
 
 
5.5 Overmixing and maximal flow in estuaries. 
 
 
 As discussed in the previous section, two-layer exchange flows exhibit a range of 
critically controlled steady states.  Given certain restraints imposed by the upstream 
conditions, there generally exists a family of ‘submaximal’ solutions in which one of the 
layers acts more or less like a single-layer (reduced-gravity) flow while the other layer 
remains relatively passive.  There is a single section of critical flow and the wave that is 
arrested is the one that attempts to propagate in the upstream direction of the ‘active’ 
layer.  For a pure sill geometry, only the lower layer can be the relatively ‘active’ one.  
For a pure contraction, either layer may be the relatively active one.  There is also a 
particular solution that is characterized by the presence of two critical sections and is a 
limiting case of the above solutions.   One control often acts where the upper layer is 
active while the other acts where the lower layer is active.   Such controls arrest wave 
propagation opposite to the direction of flow in the active layer.   In the example of flow 
from a deep basin over a pure sill, the ‘lower layer control’ lies at the sill while the ‘upper 
layer control’ lies in one of the neighboring basins.   In the case of a pure contraction 
with pure exchange,  both critical states coincide at the narrowest section and both layers 
are active.   The theory for these idealized geometries has been extended to include 
situations where the sill and narrowest width occur at different sections.  Farmer and 
Armi (1986) have shown that the maximal solution in this case has one control section at 
the narrows and the second at the sill.    
 
 For a steady exchange flow with fixed reduced gravity g′ and flux ratio Qr  the 
solution with two critical sections has maximal exchange transport.   The control sections 
for the maximal solution are insulated from the far field by stretches of supercritical flow 
that extend into the reservoir, terminating in hydraulic jumps.  Linear wave propagation 
is permitted into, but not out of, the end basins.   In this way, the flow at the control 
sections (particularly the exchange transport) is immune to mechanical changes that 
occur in the end basins. For example, a slight changed in the interface level that is forced 
in one of the basins will generate an internal wave that will spread over the basin, but not 
into the strait.  At the same time, changes in material properties such as density, which 
are advected by the flow, are not restricted in the same way.   A forced change in layer 
density, and thus g′, in an upstream basin, will be carried through the strait regardless of 
the state of hydraulic criticality.  The value of g′ ultimately depends on how the flow is 
forced and how the two layers are mixed.  
 
 Although Long’s (1954) experiments, their descendants, and other initial-value 
experiments are helpful in developing intuition about maximal and submaximal flows, it 
is usually difficult to extrapolate the results to particular geophysical settings.  For 
example, oceanographically relevant exchange flows often originate from an upstream 
basin or estuary that has finite extent and is subject to forcing, dissipation and mixing.   
The upstream conditions are therefore quite different from those envisioned by Long.    
Usual forcing mechanisms include cooling, evaporation, and precipitation over the basin 



surface, inflows and outflows from other straits or rivers, and mechanical forcing due to 
winds and tides.  Estuaries are fed by a source of fresh runoff water that floats above the 
denser, saline ocean water and flows out into the ocean proper.  Turbulence generated by 
tides, winds and internal instabilities can lead to mixing of the two water masses and an 
increased salinity of the upper layer. The export of salt that occurs where the upper layer 
exits must be balanced by an inflow if deeper, saltier water, and an exchange flow is set 
up. Semi-enclosed seas having stong evaporation or cooling can act as ‘inverse estuaries’, 
where the exchange flow is reversed.  Two of the most widely studied examples are the 
Red Sea and Mediterranean Sea, which experience excessive evaporation and relatively 
little fresh water input from rivers.  The combination of evaporation and surface cooling 
causes the surface waters to sink and eventually flow out into the ocean proper through 
the connecting passages, here the Bab al Mandab and the Strait of Gibraltar.   Relatively 
fresh water is drawn in at the surface of these straits, resulting in exchange flows.  
Whether the latter are maximal or submaximal is a question that has excited a great deal 
of debate. 
 
