel with constant width and with Q
r
= 1 . The flow has two control points 

corresponding, say, to points k and m in Figure 5.3.1b.  Show that the values of the lower 
layer Froude numbers at k and m can be computed from the relations: 
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Here zT* is the total depth upstream of the obstacle (where h*=0).  Once F1m has been 
calculated from these relations, F2m follows from the critical condition G2=1.  Then q2 
follows from (5.3.2). 
 
6) For the maximal solution with a deep upstream basin and with Q

r
= 1 , show that d1∞* 

is 0.53 times the depth over the sill. That is, the interface in the hypothetical wide 
upstream basin lies about half the sill depth. 
 
7)  Prove the result 5.3.4. 
 
  
 
Figure Captions 
 
 
Figure 5.3.1 (a) The Froude number plane showing solution curves for flow over a 
variable bottom in a channel with constant width and Q

r
=1. Contours of constant 

internal energy d1∞ are represented by thick lines.  Continuous solutions must lie along 
these contours.  The thin contours represent constant q2.   For a fixed layer flux Q2*, 
larger values of the topographic height h* correspond to smaller q2.  (From Armi, 1986) 
 
Figure 5.3.1 (b) A portion of the Froude number plane in (a) with examples of various 
solutions sketched in the insets.  
 
Figure 5.3.2  The experimental setup used by Zhu and Lawrence (2000) to simulate a 
lock exchange. 
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