
5.4  Flow through a pure contraction. 
 
 
 If the bottom remains horizontal (h*=constant), and the flow is choked only by 
contractions in the width of the rectangular channel, a new type of control condition can 
come into play.   Solutions can still be represented in the Armi (1986) Froude number 
plane and Figure 5.4.1a shows an example with Q

r
=1. The thinner contours continue to 

represent constant Q2
* / (zT *!h*)

3/2 "g 1/2
w *#$ %& , except that w* rather than h* is 

considered as varying from one contour to the next.  Decreasing values of w* generally 
lead one away from the origin.  The form (5.3.1) of the energy equation is no longer 
convenient for constructing solution curves since w* appears as a scale factor.  A more 
helpful form  
 

   
1

2
F
2

4 /3
!

1

2
Qr

2 /3
F
1

4 /3
+ F

2

!2 /3

Qr

2 /3
F
1

!2 /3
+ F

2

!2 /3
=

"B

#g zT *
= d

2$
  (5.4.1) 

 
is obtained by setting h*=0 and using (5.3.2) to eliminate w* from (5.3.1). The internal 
energy is now represented by d2∞ which, in view of (5.2.10), is the interface elevation in 
the hypothetical wide, quiescent basin.  The thick curves in Figure 5.4.1a are contours of 
constant d2∞. Exchange flows and unidirectional flows having the same values of Q

r
 and 

Q
2
*  are again represented by the same diagram, though differences in stability and 

jump-forming capabilities render some combinations unrealizable.  In contrast to the case 
of variable topography, both layers feel the geometric variations directly. There is now a 
symmetry between the behavior of the upper and lower layers. For the solutions curves 
shown in the figure, all of which have Q

r
=1 , this means that a solution with a particular 

d2∞ has a counter part in which the layers are reversed. That is, F1
2 and F2

2 are 
interchanged and d2∞ is replaced by 1- d2∞.   More generally, for a given Qr there is a 
comparable solution with flow rate ratio 1/Qr in which the two layers are interchanged 
(see Exercise 2.)  

 
a.  Submaximal flow from a wide basin. 
 
 
 Figure 5.4.1a represents solutions for which the volume flow rates in the two 
layers have equal magnitude.  There is a family of constant energy curves that emanate 
from the origin (F

1

2

= F
2

2

= 0 ) and represent flows originating from an infinitely wide, 
quiescent basin.  Let us first restrict attention to unidirectional flow.  All of the curves 
beginning at the origin intersect the critical diagonal, indicating the presence of a critical 
section for sufficiently small minimum width wm*.  For all but one of these curves, the 
contours of constant width make grazing contact with the solution curves along the 
critical diagonal.  Critical flow for these solutions occurs at the narrowest section.  
Continuation past this section leads to supercritical flow, possibly with a hydraulic jump.  
If the upper layer thickness is greater than the lower layer thickness in the basin  



(d2∞<0.5) then the lower layer is thinned and accelerated, and the upper layer is thickened 
and decelerated, through the contraction.  An example is given by the curve afm of Figure 
5.4.1b. The opposite is true when d2∞>0.5 as indicated by curve ain.  The behavior of the 
thinner layer in each case is similar to single layer flow through a contraction. 
 
 
b.  Self-similar flow. 
 
 Of the Figure 5.4.1a curves originating from the origin, there is one that does not 
cross the critical diagonal at a point of minimum width.  This ‘similarity’ solution is 
given by the straight line F1

2=F2
2 and corresponds to equal basin layer thicknesses 

(d2∞=0.5). Since Q
r
= 1this solution is characterized by equal layer depth and speed at 

each section. If the flow is unidirectional then v1*=v2* and the fluid behaves as if it were 
homogeneous, entirely bereft of internal dynamics.  Beginning at the origin, one can trace 
a solution from the upstream basin through the narrowest section. For relatively large 
values of the narrowest width (in particular, q2<0.25) the flow will remain subcritical and 
will resemble something like the trace ala in Figure 5.4.1b.  As wm* is decreased (and the 
corresponding q2 increased), the trace may just reach the critical diagonal and will 
therefore become critical at the narrowest section, remaining subcritical elsewhere.  A 
further decrease in wm* causes the solution to cross the critical diagonal and become 
supercritical.   Where the diagonal is crossed (point b) the solution curve is normal to the 
curves of constant q2.  In other words, critical flow occurs not at the minimum width but 
at a point of diminishing width: !w * /!y* < 0 .  The existence of this virtual control is 
consistent with the regularity condition (5.2.17) and the fact 
that v