 
 Under conditions of steady flow in a closed basin with observable air-sea fluxes it 
is easy to write down a number of constraints on the overall exchange flow.  For 
example, the net volume transport out of the basin must be balanced by river runoff, 
precipitation, and evaporation: 
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where  E-P  represents the volume flux per unit surface area due to evaporation minus 
precipitation, As is the surface area of the basin, and -QR* is the volume inflow due to 
river runoff.   If there are differences in the concentration of a chemical tracer between 
the inflow and outflow and if the sources and sinks of this tracer in the basin can be 
quantified, then a similar conservation law can be written down.  For example, the input 
of salt due to river runoff in the Red Sea and Mediterranean Sea is negligible and thus the 
total influx of salt must be approximately zero: 
 
     Q1*S1+ Q2*S2=0.     (5.5.2) 
 
 
 Equations (5.5.1) and (5.5.2) can be rearranged to yield Knudsen’s relations 
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named after Danish chemist and oceanographer.  The salinity of the inflowing layer 
(either S1 or S2) is equal to the salinity of the ocean water that is drawn in and can 
nominally be regarded as known.  We will also assume that the values of E-P and QR* are 
known, even though the uncertainties in the measurement of these fluxes may be 
significant.  If the salinity of the outflowing layer can be measured, then (5.5.3) can be 
used to calculate Q1* and Q2*.  
 
 The above approach appears was used by Neilsen (1912) to estimate the volume 
fluxes in the Strait of Gibraltar.  Although they may provide a practical means for 
estimating layer fluxes, equations (5.5.3a,b) beg the question of what determines the 
salinity of the outflowing layer (or, equivalently, S2-S1).  A theory that provides an answer 
is based on the idea of overmixing, first proposed by Stommel and Farmer (1953).  Their 
ideas were formulated in the context of an estuarine circulation, where E-P is neglected, 
S2 is regarded as fixed, and mixing between the upper and lower layers in the estuary 
interior is regarded as imposed independently of the mean circulation itself.  One may 
begin by imagining an unmixed state in which the river discharge QR* produces a fresh 
layer of water (S1=0) that passes through the surface of the estuary and exits at the mouth.  
If mixing with the lower saline layer is initiated, perhaps as a result of winds or tides, S1 
is increased and S2-S1 is decreased. Equations (5.5.3a,b) then show that Q1* and Q2* 
increase: the estuary acquires a weak inflow of salty ocean water and an increased 
outflow of brackish surface water.  If the mixing is increased further, the salinity 
difference between the layers continues to decrease and a stronger exchange circulation is 
induced.  This process may not, however, continue unabated.  Eventually the exchange at 
the mouth of the estuary must reach a maximal value permitted by hydraulic constraints 
and mixing beyond this threshold should have no further effect.   
 
 These ideas can be cast in quantitative form by requiring that the flow at the 
mouth of the estuary be hydraulically controlled, even when the exchange flow is weak. 
Then  
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where the subscript ‘c’ refers to the quantities measured at the mouth.  For the time being, 
we will assume that the mouth consists of a pure contraction, with minimum width wm*, 
and with no sill or other topographic variation. 
 
 The density difference between the two layers is due primarily to the salinity 
difference and thus  
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where β ( =0.77×10-3g cm-3 ppt-1) is the coefficient of expansion of water due to salinity. 
In terms of the reduced gravity: 
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where dnc=dnc*/Ds. 
 
 
 Substitution of the (5.5.3) layer transports into (5.5.4) leads to  
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after use of (5.5.5) and (5.5.6).   Further discussion of this relation can be simplified if it 
is assumed that (S2- S1)/S2<<1, implying that Q1*≅-Q2* and therefore QR*<<Q1*. With 
this simplification, (5.5.7) can be written as 
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 The relationship between the nondimensional salinity difference Δs and d1c takes 
the form of a curve with two vertical branches and single minimum (Figure 5.5.1). For a 
given value of the nondimensional salinity difference Δs, and provided (Δs)3>16, there 
are two roots d1a and d1b.  Let us assume for the time being that the left branch of the 
curve gives the appropriate root.  Begin at the state d1c=d1a and imagine that the mixing 
increases while QR* is held fixed. Then S2-S1 should decrease, lowering the value of Δs, 
and the solution for d1c is found by descent along the left branch of the solution curve.  
The minimum possible value of Δs lies at the base of the curve, where d1c=1/2.  The 
corresponding salinity difference 
 

   (S
2
! S

1
) =

16"oQR *
2
S
2

2

g#w *m
2
Ds

3

$

%&
'

()

1/3

    (5.5.8) 

 



 
is the minimum possible, corresponding to the largest Q1*(=-Q2*), for the estuary. A 
further increase in the intensity of mixing in the estuary can apparently not alter these 
values and the resulting state is therefore ‘overmixed’.  It is not clear what this term 
implies for the interior state of the estuary itself, but some clues are provided by 
laboratory experiments to be presented here and in the next section.  The analysis can 
also be carried out using the unapproximated version (5.5.7) of the governing relation and 
this leads to a skewed version of the Figure 5.5.1 curve (see Exercise 1).  
 
 In the overmixed limit, the interface depth at the estuary mouth lies at mid-depth 
and this corresponds to a state of maximal hydraulic exchange for flow through a pure 
contraction, as discussed in Section 5.4.  Thus the state represented by the minimum of 
the Figure 5.5.1 curve represents a dynamically consistent state of maximal exchange in 
which the mouth, where the flow is critical, is insulated from both the ocean and the 
estuary by finite regions of supercritical flow. Other solutions lying along the left branch 
of the curve are hydraulically controlled, but submaximal.  In these cases, supercritical 
flow exists only outside the estuary mouth. 
 
 The situation in which the mouth contains a sill is another matter.  Let zT* 
represent the depth, taken as constant, in the estuary interior, so that Ds/zT*<1 when the 
mouth contains a sill.  As discussed in Section 5.3, the corresponding maximal exchange 
solutions have unequal layer depths over the sill.  When the sill is very shallow 
(Ds/zT*<<1), d1=0.625 and d2=0.375 so that the interface lies below mid-depth.  As the 
sill height  Ds/zT* is reduced, the interface rises eventually to mid-depth.  The 
corresponding range of d1 values is indicated by the solid segment of the curve in Figure 
5.5.1.  The limiting state of maximal exchange, and thus overmixing, in the presence of a 
sill therefore lies above the bottom of the curve and on the right branch.  For a 
submaximal flow the interface at the sill lies below its level for maximal exchange.  The 
corresponding ‘undermixed’ states lie along the right-hand branch of the curve. For these 
states supercritical flow extends from the mouth some distance into the estuary.  If no sill 
is present, the choice between left and right branches depends on how the flow is 
established; the laboratory experiment described next selects the left branch.   
 

The Stommel-Farmer hypothesis of an approach towards maximal estuary 
exchange and overmixing under conditions of controlled mixing has been investigated in 
a number of the laboratory experiments.  Similar experiments geared towards inverse 
estuaries will be discussed in the next section.  One method of controlling the mixing rate 
is to introduce fresh water into a salty laboratory estuary in the form of a turbulent plume 
of adjustable depth, and hence variable mixing.  In Timmermans (1997), a small basin 
representing an estuary is connected to a salt-water reservoir by a narrows (Figure 5.5.2). 
The estuary receives a steady flux of fresh water through a small submerged tube at 
adjustable depth. The fresh influx forms an ascending turbulent plume that entrains salty 
water as it rises to the surface. Brackish plume water accumulates at the surface and exits 
horizontally through the narrows while salty water enters beneath to supply salt to the 
plume. As the depth over which the plume rises increases, so does the total amount of 
entrainment.  The net upstream mixing in the experiment, thought by Stommel and 



Farmer to be controlled by the tides or winds, can therefore be varied by injecting the 
fresh water at different depths. 

   
Suppose that the plume is fed at elevation zS* and volume rate QR* and that it 

ascends a height zT*-du*- zS* in order to the reach the base of the upper layer (Figure 
5.5.2). The entrainment into the plume, and the corresponding value of g′ at its top, can 
be estimated (Turner, 1973) using a theory for a self-similar plume rising through a 
quiescent fluid.  The theory, which is based on the assumption that the source is weak 
(QR*<<Q2*) yields 
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where the leading coefficient is determined empirically. 
 
 This information may be used to predict the state of the exchange flow as a 
function of the source elevation zS*.  To do so, one must equate the internal energy 
(Bernoulli function) in the basin near the source to that at the narrowest section.  If the 
approximation of zero net exchange is made, it follows that  
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where d1c and du are the upper layer depths at and upstream of the sill, 
nondimensionalized by the total depth Ds.   
 

 Equations (5.5.8-10) can be used to calculate the state variables ( !g , du, 
d1c, etc.) as functions of the mixing parameter, zS*, or equivalently dS=( zT*- zS*)/DS.  For 
a given dS, the exact location along the curve of possible solutions (Figure 5.5.1) can be 
found.   Timmermans (1999) verified that increasing zR, caused by a decrease in the 
source elevation, causes the solution to tend towards the overmixed limit and that data 
track the predicted curve quite well (Figure 5.5.3).  However, even when the plume 
source is positioned at the bottom of the tank (dS =1) the total entrainment is insufficient 
to reach the limit of overmixing, here the minimum of the curve.  (The threshold dS 
predicted by the theory is about 2.5.) This limitation can be overcome by adding more 
plumes and the ‘x’ symbols, representing experiments with 6 plumes, reach the threshold 
of overmixing.    