1
*
2
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) ! v
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*
2
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c
*) = 0 .  Downstream of the virtual control the flow becomes 

supercritical and remains so as the narrowest section, say c in Figure 5.4.1b, is passed. In 
principle, the solution then retreats back along the same line towards the origin, passing 
through another virtual control. The idealized path is something like abcba in Figure 
5.4.1b. In reality, a slight amount of dissipation will cause the flow to move off of the 
supercritical portion of the similarity solution and onto one of the supercritical solutions 
(with d2∞≠0.5).  The downstream flow may eventually be returned to a subcritical state by 
a hydraulic jump.  The circuit traced is therefore something like abcdefa or abcghia, the 
choice influenced by downstream conditions. 
 
 A similar barotropic solution exists for each value of Qr (Exercise 4).   Since the 
velocities in each layer are equal, Q1* and Q2* are each proportional to the net transport 
Q* (=Q1* +Q2*).  We proved in Section 5.2 that the latter remains independent of time if 
it is so far upstream and thus Q1* and Q2* must also remain independent of time.  Thus 
the similarity solution is not subject to blocking as the result of upstream influence. The 
minimum width may be made arbitrarily small without effecting the layer transports. In 
graphical terms, the act of making wm* small, and q2 large, simply forces the solution 
flow at the narrowest section (point c) to extend farther from the origin.  There is no 
nothing that forces Q1* or Q2* to change. 
   
c.  Laboratory examples of unidirectional flow. 



 
 Armi (1986) has produced examples of these solutions in a laboratory channel 
with a width contraction (Figure 5.4.2). The two layers are pumped from right to left at 
fixed values of Q1* and Q2* such that Qr=1.  The channel narrows to a minimum width 
midway through and widens again at the left end.  Here, there is nothing like a quiescent 
reservoir and the flow is varied by changing the net transport Q* (=Q1* +Q2*) and by 
altering the downstream conditions.  For smaller values of Q*,  Armi finds hydraulically 
controlled flows that resemble the solutions with unequal layer depths (d2∞<0.5 or 
d2∞>0.5) as described above. Examples are given in Figures 5.4.2a,b and the 
corresponding solution traces are something like afm or ain in Figure 5.4.1b.   In both 
cases the flow is subcritical until it reaches the narrowest section, where it undergoes a 
transition to supercritical flow.  The particular solution arising from a specified Q* 
(=2Q2* in the experiment) is predicted by calculating the value of q2 
(=Q

2
* /(zT *

3/2
!g
1/2
wm*) ) at the narrowest section and finding the intersection of the 

corresponding q2=constant curve with the critical diagonal in Figure 5.4.1a.  For q2<.25 
there will be two such intersections and therefore one must choose between two 
solutions, one having d2∞<0.5 and the other d2∞>0.5.  In the experiment, the choice is 
forced by downstream conditions that influence the initial evolution by which the steady 
flow is set up.  
 
 If Q* is increased, the value of q2 at the narrowest section increases, forcing the 
intersection with the critical diagonal to move closer to the midpoint F1

2= F2
2=1/2.  The 

value of d2∞ for the corresponding solutions approaches 0.5, meaning that the layer depths 
become equal.  At the value q2=0.25 the similarity solution is obtained and the layer 
depths become equal, at least in principle, at all points along the channel.  A further 
increase in Q* forces a self-similar flow with a virtual control.  As discussed above, the 
predicted flow enters the channel in a subcritical state and passes through a virtual 
control, becoming supercritical, on its way to the narrowest section. It continues to flow 
at a supercritical speed through the narrows. A laboratory realization is shown in Figure 
5.4.2c. The flow wanders a bit from it’s predicted self-similar state downstream of the 
narrows, probably due to frictional effects. In principle, Q* can be increased without 
limit, not surprising when one considers that the flow is behaving as if the density were 
uniform. 
 
 A virtual control clearly operates in a different way, and has different implications 
for the upstream flow, than a standard narrows or sill control.  For example, the flows 
shown in frames a and b of the figure experience upstream effects, manifested in the 
interface height, in response to changes in the minimum width wm*.  The same in not true 
of the flow with the virtual control (frame c), which is supercritical through the narrows. 
As discussed above, changes in the value of wm* therefore no upstream effect 
whatsoever.  Instead, the virtual control acts to maintain the barotropic character of the 
flow.  Its appearance coincides with the disappearance of shear between the two layers.  
Through the regularity condition, it requires that v1*=v2*, and thus establishes a shear-
free state at the position of the control.  Since the sidewall forcing acts equally on each 
layer, the shear-free state extends upstream and downstream from the position of the 



virtual control.  In essence, the virtual control has driven all internal dynamics out of the 
flow, which now acts like a single, homogeneous layer.  
 
d.  Lock exchange flow 
  
 Under conditions of pure exchange (Qr=-1) similar versions of most of the above 
solutions can be found.  One that is not observed is the exchange version of the similarity 
solution, which now has v

1
* = !v

2
* and is unstable upon entry into the supercritical 

region.  However another solution comes into play: the one indicated by the energy curve 
d2∞=0.5 that makes grazing contact with the critical diagonal in Figures 5.4.1a or b.  This 
solution can be imagined to occur between two wide basins, one in which the top layer is 
very thin and the other in which the lower layer is very thin.  This situation is difficult to 
realize when the flow is unidirectional  (see Exercise 3), however it can readily be 
established for an exchange flow. The traditional method of doing so is to perform a ‘lock 
exchange’ experiment of the type suggested in Figure 5.3.2, but with a pure width 
contraction in place of an obstacle.  Removal of a barrier placed at the contraction allows 
the fluids to move in opposite directions, displacing each other above and below, 
eventually resulting in a steady solution of the type just described.  The flow is critical at 
the narrowest section, where both c

!
*  and c

+
*  vanish, and becomes supercritical on 

either side.  Hydraulic jumps typically arise in these supercritical extensions, so that the 
complete solution circuit is something like aijbkfa in Figure 5.4.1b.  The direction of 
wave propagation in the supercritical regions is always away from the narrowest section 
and thus the flow there is insulated from small disturbances generated in the neighboring 
basins.  
 
 Asymmetric exchange solutions corresponding to solutions like ain or afm in 
Figure 5.4.1b can also be established in the laboratory. One approach (e.g. Lane-Serff, et 
al. 2000) to perform a ‘partial’ lock exchange experiment in which the barrier holding 
back the denser fluid extends from the bottom only part way up to the rigid lid.  The 
dense fluid is filled only to the top of the barrier and the barrier itself is positioned at the 
channel contraction.  After release, the steady exchange flow that is established has a 
lower layer that is thinner overall than the upper layer. The flow state corresponds to one 
of the solutions with d2∞<0.5, of which afm is an example, in Figure 5.4.1b.  Cases with 
d2∞<0.5 may be established by positioning the initial barrier to extend from the rigid lid 
partially down to the bottom and filling the less dense fluid to this lower level.  The 
complete range of exchange states is sketched in Figure 5.4.3. 
 
 The ‘full’ lock exchange solution achieves the maximum value of q2 (=0.25) of 
any of the realizable exchange solutions.  This solution therefore reaches the maximal 
flux  
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for fixed minimum width wm*, over all possible internal energy levels.  The formula 
follows from use of the definition of q2 along with its observed value, or simply by 



setting Q
r

=1 in (5.3.4). This solution is characterized by a double hydraulic control in 
the sense that both internal waves are frozen at the narrows.  Stommel and Farmer (1952) 
identified this state and verified it experimentally.1 Their analysis and their later (1953) 
application to estuary dynamics (Section 4.5) deserve special mention in the annals of 
hydraulics as one of the first applications of hydraulic theory to oceanographically 
relevant flows.   Both layers are engaged: the upper layer being more so in one reservoir, 
the second in the other, and both being active at the narrowest section.  The submaximal 
solutions (d2∞≠0.5) are characterized by having only one wave frozen at the narrowest 
section, by having a smaller Q2* for the same wm*, Ds and g′, and by being dominated by 
the dynamics of one of the layers.  
 
 It is possible to devise a number of experiments demonstrating how maximal flow 
is obtained as a limiting case of the submaximal flows.  For example, one might carry out 
a series of lock exchange solutions in which the initial barrier extends only partially 
through the depth.  One reservoir is filled to the top with the lighter fluid.  The other is 
filled to the top of the barrier with the denser fluid with the less dense fluid lying above.  
If this partial barrier is low enough, the exchange flow set up by its removal will be 
submaximal.  Increasing the barrier height sufficiently will eventually lead to the 
maximal solution.  A similar set of experiments could be made by pumping the fluids in 
opposite directions and gradually increasing the pumping rates.  The sequence of 
exchange solutions that one might encounter is shown in Figure 5.4.3.   
 
   
e. Unequal layer fluxes. 
 