 
One of the great mysteries raised by the hypothesis of overmixing concerns the 

state of the flow that occurs when this limit is exceeded.  The basic premise is that the 
salinity difference between the two layers decreases as mixing increases, and that the 
exchange flow must increase to satisfy the overall salt budget.   But what then happens 
when the exchange reaches its maximal value?  A further increase in mixing would seem 
to require a further decrease in the salinity difference, leading to a violation of the salt 
budget.   What happens under these conditions is not generally understood and 



undoubtedly depends on the way the flow is set up.  The laboratory experiments 
described below and in the next section provide some insight. 

 
Using an inverted version of the experiment described above, Whitehead et al. 

(2003) attempted to exceed the overmixed condition with a single plume and to provide 
some insight into the corresponding upstream state. The reservoir now contains fresh 
water and salt water is pumped in through a tube elevated above the bottom the ‘estuary’ 
basin (Figure 5.5.4). The full-depth narrows of the previous experiment is replaced with a 
submerged and shallower passage, similar to an upright experiment with a shallow sill. 
The mixing parameter dS is now replaced by zR (=zR*/Ds) the dimensionless source 
elevation above the bottom of the narrows.  The new configuration allows a wider range 
of forcing.    

 
The dyed salt plume appears on the far right in a photo (Figure 5.5.5).  The salt-

water layer appears black in the right basin and grey in the narrows because the basin is 
wider. The run shown is thought to exceed the limit of overmixing. The fresh upper layer 
flows into the basin from left to right and accelerates as it passes through the narrowest 
section and into the right basin.  In the classical view, this flow would develop a 
hydraulic jump somewhere near the entrance to the basin.  However, the region where 
this jump is expected shows billows (Figure 5.5.6). The latter cause the clear, fresh water 
entering the chamber to mix with the salty water, resulting in a brackish (grey) layer that 
extends into the basin up to the level of the tube source.  The presumed maximal 
exchange flow should also have a hydraulic jump at the left end of the channel, and while 
this feature may have been present, it was not documented. 

 
The approach to and beyond the limit of overmixing can been seen in a set of 

density profiles taken in the right basin (Figure 5.5.7).  The value of zR, now the elevation 
of the plume source, is labeled with each profile. The profiles show something like two 
homogeneous layers, often separated by a stratified, intermediate layer.  The value of g′ is  
defined using the difference between the local density and the density of the fresh water 
in the left reservoir.  For the Stommel and Farmer theory, the relevant value of g′ is based 
on the density difference between the upper and lower layers, measured at the narrowest 
section.  This value is very close to the g′ measured within the bottom layer of the 
profiles shown in the figures.  It can be seen that as zR is increased (the source is raised) 
from 1.5 to 2.5, the bottom value of g′ decreases. Further increases in zR cause g′ to 
cluster around a value 0.105, though there is an unexplained minimum at zR=3.0.  
Although the theoretical value g′=0.082 for this experiment is not reached, the 
convergence for values zR>2.5 suggests that the exchange flow is close to or has exceeded 
the limit of overmixing. The theoretical underestimate may be due to the presence of 
frictional effects that have not been taken into account. 

 
We now return to the conceptual question, raised earlier, regarding how the 

‘overmixed’ flow conspires to keep g′at a relatively fixed value while the elevation of the 
plume source, and presumably the mixing, increases.  An answer is suggested by two 
changes in the density distribution of the basin flow. One is a deepening of the lower 