 Froude number diagrams for Q

r
≠1 show similar features with a few twists.  The 

case Q
r

=0.5 is shown in Figure 5.4.4a.  Under conditions of exchange (Qr=-0.5), the 
flow contains a barotropic component Q1*+Q2*, here equal to Q1*/2.   A similarity 
solution with the virtual control exists and corresponds to the straight contour with 
d2∞=2/3.  For general Q

r
, the corresponding value of d2∞ is given by (Q

r
+ 1)

!1  and the 
contour itself by Q

r
F
1

2

= F
2

2  (see Exercise 4).   However, the former ‘lock exchange’ 
solution, which occurs along the curved energy contour with d2∞=2/3, now has two 
intersections with the critical diagonal.  The lower right intersection corresponds to a 
virtual control and the upper left intersection to a narrows control. It can be shown that 
the virtual control lies on the side of the narrows from which the barotropic component of 
the flow originates.  Also, there is a group of solutions with d2∞ slightly greater than 2/3 
that intersect the critical diagonal twice and that go off into supercritical space at either 
end.  Since both F1

2 and F2
2 go to infinity following the right-hand branch of these 

curves, the corresponding solutions cannot be smoothly connected to an infinitely wide 
reservoir.  
 

                                                
1 However, it was not recognized as the maximal limit of a continuum of other controlled 
solutions until the work of Armi (1986) and Farmer and Armi (1986). 



 The physical separation of the two control section in the presence of barotropic 
flow was first recognized by Wood (1970), who also coined the term ‘virtual control’.  In 
an exchange flow, the virtual control clearly operates in a different manner that its 
unidirectional counterpart.  The compatibility condition only requires that the flow speeds 
in the two layers be equal. In the limiting case of zero barotropic flow studied by 
Stommel and Farmer (1952) the virtual control is hidden by the fact that the two controls 
occur together. 
 
 If the flow is unidirectional and originates from a wide reservoir, the range of 
possible behavior can be illustrated, as before, by imagining a series of experiments in 
which the value of q2 (=Q2

* /(zT *
3/2

!g
1/2
wm*) ) is gradually increased by increasing Q2*.   

We continue to assume that the flow is critical at the narrows.  Beginning along a 
solution curve for which d2∞>2/3, we move through a succession of flows with relatively 
deep lower layers.  These solutions have upper layers that are relatively active and that 
are accelerated through the contraction.  However, the transport in the lower layer is 
twice that in the upper layer and the dynamics of this layer are more easily brought into 
play. As Q2* is raised the similarity solution is realized when d2∞ reaches the value 2/3.   
Here the lower layer depth remains twice the upper layer depth along the entire solution 
curve.   For further increases in Q2* the solution remains along the similarity curve and 
develops a virtual control upstream of the narrows.  As before, the flow becomes 
supercritical through the narrowest section and, in the expanding section of channel, 
tends to wander off of the d2∞=2/3 curve.  Possible outcomes with weakly dissipative 
jumps are illustrated by the paths abefgha or abeijha in Figure 5.4.4b. 
  
 If instead we begin with a solution for which d2∞<2/3, the approach to the 
similarity solution is just slightly different.  We move through a series of solutions like 
ahm in which the lower layer is most active.  As Q2* is raised, a solution traced by the 
curve abcd is approached from the left. The subcritical flow from the reservoir is nearly 
self-similar as it enters the contracting section and nearly passes through a virtual control 
there.  The solution now lies just to the left of point b in Figure 5.4.4b.  The solution then 
veers away from the similarity curve and passes through a narrows control (point c), after 
which it becomes supercritical.  A further increase in Q2* gives rise to the similarity 
solution with a virtual control. 
  
 Under conditions of exchange, a similarly modified sequence of solutions exists.  
As Q2 is increased from low values the limiting form is no longer the similarity solution 
(which is again unstable) but rather the full lock exchange solution.  This solution has 
supercritical flow extending into the two reservoirs and subcritical flow between the two 
controls.  A hydraulic jump or some other source of dissipation  is required to join the 
supercritical flows to the quiescent reservoirs.  An example is given by the circuit 
alkbcdha  in Figure 5.4.4b.  A procedure for obtaining a weir formula for this case is 
explored in Exercise 8. 

    
 
Exercises 
 



1)  By free hand, sketch the qualitative features of the solutions corresponding to the 
following circuits: 
 
 a)  afm (Figure 5.4.1b) 
 b)  ain (Figure 5.4.1b) 
 c)  abcba (Figure 5.4.1b) 
 d)  jbk (Figure 5.4.1b) 
 e)  aijbkfa (Figure 5.4.1b) 
 f)   kbcd (Figure 5.4.4b) 
 g)  alkbcdha  (Figure 5.4.4b) 
 
The sketches should be the style of the Figure 5.3.1b insets, with control sections and 
stretches of subcritical and supercritical flow labeled. 
   
2)  For flow through a contraction with constant  h*, show that for each Qr there is 
another solution with reciprocal flow rate ratio (1/Qr) in which the two layers are 
interchanged. 
 
3)  Consider the following flows, each of which has at least one critical section.  Remark 
on the stability of the hydraulic transition  at the critical section(s) in each case.  (Refer to 
the shock-forming instability, not Kelvin-Helmholtz instability.) 
 
 (a)  The solution kjk in Figure 5.4.1b. 
 
 (b)  A solution of the type abcd in Figure 5.4.1a, with the lower layer entering the 
deep basin and the upper layer exiting the basin. 
 
 (c)  The ‘lock exchange’ solution with Qr=0.5.  In other words, the solution with 
both a virtual and narrows control lying along the d1∞=.667 curve in Figure 5.4.1a, but 
now with unidirectional flow. 
 
4)   Prove that a barotropic (v1=v2) solution exists for arbitrary Qr.  Show that the solution 
is represented in the Froude number plane by Q

r
F
1

2

= F
2

2  and that the corresponding 
value of d2∞  is (1+ Q

r
)
!1 .  

 
5)  Show that where the similarity solution of Exercise (4) intersects the critical diagonal, 
a second solution with the same d2∞ must exist.  
 
6)  The two solutions implied in Exercise 5 must both satisfy (5.4.1) with 
d
1!

= (1+ Qr )
"1 .  With this setting show, in fact, that (5.4.1) can be written in the form 
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Show that satisfaction of this relation by equating the leading expression to zero gives the 
barotropic (similarity) solution.  Setting the longer, expression to zero gives the pure lock 
exchange solution. 
 
7)  For Qr=-1, show using equation (5.4.4) that the curve defining the lock exchange 
solution is identical to the curve (5.2.11) defining the long-wave stability threshold. 
(Hint: note that Qr is negative.) This result was first shown by Lawrence (1993). 
 
8)  If the definition of q2 is applied at the narrows, an implicit ‘weir’ formula is obtained: 
 
   Q

2
* = (q

2
)narrowsw * !g

1/2
Ds

3/2 . 
 
Here (q2)narrows is the value of q2 corresponding to point c in Figure 5.4.4b, or the 
equivalent figure for the value of Qr in question. Using a result obtained in Exercise 6, 
write out a procedure for calculating (q2)narrows in terms of Qr for the maximal lock 
exchange solution (eg. kbcd of Figure 5.4.4b).  (The algebra may be too complex to 
obtain a closed form solution.) 
 
 
 
Figure Captions 
 
 
Figure 5.4.1a  The Froude number plane for flow through a pure contraction with Q

r
=1. 

Solutions must lie along the thick curves, which have constant d2∞.  The thin curves are of 
constant q2 and are the same as in Figure 5.3.1a, but now the larger values of this 
parameter are associated with narrower widths. (From Armi,1986) 
 
Figure 5.4.1b  Examples of solutions for the previous figure, as described in the text.  
 
Figure 5.4.2 Side views of unidirectional, two-layer flows through a contraction.  Frames 
(a) and (b) show flows with a control section at the narrowest section, which lies 
approximately at the numeral ‘2’.  Frame (c) shows a self-similar flow with a virtual 
control.  At the upstream (right) entrance the layer depths and velocities are equal and 
continue to be so as the channel converges and the narrowest section is passed.  The 
virtual control occurs somewhere to the right of the narrowest section but is not 
distinguished by any visual property of the interface.  A small amount of mixing is 
observed in the downstream end of the channel. (From photos appearing in Armi, 1986). 
 
Figure 5.4.3. A sequence of steady solutions for two-layer exchange through a pure 
contraction, as described in the text.  (Based a figure in Armi and Farmer, 1986)  
 
Figure 5.4.4a  Froude number plane for flow through a pure contraction with Q

r
=0.5. 

(Based on a figure in Armi and Farmer, 1986.) 
 



Figure 5.4.4b  Examples of solution traces based on the curves shown in (a). 
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