layer and the other is the increased salinity of the overlying fluid (as evidenced by an 
increase in overall density).  This second effect is due to the billows and other interfacial 
instabilities in and around the narrows, which cause the salty bottom layer to become 
entrained in the fresh layer entering from the reservoir.  Now the total amount of salt in 
the estuary basin must remain constant, and thus the source salt flux must equal the salt 
flux through the narrows into the right reservoir.  When the basin flow is undermixed, 
freshwater from the reservoir enters the basin and becomes entrained into the salty plume. 
As the plume mixing is increased and more fresh water is entrained, the plume is 
increasingly diluted, the density difference between layers decreases, and the exchange 
flow through the narrows intensifies.  Once maximal exchange conditions in the narrows 
are reached, the amount of fresh water that can be drawn in from the reservoir cannot be 
increased.  If one then attempts to increase the mixing further (by raising the source),the 
system responds in a way that limits the entrainment of fresh water. It does so by 
increasing the depth of the lower layer (thus limiting the vertical height over which 
mixing can occur) and by creating a mechanism by which salt is detrained into the 
incoming fresh water (thus increasing the salinity of the water that is entrained into the 
plume).  In this respect the term ‘overmixing’ is misleading. Although the overall level of 
turbulence in the basin may increase, the actual net mixing between the fresh and salty 
layers remains fixed. 

 
The overmixing hypothesis is by no means the only model of estuary dynamics.  

In fact, it is difficult to find examples of estuaries that clearly have maximal exchange at 
the mouth.  The presence of strong time-dependence due to tides can cloud the 
interpretation. A reader interested in digging deeper into this field can consult Hetland 
and Geyer (2004), references contained therein, and also the textbook of Dyer (1997).    
 

We end this section with a bit of speculation that some readers may wish to turn 
into careful research.  The Black Sea acts like a giant estuary, with a relatively fresh  
surface layer fed by rivers and precipitation, and a deep, saline bottom layer.  The Sea is 
connected to the Mediterranean by the Bosphorus, which contains a two-layer flow that 
exchanges fresh surface water for saline Mediterranean water.  The lower layer of 
Mediterranean water begins its journey at a salinity of about 38 psu, passes through the 
Bosphorus, and descends in a turbulent plume into the Black Sea.  Entrainment with the 
fresher (17 psu) water leads to dilution of this plume.  The resulting water mass (about 22 
psu) spreads throughout the deep Black Sea basin.  The deep and shallow layers are 
separated by a pycnocline with a base at about 150m depth, well below the 40m deep 
Bosphorus.   

 
There are two features that suggest that the Black Sea could be overmixed.  One is 

the relatively deep pycnocline, similar to that in the inverted experiment (Figure 5.5.7).  
In that experiment, the interface or pycnocline in the right basin is much shallower than 
the passage.  The second suggestive piece of evidence is that multiple sections of critical 
flow have been observed in the Bosphorus (Gregg and Özsoy, 2002), which could be 
consistent with maximal exchange.   
 
  



Exercises 
 
1)  By rearranging the primitive version (5.5.7) of the relation governing estuary flow, 
show that  
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version of the Figure 5.5.1 curve.  Show that the minimum value of  !!s  lies where 
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Deduce that this minimum must occur in 1/2≤d1c<1 and thus the interface must, in the 
overmixed limit, lie below mid-depth.  Note that the minimum value of  !!s itself can be 
obtained by eliminating d1 between the last two equations and solving the resulting 
polynomial. 
 
2.  How would the original theory of Stommel and Farmer be modified to fit the 
experimental conditions suggested in Figure 5.5.4? 
 
 
Figure Captions 
 
Figure 5.5.1.  The dimensionless salinity difference Δs as a function of the dimensionless 
upper layer thickness d1c at the mouth of an estuary, according to equation (5.5.8).  The 
thickened portion of the curve shows the location of maximal exchange for a range of sill 
heights.   
 
Figure 5.5.2  Sketch of the laboratory reservoir, fresh water source, and passage used to 
simulate an estuarine flow with partial mixing. The arrows indicate directions of flow. 
 
Figure 5.5.3. The curve shows the predicted value of g′ as a function of the 
dimensionless, critical upper layer depth d1c at the narrowest section. The hash marks on 
the curve indicate where a solution with the indicated value of dS should lie.  The symbols 
indicate data points from the experiment of Timmermans (1999).  Points indicate forcing 
by a single plume while crosses indicate six plumes. 
 
Figure 5.5.4  Sketch of the Whitehead et al. (2003) laboratory setup. 
 
Figure 5.5.5  Photograph of an experiment with zR=3, thought to be overmixed.  
 



Figure 5.5.6 Close-up of the flared region between the passage and the right basin where 
clear water flows up and into the chamber with developing billows. The experiment is the 
same as shown in Figure 5.5.6. 
 
Figure 5.5.7  Density profiles for 14 experiments, measured at the location shown in 
Figure 5.5.4.   
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